Computability of Vaughtian Models:

Lecture 4: Degrees of Homogeneous Models

by

Robert I. Soare
The University of Chicago

MATHLOGAPS Conference

WEB SITE:
www.math.uchicago.edu/~soare/ or
www.cs.uchicago.edu/~soare/
Homogeneous Models

Def. \(\mathcal{A} \) is homogeneous iff for all \(\bar{a} \), and \(\bar{b} \),
\[
(\mathcal{A}, \bar{a}) \equiv (\mathcal{A}, \bar{b}) \implies (\exists G \in \text{Aut}(\mathcal{A}))[G(\bar{a}) = \bar{b}].
\]
i.e., every finite elementary map \(F(\bar{a}) = \bar{b} \) can be extended to an automorphism \(G \) of \(\mathcal{A} \).

Def. For any model \(\mathcal{A} \models T \) define the set of types realized in \(\mathcal{A} \).
\[
T(\mathcal{A}) = \{ p : p \in S(T) \ & \mathcal{A} \text{ realizes } p \}.
\]

Homogeneous Uniqueness Thm. Given a countable complete theory \(T \) and homogeneous models \(\mathcal{A}, \mathcal{B} \) of \(T \) with \(||\mathcal{A}|| = ||\mathcal{B}|| \), then
\[
T(\mathcal{A}) = T(\mathcal{B}) \implies \mathcal{A} \cong \mathcal{B}.
\]
Proof of Homogeneous Uniqueness

Proof. Fix A and B be homogeneous, countable, with $\mathcal{T}(A) = \mathcal{T}(B)$. Suffices to define ω-back and forth F between A and B. T is complete so $A \equiv B$. Add the empty map \emptyset to F.

Given any elementary map $f \in F$, $f(\pi) = \bar{b}$ and any $c \in A$ let p be the $(n+1)$-type of (π, c) in A. There is some $(n+1)$-tuple (\bar{b}', d') satisfying p in B because $\mathcal{T}(A) = \mathcal{T}(B)$.

Hence, $(B, \bar{b}) \equiv (B, \bar{b}')$. By homogeneity of B there is some $d \in B$ such that

$$(A, \pi, c) \equiv (B, \bar{b}', d') \equiv (B, \bar{b}, d).$$

Extend f to $g = f \cup \{(c, d)\}$ and add g to F.

3
Spectrum of Homogeneous Models

Algebraically closed fields of characteristic 0

Baldwin-Lachlan sequence of countable models of ACF_0:

$\mathbb{Q} \prec \mathbb{Q}[x_1] \prec \mathbb{Q}[x_1, x_2] \prec \ldots \prec \mathbb{Q}[x_i]_{i \in \omega}$

prime homogeneous saturated.

Spectrum of Ctbble Homogeneous Models

$\mathcal{A}_0 \ldots \mathcal{A}_i \ldots \mathcal{A}_\omega$

$S(\mathcal{A}_0) = S^p(T) \subseteq S(\mathcal{A}_i) \subseteq S(\mathcal{A}_\omega) = S(T)$

prime homogeneous saturated.

but the models are not linearly ordered.
Homogeneous Bounding Degrees

Def. A degree d is *homogeneous bounding* if every CD theory has a d-decidable homogeneous model.

Def. A degree d is a *Peano Arithmetic (PA) degree* if d is the degree of a complete extension of Peano Arithmetic.

Thm Csima, Harizanov, Hirschfeldt, Soare. A degree d is homogeneous bounding iff d is a PA degree.
PA Computes Homogeneous Model

Thm. Any countable theory T has a homogeneous model \mathcal{A}.

Build $\mathcal{A} = \bigcup \mathcal{A}_n$ and elementary chain. At level n list all finite partial elementary maps over \mathcal{A}_n and in \mathcal{A}_{n+1} add new constants to guarantee one apoint extension of each map.

This repeatedly uses Lindenbaum’s Lemma (that every consistent set of sentences can be extended to a complete theory) which is equivalent to finding paths through trees.

Lindenbaum’s Lemma can be carried out effectively in a degree d iff d is a PA degree.
Homogeneous Bounding is PA

Let U (or V) be the set of Gödel numbers of sentences provable (or refutable) from PA. Any separating set for U and V has a PA degree.

Key Idea. Build theory T s.t. if $A \models T$ is homogeneous, then the atomic diagram of $D(A)$ can compute a separating set for U and V.

$L(T)$ has infinitely many unary predicate symbols $\{P_i\}_{i \in \omega}$, infinitely many binary predicate symbols $\{R_i\}_{i \in \omega}$, a unary predicate symbol D, and a binary predicate symbol E.
Morley’s Four Properties

Morley [1976, p. 236] noted:

\(P1. \) There is a decidable model \(A. \)

\(P2. \) There is a computable listing of \(T(A). \)

\(P3. \) \(T(A) \) satisfies TAC (types all computable).

\(P4. \) The theory \(T \) is CD.

Morley noted the obvious:

\[P1 \implies P2 \implies P3 \implies P4. \]

\[P4 \not\implies P3. \]

\[P3 \not\implies P2. \]
Morley’s Question

Def. Let $\mathcal{C} \subseteq S(T)$ be a set of types of a CD theory T. If there exists some uniformly computable listing $X = \{p_j\}_{j \in \omega}$ of \mathcal{C} we call X a 0-basis for \mathcal{C}.

Morley’s Question. If T is a CD theory and \mathcal{A} is a homogeneous model of T with a 0-basis X for $\mathcal{T}(\mathcal{B})$ does \mathcal{A} have a decidable copy \mathcal{B}?

By the Homogeneous Uniqueness Thm this is equivalent to finding a decidable homogeneous model \mathcal{B} of T with $\mathcal{T}(\mathcal{A}) = \mathcal{T}(\mathcal{B})$.

Note. True for prime and saturated models.
Let \(\mathcal{A} \) be a homogeneous model of a CD theory \(T \) whose type spectrum \(\mathcal{T}(\mathcal{A}) \) has a \(0 \)-basis \(X = \{ p_i \}_{i \in \omega} \).

(i) A function \(f \) is an extension function (EF) for \(X \) if for every \(n \),
- for every \(n \)-type \(p_i(\bar{x}) \in X \cap S_n(T) \)
- and every \((n + 1)\)-ary \(\theta_j(\bar{x}, x_n) \in F_{n+1}(T) \) consistent with \(p_i(\bar{x}) \)
 \[p_i(\bar{x}) \cup \{ \theta_j(\bar{x}, x_n) \} \subseteq p_{f(i,j)}(\bar{x}, x_n). \]

(ii) If \(f \) is also computable then \(f \) is an effective extension function (EEF).
Picture slide:

pix: Have one matrix, w/ p1 as 1-type on first row, and 2-ary fmls θ. Now move marker along 2-rows until it settles on right answer.
Monotone Extension Function

Def. [Monotone Function on X] A function $f(i)$ on X is a monotone function on X if there is a computable function $\hat{f}(i,s)$ such that,

(i) $f(i) = \lim_{s} \hat{f}(i,s)$, and

(ii) $p_{\hat{f}(i,s)}\mid s \subseteq p_{\hat{f}(i,s+1)}\mid (s + 1)$.

In this case we write $f(i) = mlim_{s} \hat{f}(i,s)$.

IDEA. We build a computable type $q = \cup_{s} p_{\hat{f}(i,j,s)}\mid s$ as the union of a monotone sequence $\{p_{\hat{f}(i,j,s)}\mid s\}$.

Thm. If $X = \{p_{i}\}_{i \in \omega}$ and $Y = \{q_{i}\}_{i \in \omega}$ are 0-bases for $T(A)$ there is a monotonic function g on X such that $p_{g(i)} = q_{i}$.
EEF and Decidable Copies

Positive Thm. [Goncharov, Peretyatkin]. Let \(T \) be a CD theory and \(\mathcal{A} \models T \) homogeneous. TFAE:

(i) \(\mathcal{A} \) has a decidable copy \(\mathcal{B} \).

(ii) Every 0-basis \(X = S(\mathcal{A}) \) has MEF.

(iii) Some 0-basis for \(S(\mathcal{A}) \) has MEF.

(iv) Some 0-basis for \(S(\mathcal{A}) \) has EEF.

Proof. (i) \(\Rightarrow \) (iv), obvious.

(ii) \(\iff \) (iii) \(\iff \) (iv), easy.

(iv) \(\Rightarrow \) (i), main import of the theorem.
Corollaries: Prime and Saturated

Application Thm. Let T be CD and $A \models T$ have 0-basis $X = S(A)$. If A is either:

- prime, or
- saturated,

then X has MEF. (Hence, \exists decidable $B \cong A$.)

Coroll [Harrington, Goncharov-Nurtazin]. If T is a complete atomic decidable (CAD) theory and $S^p(T)$ has a 0-basis then T has a decidable prime model.

Coroll [Morley, Millar]. If T is a complete decidable (CD) theory and $S(T)$ has a 0-basis, then T has a decidable saturated model.
PIX: Ease to see prime case by movable marker.
Satur. easy also.
Picture of Prime Model and MEF
Negative Thm.
[Goncharov, Peretyatkin, Millar].
There exists:

- a CD theory T,
- a homogeneous model $\mathcal{A} \models T$,
- a 0-basis $X = S(\mathcal{A})$,

with no decidable copy $\mathcal{B} \cong \mathcal{A}$.

Proof.
Construct 0-basis $X = S(\mathcal{A})$ with no MEF.
Pix. Push opponent’s MEF fn off to infty.
Homogeneity Conditions

Existence Thm for Ctable Homogeneous Models [Goncharov, Peretyat’kin].
Given CD theory T and ctable $S \subseteq S(T)$.

$$(\exists \text{ homogeneous } A \models T) \ [S(A) = S]$$

\[\iff \]

1. S is closed under taking subtypes, and
2. S is closed under permutations of variables,
3. (EP) If $p(x_1, ..., x_n) \in S$ and $\theta(x_1, ..., x_{n+1})$ are consistent, then there exists an $(n + 1)$-type $q \in S$ such that $p \cup \{ \theta \} \subseteq q$, and
4. (TAP) For any two types $p_1(\bar{x}, y)$, $p_2(\bar{x}, z) \in S$ such that $p_1 \downarrow \bar{x} = p_2 \downarrow \bar{x}$, there exists a type $q(\bar{x}, y, z)$ containing p_1 and p_2.
Degrees of Homogeneous Models

Thm 1. [Karen Lange]
[Homogeneous Low Basis Thm]. Given:

- A CD theory T;
- A homogeneous model $A \models T$;
- A $0'$-basis $X = S(A)$.

Then there is a copy $B \cong A$ which is low.
(Namely, $D^r(B)' \equiv_T 0'$.)

Coroll. [Prime Low Basis Thm, Csima]
Every complete atomic decidable (CAD) theory T has a a low prime model A.

Prf. If T is CAD, then any prime model $A \models T$ has a $0'$-basis $X = S(A) = S^P(T)$.
Thm 2. [Karen Lange].

[Homogeneous Full Basis Theorem]
Let T be a CD theory with types all computable (TAC). Let homogeneous $\mathcal{A} \models T$ have a $\mathbf{0}$-basis. Then

$$\{ d : 0 < d \} \subseteq \{ \deg(B) : B \cong \mathcal{A} \}.$$

Note. Like the Csima-Hirschfeldt Full Basis Thm for prime models of a CAD theory T with TAC. Neither theorem implies the other.
Nonlow$_2$ Bounding

Thm 3. [Karen Lange].
[Homogeneous Bounding Theorem] Given:

- A CD theory T;
- A homogeneous model $\mathcal{A} \models T$;
- A 0-basis $X = S(\mathcal{A})$.
- A degree $d \leq 0'$ which is nonlow$_2$ ($d'' > 0''$).

Then there is a d-decidable copy $\mathcal{B} \cong \mathcal{A}$.

Note. Using Lange Homogeneous Low Basis Thm 1, strengthen to the $0'$-uniform case.

Cor. [Csima, Hirschfeldt, Knight, Soare] If $d \leq 0'$ is nonlow$_2$ then d is prime bounding.
Escape Property

\[D \leq_T \emptyset' \text{ nonlow}_2 \iff \]
\[(\forall h \leq 0')(\exists f \leq_T D)(\exists \infty t)[h(t) \leq f(t)] \]
PIX: Show how the escape property guides one toward the MEF row. Use MEF not EEF.
Using Nonlow$_2$ to Search