Computability of Vaughtian Models:

Lecture 1: Degrees of Prime Models

by

Robert I. Soare

The University of Chicago

MATHLOGAPS Conference

WEB SITE:
www.math.uchicago.edu/~soare/ or
www.cs.uchicago.edu/~soare/
Denumerable Models of Complete Theories T

Convention, Vaught [1961, §1–4].

• T a countable complete theory.
• We consider only countable models $\mathcal{A} \models T$.

Vaughtian Models:

• **Prime** \Rightarrow smallest model $\mathcal{A} \models T$ if \exists.
• **Atomic** \Rightarrow Prime for \mathcal{A} countable.
• **Saturated** \Rightarrow largest $\mathcal{A} \models T$ if \exists.
• **Homogeneous** \Rightarrow uniformly distributed.

Prime \Rightarrow Homogeneous.

Saturated \Rightarrow Homogeneous.

The period from the 1950’s through the 1960’s was extraordinarily fertile for both model theory and computability theory. A series of papers analyzed the concept of types in the Stone space $S(T)$ with ever more powerful results.

Morley further developed analysis of types for epochal theorem [1965].

Poizat [2000, p. 237] wrote,

“Morley, who by proving the first theorem on structure, . . . is the founder of stability theory, that is to say, of contemporary model theory.”
Computability Theory

Tutorial Notes, Chap. 2. Computability.

From new book:

(Also covered in Tutorial session.)
Building Models: Henkin

T a (countable) consistent theory.

Thm. Godel (1930) T has a model A.

Proof. Henkin (1949) Let $\mathcal{L} = \mathcal{L}(T)$.

1. Expand $\mathcal{L}_c = \mathcal{L} \cup \{ c_k \}_{k \in \omega}$, form T_c by adding

Henkin axioms of the form

$$(\exists x)\theta(x) \rightarrow \theta(c)$$

2. *(Lindenbaum)* Take complete extn T'_c of T_c.

3. Define the canonical model A for T'_c.

Universe $A = \{ c^* : c \in \mathcal{L}_c \}$ where

$$c^* = \{ d : T'_c \vdash c = d \}.$$

Define function $F^A(c^*) = d^*$ iff $F(c) = d$ is a sentence of T'_c likewise relations R^A.
Lindenbaum’s Lemma on a Tree

Def. (i) Let \(\{ \sigma_k \}_{k \in \omega} \) = all \(L_c \)-sentences. Let \(\sigma^1 \) denote \(\sigma \) and \(\sigma^0 \) denote \(\neg \sigma \). For \(\alpha \in 2^{<\omega} \) define

\[
\sigma_\alpha = \bigwedge_{i < |\alpha|} \sigma_i^{\alpha(i)}.
\]

(ii) Fix \(T_c \) an \(L_c \)-theory \(T_c \). Define the TREE

\[
\mathcal{T}_0(T_c) = \{ \sigma_\alpha : T_c \vdash \sigma_\alpha \},
\]

the tree of sentences provable in \(T_c \).

(iii) \([\mathcal{T}_0(T_c)] = \) set of paths of \(\mathcal{T}_0(T_c) \).

Note. For any path \(f \in [\mathcal{T}_0(T_c)] \)

canonical model \(A_f \models T_c \).

(See diagram of tree \(\mathcal{T}_0(T_c) \).)
Decidable Models

Def. (i) If T a theory and $\mathcal{A} \models T$ the elementary diagram $D^e(\mathcal{A})$ is the set of all $L_{\mathcal{A}}$-sentences true in \mathcal{A}.

(ii) Model \mathcal{A} is decidable if $D^e(\mathcal{A})$ is.

Thm. If T is a decidable theory, then T has a decidable model.

Proof.
1. T is decidable.
2. T_c is decidable.
3. Tree $T_0(T_c)$ is decidable and extendible.
4. \exists computable $f \in [T_0(T_c)]$.
5. Canonical model \mathcal{A}_f is decidable.
This gives us a reliable way to build a variety of models but no way to guarantee that they are prime or saturated. To this we must control the types as we construct f.
Formulas and Types

\(T \) a complete decidable (CD) theory (now on).

\(F_n(T) = \{ \theta(x_0, x_2, \ldots x_{n-1}) \} \) fmlas in \(\mathcal{L}(T) \) with
\(n \) free variables and \(F(T) = \bigcup_n F_n(T) \).

\(B_n(T) = \text{Lindenbaum algebra} \) of equiv. classes
\(\theta(\bar{x})^* = \{ \psi(\bar{x}) : T \vdash (\forall \bar{x})[\theta(\bar{x}) = \psi(\bar{x})] \} \).

Let \(F(T) = \{ \theta_j(\bar{x}) \}_{j \in \omega} \). For \(\alpha \in 2^{< \omega} \) define
\[
\theta_\alpha(\bar{x}) = \bigwedge \{ \theta_i^{\alpha(i)}(\bar{x}) : i < |\alpha| \},
\]
for \(\theta^1 = \theta, \theta^0 = \neg \theta \).

Tree. \(T_n(T) = \{ \theta_\alpha(\bar{x}) : (\exists \bar{x})[\theta_\alpha(\bar{x})] \in F_n(T) \} \).
(Identify fmla \(\theta_\alpha \) and index \(\alpha \).)

\(S_n(T) \) is the set of \(n \)-types: \(S_n(T) = [T_n(T)] \).
Define \(S(T) = \bigcup_n S_n(T) \) all types.
This pix includes $F(t)$ and $S(T)$ and prin types (red) rank 0 and nonprin types (blue) either rank 1 or rank ∞.
Atomic Trees

Def. $S_n(T) \subset 2^\omega$ has clopen sets,
$$U_\alpha = \{ f : f \in S_n(T) \& \ \alpha \subset p \}.$$

Def. Let T be an extendible tree (every $\alpha \in T$ extends to $f \in [T]$).

(i) Nodes $\beta, \gamma \in T$ split node α if $\alpha \subset \beta, \alpha \subset \gamma,$ and $\beta \rhd \gamma.$

(ii) $\alpha \in T$ is an atom if α does not split, i.e.,
$$U_\alpha \cap [T] = \{ f \}, \text{ i.e., } \exists f \supset \alpha \in [T].$$
α is a generator of f; α isolates f.

(iii) Tree T is atomic if
$$\forall \beta \in T \exists \alpha \supset \beta [\alpha \in T].$$
Def. For any model $\mathcal{A} \models T$ define

$$T(\mathcal{A}) = \{ p : p \in S(T) \ & \ \mathcal{A} \text{ realizes } p \}.$$

Def. A type $p \in S_n(T)$ is principal (isolated) if some atom in $T_n(T)$ isolates it. Define

$$S^P(T) = \{ p : p \text{ is a principal type of } S(T) \}.$$

Note. $S^P(T) \subseteq T(\mathcal{A})$ for every $\mathcal{A} \models T$.

Proof. Let $p(\overline{x})$ have generator $\theta(\overline{x})$. Then $(\exists \overline{x})\theta(\overline{x}) \in T$ since T is complete.

Def. Model $\mathcal{A} \models T$ is atomic if every $a \in |\mathcal{A}|$ realizes a principal type, i.e.,

$$T(\mathcal{A}) = S^P(T).$$
Prime Models and Atomic Theories

Def. A theory T is **atomic** if $T_n(T)$ is atomic for every n.

Def. $A \models T$ is **prime** if $A \preceq B$ for every $B \models T$.

Thm. (Vaught) A is prime iff countable and atomic.

Thm. (Vaught) A theory T has a prime model iff T is atomic.

Def. A is **homogeneous** iff for all \bar{a}, and \bar{b},

$$(A, \bar{a}) \equiv (A, \bar{b}) \implies (\exists G \in \text{Aut}(A))[G(\bar{a}) = \bar{b}].$$

Thm. (Vaught) If A is prime A is homogeneous.
Example: Atomic Theory

Def. DLO
Theory of dense linear orderings w/o endpoints.

Example $A = (A, <), A =$ rationals.

Take theory $T = Th(A, <, A)$.

$|S_1(T)| = 2^\aleph_0$ but T is atomic.

Isolated (principal) type: $x = q$

Nonisolated type: $p(x)$ for $x = \sqrt{2}$. We write:

$p(x) = \{x < q : q^2 > 2\} \cup \{x > q : q^2 < 2\}$.

(See diagram of atomic tree.)
Diagram 1: Fiding Atoms

\mathcal{T}: A computable extendible atomic tree.

Search. $(\forall \sigma \in \mathcal{T})(\exists \text{ atom } \tau \supseteq \sigma)[\tau \in \mathcal{T}].$
Diagram 1: Uniform Matrix

T: A Complete Decidable (CD) theory, $A \models T$.

From $D^e(A)$ we get uniform listing of all types $T(A)$ namely \{\(p(\pi) : \pi \in A\}\).
Decidable Prime Models

Let T be complete atomic decidable (CAD).

Thm. (Millar) There is a CAD theory T with no decidable prime model.

Def. A 0-basis for a countable class $\{A_y\}_{y \in \omega}$ is a function $g \leq 0$ s.t. $g(x, y) = A_y(x)$.
(Uniformly computable matrix g.)

Thm. (Goncharov-Nurtazin, Harrington) If T is a CAD theory TFAE:

(i) T has a decidable prime model A.

(ii) $S^P(T)$ has a 0-basis.

(iii) $(\exists g \leq_T 0)(\forall \theta_\alpha \in T_n(T))[\theta_\alpha \subset g_\alpha \in S^P_n(T)]$, where $g_\alpha = \lambda y [g(\alpha, y)]$ is path in $[T_n(T)]$.

14
Proof sketch. (i) ⇒ (ii). Let \mathcal{A} be decidable,

$$\mathcal{T}(\mathcal{A}) = \{ p(\bar{\pi}) : \bar{\pi} \in \mathcal{A} \}.$$

(ii) ⇒ (iii). Given $\{p_i\}_{i \in \omega} = \mathcal{T}(\mathcal{A})$ and $\theta_\alpha \in \mathcal{T}_n(T)$ find first n-type p_i with $\theta_\alpha \in p_i$.

(iii) ⇒ (ii). As θ_α ranges through the $\mathcal{T}_n(T)$ path g_α ranges through $S^P_n(T)$ uniformly in n.

(ii) ⇒ (i).** This is the main import of the theorem, a priority argument.

Remark. (ii) ⇒ (i) not obvious. Choose a 1-type p_1, put $p(c_1)$ into $D^\alpha(\mathcal{A})$.

For (c_1, c_2) we need 2-type p_2 consistent with p_1, then put $p_2(c_1, c_2)$ into $D^\alpha(\mathcal{A})$.

But consistency of p_1 and p_2 is a Π_1 property, decidable in \mathcal{O}'.

15
Proof of (ii) \implies (i)

Consider a limit p_2^s for the correct 2-type. As each one fails, move to the next one which is s-consistent with $p_1^s(c_1)$.

Eventually come to atom $\alpha \in p_1$ and thereafter no injury.
Undecidable Prime Models

Def. $0' = K = \{ e : e \in W_e \}$, halting problem.

Thm. If T is a CAD theory T has a prime model decidable in $0'$.

Prf. $0'$ can decide (ii) or (iii) of previous criterion relative to $0'$, or apply original Vaught proof with $0'$ as oracle to detect atoms.

Def. $dgSp(A) = \{ \deg(D^c(B)) : B \cong A \}$. *degree spectrum of* A.

Thm (Knight). If A is a countable structure in a relational language, then either $dgSp(A)$ is a singleton, or $dgSp(A)$ is closed upwards.
Consider pix of degrees below K.
K is red (we can find prime model below K)
0 is blue (we cannot.)
Now consider entire class of Delta-2 degrees.
Turing Reducibility

Oracle Machines

Def. Thm.
Def. A is limit computable if there is a uniformly computable sequence \(\{A_s\}_{s \in \omega} \) s.t.
\(A = \lim_s A_s \). (See diagram).

Limit Lemma. TFAE:

(i) \(f \) is limit computable.
(ii) \(A \leq_T \emptyset' \).
(iii) \(A \in \Delta_2 \).
Degrees ≤0′

Def.
Def. Thm.
Forcing and 1-Generic Sets

Def. Given c.e. set $V_e \subseteq 2^{<\omega}$. We say $f \in 2^{\omega}$ forces V_e if we satisfy the forcing requirement,

$$F_e : (\exists \sigma \subset f)[\sigma \in V_e \lor (\forall \rho \supset \sigma)[\rho \notin V_e]] .$$

We say that σ forces F_e and any $f \supset \sigma$ forces F_e.

(ii) f is 1-generic if f forces W_e, all $e \in \omega$.

Thm. A set A is 1-generic iff A satisfies for all e following requirement J_e which is called forcing the jump

$$J_e : (\exists \sigma \subset A)[\Phi^e_\sigma(e) \downarrow \lor (\forall \tau \supseteq \sigma)[\Phi^e_\tau(e) \uparrow]] .$$

(We decide whether $e \in A'$.)
Prime Model Low Basis Theorem

Thm. (Csima) Every complete decidable atomic (CAD) theory T has a low prime model (i.e., $D^c(A)$ is low).

Build $f = D^c(A)$ by $0'$-construction which forces jump on $f = \cup f_s$.

Stage $s+1$. Given f_s.

Step 1. Find an extension $f' \supset f_s$, $f' \in T_0(T)$, which forces the jump.

Step 2. Find $f'' \supset f'$, $f'' \in T_0(T)$, s.t. it forces $\langle c_0, c_1, \ldots, c_s \rangle$ to satisfy an atom of $T_s(T)$. Let $f_{s+1} = f''$.

Refutes: Conjecture [Clote]. There is a CAD theory T s.t. $D^c(A) \geq T 0'$ for every prime $A \models T$.

22
Thm (Millar). There is a CAD theory T with no decidable prime model.

Proof. By Harrington it suffices to construct T such that there is no uniformly computable listing of $S^P(T)$, i.e., no computable matrix $g(x, y)$ such that

$$S^P(T) = \{g_y\}_{y \in \omega}$$

where row $g_y = \lambda x \lfloor g(x, y) \rceil$.

Game. This is a game between

- T-Player. Plays a CAD theory T.
- A-Player. Plays a prime model $A \models T$.

Win. The A-player wins if A has the desired degree (computable, $0'$, low, etc.) and the T-player wins otherwise.