Computability of Vaughtian Models:

Lecture 2: Degrees Bounding Prime Models

by

Robert I. Soare

The University of Chicago

MATHLOGAPS Conference

WEB SITE:
www.math.uchicago.edu/~soare/ or
www.cs.uchicago.edu/~soare/
Def. Tree $T \subset 2^{<\omega}$ is a **PAC tree** if it is a computable extendible tree and every path in $[T]$ is computable. (*PAC* means *paths all computable.*)
(*TAC* means *types all computable.*)

Thm (Hirschfeldt). If T be an extendible PAC tree and $D >_T \emptyset$ there is a D-computable listing of the isolated paths in $[T]$.

Coroll. If T is a CAD + TAC theory and $D >_T \emptyset$ then T has a D-decidable prime model.

Coroll. If $0 \notin dgSp(A)$, A prime, then

$$dgSp(A) = \{ d : d > 0 \}.$$

Coroll (Slaman, Wehner). There is a structure with presentations of every nonzero degree but no computable presentation.
Proof of Hirschfeldt PAC Thm

Let \(\{ \sigma_i \}_{i \in \omega} \) be effective list of \(T \). Define

\[[T]^P = \{ f : f \in [T] \ & \ f \text{ principal (isolated)} \} \]

By Harrington (iii) we build \(g(\sigma, y) \), where \(g \leq_T D \) s.t.

\[(\forall \sigma \in T) \ [g_\sigma \in [T]^P] \]

where \(g_\sigma = \lambda y \ [g(\sigma, y)] \).

Problem: To guarantee that each \(g_\sigma \) is isolated.

Construction of \(g_\sigma \).

Begin with \(g^0 = \sigma \). Given \(g^s = \tau \) and both \(\tau^j \in T, j = 0, 1 \) and this is the \(k^{th} \) splitting between \(g^0 \) and \(\tau \). Define \(g^{s+1} = \tau^{D(k)} \).
Lemma. \(g_\sigma \) is isolated.

Proof. Suppose \(g_\sigma \in [T] - [T]^P \). Then

\[
D \leq_T g_\sigma \oplus T.
\]

\[\therefore D \text{ is computable}.\]
Def. (i) Function g dominates f ($f <^* g$) if
\[(\forall^\infty x) \ [f(x) < g(x)]. \]

(ii) f escapes (domination by) g if $f \not<^* g$, i.e.,
\[(\exists^\infty x) \ [g(x) \leq f(x)]. \]

(iii) f is dominant if f dominates every (total) computable function.

Def. A degree $d \leq 0'$ is high if $d' = 0'$

Thm (Martin). A degree d is high iff
\[\exists \text{ dominant } g \leq_T d.\]
Bounding Prime Models

(P0) The escape property.
\((\forall g \leq T 0') (\exists f \leq T X) (\exists^\infty x) [g(x) \leq f(x)] \),
(\(\exists^\infty\)) denotes “there exist infinitely many”.

(P1) The nonlow\(_2\) property.
\(X \) is not low\(_2\) (i.e., \(X'' > T 0'' \)).

(P2) The prime bounding property.
\(X \) is prime bounding,
(i.e. every CAD theory \(T \) has an \(X \)-decidable prime model.)

Thm (Csima, Hirschfeldt, Knight, Soare).
For \(X \leq_T 0' \)
\[(P0) \iff (P1) \iff (P2) \]
Properties (P3) – (P8)

(P3) The isolated path property. For every computable tree $T \subseteq 2^{<\omega}$ with no terminal nodes and with isolated paths dense,

$$(\exists g \leq_T X) (\forall \sigma \in T) \left[g_\sigma \in [T_\sigma] \land g_\sigma \text{ is isolated} \right].$$

(P4) The tree property. For every computable extendible tree $T \subseteq 2^{<\omega}$, and uniformly Δ^0_2 sequence of subsets $\{S_i\}_{i \in \omega}$ dense in T, there exists $g \leq_T X$ for all $\sigma \in T$, $g_\sigma = \lambda y \left[g(\sigma, y) \right]$ is a path extending σ and hitting each S_i, i.e.,

$$(\exists g \leq_T X) (\forall \sigma \in T) \left[\sigma \subset g_\sigma \land (\forall i) (\exists r \in S_i) [r \subset g_\sigma \in [T]] \right].$$
Topology

Property (P4) has a topological interpretation in the Cantor Space 2^ω. Recall in Cantor Space the basic open sets are

$$U_\sigma = \{ f : f \in 2^\omega \ & \sigma \subset f \}.$$

and open sets are

$$U_S = \bigcup \{ U_\sigma : \sigma \in S \}.$$

Hence, (P4) says that for every $\sigma \in T$, the path $g_\sigma \in [T]$ extends σ and lies in every dense open set U_{S_1}. This says for the Δ_0^1 family $\mathcal{G} = \{ S_i \}_{i \in \omega}$ that X can compute a \mathcal{G}-generic path g. A special case is that X computes a 1-generic set.
Omitting Types

(P5) *The omitting types property.* For any complete decidable theory T and any uniformly Δ^0_2 family of sets of formulas $\{\Gamma_j(\bar{x})\}_{j \in \omega}$, all nonprincipal with respect to T, there is an X-decidable model of T omitting all $\Gamma_j(\bar{x})$.

Def. A set $S \subseteq \omega$ is X-monotonic if there is a function $g \leq_T X$ such that for every x, $g(x, y)$ is nondecreasing in y, with limit $\hat{g}(x) = \lim_y g(x, y)$, $\hat{g}(x) \geq x$, and $\hat{g}(x) \in S$.

(P6) *The monotonic property.* Every infinite Δ^0_2 set S, is X-monotonic, i.e.,

$$\exists y \leq_T X \forall x \forall y \left[x \leq g_x(y) \leq g_x(y+1) \land \lim_y g(x, y) \downarrow \in S \right].$$
Algebraic Properties

An equivalence structure is a structure of the form $\mathcal{A} = (A, E)$, where E is an equivalence relation on A.

(P7) The equivalence structure property. For any Δ^0_2 set $S \subseteq \omega - \{0\}$, there is an X-computable equivalence structure with one class of size n for each $n \in S$, and no other classes.

(P8) The Abelian p-group property. For any infinite Δ^0_2 set $S \subseteq \omega - \{0\}$, there is an X-computable reduced Abelian p-group \mathcal{G}, of length ω, and with $u_n(\mathcal{G}) \leq 1$ for all n, such that $S(\mathcal{G}) = S$.
Assume X satisfies the escape property (P0),

(1) $(\forall h \leq_T 0') (\exists f \leq_T X) (\exists^\infty x) [h(x) \leq f(x)]$.

Let $T \subseteq 2^{<\omega}$ be a computable extendible tree with isolated paths dense. Define $g(\sigma, s) \leq_T X$

$$(\forall \sigma \in T)[\sigma \subset g_\sigma \in [T]^{P}].$$

Let S be the set of atoms of T, i.e., nodes σ with a unique extension $f \in [T_\sigma]$. Since S is Π^0_1 and hence Δ^0_2, there is a computable sequence $\{S_s\}_{s \in \omega}$ such that $S(x) = \lim_s S_s(x)$ for all x. Assume $\forall \tau \in T, \forall s, S_s$ contains some $\rho \supseteq \tau$.

For every $z \in T$ define the target,

$y_z = (\mu y)[z \subset y \& y \in S], \quad \text{and} \quad y^s_z = (\mu y)[z \subset y \& y \in S_s].
Using the Escape Function

Def. Define fn \(h \leq_T 0' \).

\[
h(n) = (\mu s) \ (\forall z)_{|z| \leq n} (\forall w \leq y_z^s) \]

\[
(\forall t \geq s)[S_t(w) = S_s(w) = S(w)].
\]

(Note \(h \) total because \((\forall n) (\exists \inf z)[|z| \leq n] \).)

\((\forall z)(\forall s)\) the apparent target \(y_z^s \) stabilizes using \(S(x) = \lim_s S_s(x) \).)

By the escape property (P0) in (1),

\((\exists f \leq_T X)(\exists T\ \text{infinite}) (\forall t \in T)[h(t) \leq f(t)] \).

\(f \) is monotonic. Call \(T \) the set of true stages.
True Stages

Speed up to X-computable sequence $\hat{S}_x = S_{f(x)}$. Define $\hat{y}_z^s = g^{f(s)}_x$ X-computable in z and s.

Note. Any apparent target \hat{y}_z^t at a true stage $t \in T$ is the true target y_z, i.e.,

$$(\forall t \in T) (\forall z)_{|z| \leq t} (\forall v \geq t) [\hat{y}_z^t = \hat{y}_z^v = y_z].$$

For $s \leq |x|$ define $g(x, s) = x|s$. Fix $s \geq |x|$ and assume we are given $g(x, s)$ with $|g(x, s)| = s$.
Define $g(x, s+1) = \hat{g}^{g(x,s)}_x(s+1)$.

$$(\forall s > |x|)[x \subset g(x, s) \subset g(x, s+1) \land |g(x, s)| = s].$$
KEY POINT.

If $t \in T$ and $y = \hat{y}_{g(x,t)}^t$, then for every s with $t < s < v = |y|$, we have $\hat{y}_{g(x,s)}^s = y$, because y will be the most attractive target for $g(x, s)$ since no elements $w \leq y$ enter or leave S after stage t.

Hence, if $t \in T$, then the sequence $\{ g(x, s) : t < s \leq v \}$ marches inexorably from $g(x, t)$ toward y until hitting it at stage v, even though the intermediate stages s with $t < s < v$, need not be in T. Hence, $g_x \in U_S$, and so g_x is an isolated path.
Theories and Π^0_1-Classes

Def. $C \subseteq 2^\omega$ is a Π^0_1-class if there is a computable relation $R(x)$ such that

$$C = \{ f : (\forall x) R(f(x)) \}.$$

or equivalently a computable (not necessarily extendible) tree $T \subset 2^{\leq \omega}$ s.t.

$$C = [T].$$

Thm. If T is an axiomatizable theory, then the class of complete extensions is Π^0_1. Put θ_{α} on T if $|\alpha| = s$ and

$$(\forall \beta \subseteq \alpha)[T_s \not\vdash \neg \theta_{\beta}],$$

i.e., if θ_{α} seems consis with T after s steps.
Def. Peano Arithmetic (PA) is the first order theory of arithmetic with induction.

Cor. There is a computable tree $T_P \subseteq 2^{\langle \omega \rangle}$ such that

$$[T_P] \{ f : f \text{ a complete extension of PA } \}.$$

Thm (Jockusch-Soare). If $\mathcal{T} \subseteq 2^{<\omega}$ and $[\mathcal{T}] \neq \emptyset$, then

$$(\exists f \text{ low })[f \in [\mathcal{T}]].$$

Cor. $[T_P]$ contains a low complete extension of PA.
PA Climbs Trees

Thm. Let $[T]$ be a nonempty Π^0_1 class, and g any complete extension of PA. Then

$$(\exists f \leq_T g) [f \in [T]].$$

Proof. Ask Rosser-type question about climbing a tree.

Cor. $(\exists$ low complete extension g of PA)$

$$(\forall \Pi^0_1$ nonempty class $[T])

(\exists f \leq_T g) [f \in [T]].$$

Cor. The Low Basis Thm does not imply low prime models.
Def.
Def. Thm.
Def.
Def. Thm.