Degrees of Homogeneous Models

by

Robert I. Soare

The University of Chicago

AMS Meeting, Storrs, CT
in honor of Manuel Lerman
October 29, 2006

To get to WEB SITE for these slides:

1. google: “Robert Soare”
2. then click on: /res/vaught/
ABSTRACT:

Degrees of Homogeneous Models

Vaught [1961] defined a model to be homogeneous if every finite partial elementary map can be extended to an automorphism. Goncharov and Peretyatkin found a criterion for a homogeneous model with all types uniformly effectively presented to have a decidable copy. A number of results by researchers at the University of Chicago considerably improve these results in the positive and negative direction. We shall describe some of them.
Vaughtian Models

Vaught [1961]
“Countable Models of Complete Theories”

Soare tutorial

on prime, saturated, homogeneous models.

Differences:
1. We study the countable case only.
2. Introduce homogeneous models early, get uniqueness of prime, saturated from homog.
3. Study the tree of formulas $T_n(T)$ which generates the n-types $S_n(T) = [T_n(T)]$.
Homogeneous Models

Def. A is *homogeneous* iff for all \bar{a}, and \bar{b},

$$(A, \bar{a}) \equiv (A, \bar{b}) \implies (\exists G \in \text{Aut}(A)) [G(\bar{a}) = \bar{b}].$$

i.e., every finite elementary map $F(\bar{a}) = \bar{b}$ can be extended to an automorphism G of A.

Def. For any model $A \models T$ define the set of types realized in A.

$$T(A) = \{p : p \in S(T) \; \& \; A \text{ realizes } p\}.$$

Homogeneous Uniqueness Thm. Given a countable complete theory T and homogeneous models A, B of T with $||A|| = ||B||$, then

$$T(A) = T(B) \implies A \cong B.$$
Spectrum of Homogeneous Models

(Algebraically closed fields of characteristic 0)

Baldwin-Lachlan sequence of countable models of ACF_0:

$\mathbb{Q} \prec \mathbb{Q}[x_1] \prec \mathbb{Q}[x_1, x_2] \prec \cdots \prec \mathbb{Q}[x_i]_{i \in \omega}$.

prime homogeneous saturated.

Spectrum of Ctable Homogeneous Models

$\mathcal{A}_0 \quad \ldots \quad \mathcal{A}_i \quad \ldots \quad \mathcal{A}_\omega$

$S(\mathcal{A}_0) = S^p(T) \subseteq S(\mathcal{A}_i) \subseteq S(\mathcal{A}_\omega) = S(T)$

prime homogeneous saturated.

but the models are not linearly ordered.
Homogeneous Bounding Degrees

Def. A (Turing) degree d is *homogeneous bounding* if every complete decidable (CD) theory has a d-decidable homogeneous model.

Def. A degree d is a *Peano Arithmetic (PA) degree* if d is the degree of a complete extension of Peano Arithmetic.

Thm Csima, Harizanov, Hirschfeldt, Soare
A degree d is homogeneous bounding iff d is a PA degree.
Morley’s Question

Def. Let $\mathcal{C} \subseteq S(T)$ be a set of computable types of a CD theory T. A d-basis for \mathcal{C} is a listing $\{X_n\}_{n \in \omega}$ of \mathcal{C}, and a d-computable function $\varphi \leq d$ such that $\varphi h(n) = X_n$.

Morley’s Question. If T is a CD theory and \mathcal{A} is a homogeneous model of T with a 0-basis X for $T(\mathcal{A})$ does \mathcal{A} have a decidable copy \mathcal{B}?

Note. True for prime and saturated models.
Twin Matrix Picture:

Given model \mathcal{A} with types $\mathcal{T}(\mathcal{A}) = \{A_i\}_{i \in \omega}$

A_0
A_1
A_2
\vdots

Construct model \mathcal{B} with $\mathcal{T}(\mathcal{B}) = \mathcal{T}(\mathcal{A})$.

B_0
B_1
B_2
\vdots
Let \(\mathcal{A} \) be a homogeneous model of a CD theory \(T \) and type spectrum \(\mathbb{T}(\mathcal{A}) \) has a \(0 \)-basis \(X = \{ p_i \}_{i \in \omega} \).

\(f \) is an effective extension function (EEF) for \(X \) if

- for every \(n \)-type \(p_i(\overline{x}) \in X \cap S_n(T) \)
- \(p_i(\overline{x}) \subseteq p_{f(i)}(\overline{x}, x_n) \in X \cap S_{n+1}(T) \).

Positive Thm. [Goncharov, Peretyatkin].
Let \(T \) be a CD theory and \(\mathcal{A} \models T \) homogeneous.

TFAE:

(i) \(\mathcal{A} \) has a decidable copy \(\mathcal{B} \).

(ii) Some \(0 \)-basis for \(\mathbb{T}(\mathcal{A}) \) has EEF.
Degrees of Homogeneous Models

Thm 1. [Karen Lange]

[Homogeneous Low Basis Thm]. Given:

- a CD theory T;
- a homogeneous model $\mathcal{A} \models T$;
- a $0'$-basis $X = T(\mathcal{A})$.

then there is a copy $\mathcal{B} \cong \mathcal{A}$ which is low.
(i.e., $D^p(\mathcal{B})' \equiv_T 0'$.)

Coroll. [Prime Low Basis Thm, Csima]

Every complete atomic decidable (CAD) theory T has a a low prime model \mathcal{A}.

Prf. If T is CAD, then any prime model $\mathcal{A} \models T$ has a $0'$-basis $X = T(\mathcal{A}) = T^p(T)$.
Nonlow\textsubscript{2} Bounding

Thm 2. [Karen Lange].
[Homogeneous Bounding Theorem] Given:

- A CD theory T;
- A homogeneous model $\mathcal{A} \models T$;
- A 0-basis $X = S(\mathcal{A})$;
- A degree $d \leq 0'$ which is nonlow\textsubscript{2} ($d'' > 0''$).

Then there is a d-decidable copy $\mathcal{B} \cong \mathcal{A}$.

Note. Using Lange Homogeneous Low Basis Thm 1, strengthen to the 0'-uniform case.

Cor. [Csima, Hirschfeldt, Knight, Soare] If $d \leq 0'$ is nonlow\textsubscript{2} then d is prime bounding.
Domination and Escape

Def. A fn h dominates a fn f if

$$(\forall^\infty x)[f(x) < h(x)],$$

and otherwise f escapes h,

$$(\exists^\infty x)[h(x) \leq f(x)].$$

Escape Property

$$D \leq_T \emptyset' \text{ nonlow}_{2} \iff (\forall h \leq 0')(\exists f \leq_T D)(\exists^\infty t)[h(t) \leq f(t)]$$
Thm 3. [Karen Lange].

[Homogeneous Full Basis Theorem]
Let T be a CD theory with types all computable (TAC). Let homogeneous $\mathcal{A} \models T$ have a 0-basis. Then

$$\{ d : 0 < d \} \subseteq \{ \deg(B) : B \cong \mathcal{A} \}.$$

Note. Like the Csima-Hirschfeldt Full Basis Thm for prime models of a CAD theory T with TAC. Neither theorem implies the other.
Saturated Models

Def. Let T be a countable complete theory, $\mathcal{A} \models T$ countable.

(i) \mathcal{A} is *saturated* if every 1-type $p(\bar{a}, x)$ over a finite set of elements $\bar{a} \in A$ is realized in \mathcal{A}.

(ii) If \mathcal{A} is homogeneous then \mathcal{A} is saturated iff $T(\mathcal{A}) = S(T)$ (i.e., \mathcal{A} is *weakly saturated*).

Def. A degree d is *saturated bounding* if for every CD+TAC theory T there is a saturated model \mathcal{A} of T which is d-decidable.

Thm. Every degree d which is *high* ($d' \geq 0''$) is saturated bounding.

Thm (Millar). Degree 0 is not saturated bounding.
Uniform Escape Property

Thm (Ken Harris). There is a CD + TAC theory T with no low saturated model.

Def. (Harris) A degree d has the Uniform Escape Property if there is an $h \leq_T 0$ such that

$$(\forall e)[\Phi^d_e \text{ total } \implies (\exists x)[\Phi^d_e(x) \leq \Phi^d_{h(e)}(x)]]$$.

Thm (Ken Harris). For c.e. degrees d, TFAE:

(a) d is low ($d' = 0'$).

(b) d has the Uniform Escape Property.
Extending Negative Results

Def. A degree d is low_n if $d^{(n)} = 0^{(n)}$.

Thm (K. Harris) For $n \geq 1$ TFAE:

(i) A is low_n.

(ii) A has n-UEP.

Def. A refinement of n-UEP is the aligned escape property (AEP).

Thm. All low_n c.e. degrees have AEP.

Thm. A has n-AEP $\implies A$ not saturated bounding.

Coroll. No low_n c.e. degree is saturated bounding.
Def. A degree d is low$_n$ if $d^{(n)} = 0^{(n)}$.

Thm (K. Harris) For $n \geq 1$ TFAE:

(i) A is low$_n$.

(ii) A has n-UEP.

Def. A refinement of n-UEP is the aligned escape property (AEP).

Thm. All low$_n$ c.e. degrees have AEP.

Thm. A has n-AEP $\implies A$ not saturated bounding.

Coroll. No low$_n$ c.e. degree is saturated bounding.
There is a hierarchy of properties characterized by less effective procedures, Uniform Escape Property \(n\text{-UEP} \), starting with (1-UEP)=(UEP), such that

Thm. For all degrees \(d \) and all \(n \geq 1 \) TFAE:

(i) \(d \) is \(L_n \) (\(d^{(n)} = 0^{(n)} \)).

(ii) \(d \) has \((n\text{-UEP}) \).
n-Uniform Escape Property

Def. Degree d has the *n-Uniform Escape Property* (n-UEP) if for any set $A \in d$:

There are uniformly enumerable (u.e.) families of partial computable functions $\lambda e [h_e, \eta], \eta \in \omega$ such that for any u.e. family $\{\Phi^A_{e, \eta}\}_{\eta \in \omega}$ with

$$(Q_1)(Q_2) \ldots [\Phi^A_{e, \eta} \text{ total }] \implies (Q_1)(Q_2) \ldots [h_e, \eta \text{ total } \& \text{ escapes } \Phi^A_{e, \eta}]$$

where Q_1, Q_2, \ldots are certain quantifiers over the η's $\in \eta$ matched in hypothesis and conclusion.
Noncomputability and Lowness

Gödel [1931] Incompleteness

Turing [1936] Incomputability and undecidability Entscheidungsproblem.

[2006] Analyze these undecidable (noncomputable) sets especially the simplest, \textit{i.e.}, sets of low information content.

Willian Rainey Harper Dissertation Award.
Never won by a math grad student.