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Abstract

Let M be a smooth, compact manifold of dimension n ≥ 5 and
sectional curvature |K| ≤ 1. Let Met(M) = Riem(M)/Diff(M) be the
space of Riemannian metrics on M modulo isometries. Nabutovsky
and Weinberger studied the connected components of sublevel sets (and
local minima) for certain functions on Met(M) such as the diameter.
They showed that for every Turing machine Te, e ∈ ω, there is a
sequence (uniformly effective in e) of homology n-spheres {P e

k}k∈ω

which are also hypersurfaces, such that P e
k is diffeomorphic to the

standard n-sphere Sn (denoted P e
k ≈ diff Sn) iff Te halts on input k,
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and in this case the connected sum Ne
k = M#P e

k ≈ diff M , so Ne
k ∈

Met(M), and Ne
k is associated with a local minimum of the diameter

function on Met(M) whose depth is roughly equal to the settling time
σe(k) of Te on inputs y < k.

At their request Soare constructed a particular infinite sequence
{Ai}∈ω of c.e. sets so that for all i the settling time of the associated
Turing machine for Ai dominates that for Ai+1, even when the lat-
ter is composed with an arbitrary computable function. From this,
Nabutovsky and Weinberger showed that the basins exhibit a “frac-
tal” like behavior with extremely big basins, and very much smaller
basins coming off them, and so on. This reveals what Nabutovsky and
Weinberger describe in their paper on fractals as “the astonishing rich-
ness of the space of Riemannian metrics on a smooth manifold, up to
reparametrization.” From the point of view of logic and computability,
the Nabutovsky-Weinberger results are especially interesting because:
(1) they use c.e. sets to prove structural complexity of the geometry
and topology, not merely undecidability results as in the word prob-
lem for groups, Hilbert’s Tenth Problem, or most other applications;
(2) they use nontrivial information about c.e. sets, the Soare sequence
{Ai}i∈ω above, not merely Gödel’s c.e. noncomputable set K of the
1930’s; and (3) without using computability theory there is no known
proof that local minima exist even for simple manifolds like the torus
T 5 (see §9.5).

1 Introduction

The main point of this paper is to explain the differential geometry results
in §9 which appear in [NW1] and [NW2] and which are the most recent,
having undergone several revisions. The computability results used in them
are presented in §8, and will be proved in full in Csima and Soare [ta].
The geometry results depend upon and extend a number of undecidability
results in algebra and topology which we review in §3, especially the Adjan-
Rabin result about the unsolvability of the triviality problem for groups,
and Novikov’s theorem on the unsolvability of the diffeomorphism problem.

The differential geometry results require a large background in topology
and geometry. To make the presentation as self-contained as possible we
devote several sections to a review and intuitive description of these mathe-
matical elements most needed. In §4 we discuss smooth manifolds, tangent
spaces, fundamental groups, the Poincaré Conjecture, and the connected
sum. In §5 we discuss Riemannian geometry, Riemannian metrics (as stud-
ied by Nabutovsky and Weinberger), isometries, and the metric space metric
derived from the Riemannian metric. In §6 we look at a preliminary result
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to Nabutovsky and Weinberger’s work, namely Gromov’s theorem that a
smooth manifold whose fundamental group has an unsolvable word problem
has infinitely many contractible, closed geodesics. With this background,
we introduce in §7 the space Met(M) = Riem(M)/Diff(M) of Riemannian
metrics modulo diffeomorphisms upon which Nabutovsky and Weinberger
obtain their results. Met(M) is a space whose points are metrics but it it-
self has a metric, the Gromov-Hausdorff metric and the path metric derived
from it which is used in the Nabutovsky Weinberger results in §9. Also
defined here are the notion of local minimum and sublevel set as used in §9.

2 Poincaré and Hilbert

A hundred years ago two men dominated the mathematical landscape. The
first man, Henri Poincaré, working in Paris, used only constructive proofs,
did not accept the completed infinite, and was not sympathetic to logic. He
was keenly interested in the combinatorial study of connectivity of spaces,
and with the properties of a system which endure when metric distortion
occurs, namely the subject of topology. Poincaré [1895] introduced a new
way to associate with a topological space X a group which measured its
complexity under connectivity. That group bore his name, the Poincaré
group, and is now also known as the fundamental group, or the first homo-
topy group, π1(X), defined in §4.5. This opened the way for the modern
study of algebraic topology and homotopy theory.

The second man, David Hilbert, working in Göttingen, Germany, be-
lieved in nonconstructive proofs and indeed had used a proof by contradic-
tion in his famous solution of Gordan’s Problem about solutions to a system
of invariant forms. He believed in the completed infinite, but wanted to
use logic to achieve consistency and avoid the paradoxes of set theory. He
was also keenly interested in geometry. In 1898 he wrote Grundlagen der
Geometrie, in which he reduced the consistency of Euclidean Geometry to
the consistency of the arithmetic of the reals R.

In Hilbert’s famous address to the International Congress of Mathemati-
cians in 1900, his Second Problem was to prove the consistency of arithmetic
of R. He soon realized that a more basic problem was to prove the consis-
tency of N = (N,+,×), which he announced in 1904 as an open problem.
Hilbert’s Tenth Problem at the 1900 ICM meeting was to give an algorithm
to solve Diophantine equations. From 1900 until 1930 two of the main
themes in Hilbert’s work were proving the consistency and the decidability
of various mathematical problems, chief among which was the Entschei-
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dungsproblem, the decision problem for first order logic itself.
Hilbert had absolute faith that these decision procedures existed, and

he believed: “There is the problem. Seek its solution. You can find it by
pure reason.” At Hilbert’s retirement address in 1930 he said, “Wir müssen
wissen. Wir werden wissen.” We must know. We shall know. Ironically, only
a year later in 1931 Gödel announced his famous Incompleteness Theorem
that an effective axiomatization of even so simple a system as N = (N,+,×)
is either incomplete or inconsistent.

The intense interest by so prominent a mathematician as Hilbert in de-
cidability and consistency led to a study of possible definitions for com-
putable functions. Gödel [1931] had extensively used the primitive recursive
functions, but only in 1934 defined the general recursive functions. After
seeing the Turing computable functions in Turing [1936], Gödel emphati-
cally agreed that Turing had finally found the right definition. This was
shown to be extensionally the same as Gödel’s own. (See Davis [1965.])

With a precise definition of computable function, mathematicians
showed that many famous mathematical problems were unsolvable, as we
examine in the next section. One of the key tools was the use of computably
enumerable (c.e.) sets, those which are the range of a computable function.
In the Nabutovsky-Weinberger (NW) papers c.e. sets are used not only for
undecidability as in the past, but now for the first time to measure geomet-
ric complexity, such as the depth of basins. Nabutovsky and Weinberger
use the idea of Novikov in §3.5 that it is an unsolvable problem whether a
given manifold (homology sphere) is diffeomorphic to the standard n-sphere
Sn, n ≥ 5, which is defined in Definition 4.1. The NW results use c.e. sets
A not only as a switch to turn on or off a diffeomorphism, as in Novikov,
but remarkably, they relate the settling time of the Turing machine on an
argument k to the depth of the corresponding basin and to the distribution
of basins.

These results one hundred years after Poincaré [1895] and Hilbert’s 1900
ICM address are not at all what they expected. Poincaré would probably
have been skeptical of using logic in geometry, and would never have un-
derstood the vast distances in Met(M) obtained by NW using computable
functions and c.e. sets. Hilbert would never have understood noncomputable
functions, c.e. sets, or their use to demonstrate geometric complexity since
he yearned for consistency and decidability. Nevertheless, Poincaré gave us
the combinatorial study of connectivity properties, and Hilbert’s program
led to the definition of computable functions and their applications using c.e.
sets. Both loved and advanced geometry or topology. Both were highly orig-
inal thinkers who moved beyond the boundaries of the conventional thinking
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of their day. The present NW results, weaving fundamental groups and c.e.
sets to demonstrate vast depths, are a beautiful fruition and combination of
the consequences of these two fundamental mathematical traditions.

3 Undecidable problems

Turing [1936] gave a negative solution to the Entscheidungsproblem and
proved the existence of unsolvable problems in mathematics. Building on
work of Davis, Putnam, and Julia Robinson, Matijasevich proved in 1970
that Hilbert’s 10th Problem on Diophantine equations is computably un-
solvable. He showed that c.e. sets A can be represented by Diophantine
predicates and used the unsolvability of the halting problem, i.e., of the
membership problem “is x ∈ A?” See Davis [1973]. More relevant to the
present paper is the work growing out of the word problem. (In the later sec-
tions §4–§7 we review the definitions and results from geometry and topology
used in this paper.)

3.1 The word problem and triviality problem

The unsolvability results about topological decision problems which have
been obtained so far have been derived from the unsolvability of the word
problem (see Boone [1955], Novikov [1955]), or the triviality problem (see
Adjan [1955], and Rabin [1958]). These unsolvable group theoretic problems
also play a key role in the present Nabutovsky-Weinberger results.

A group G is finitely presented (f.p.) if there are a finite number of
generators S = {g1, . . . , gk} and finitely many relations Q = {R1, . . . Rn}
which are words (finite strings) on g±1

i . The word problem for G is to decide
for an arbitrary word x on the symbols in S, whether x can be reduced to
the empty word via finitely many applications of the relations in Q. We say
that sets A and B have the same Turing degree denoted by A ≡T B if A is
computable in B, written A ≤T B, and B ≤T A.

Theorem 3.1 (Boone (1954), Novikov (1955)) The word problem is
unsolvable, and indeed can have the same Turing degree as any c.e. set
(Boone [1966]).

A good proof of the unsolvability of the word problem can be found in
Rotman [1995], together with related material.
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3.2 The triviality problem

The isomorphism problem is to decide for two finitely presented (f.p.) groups
G and H whether they are isomorphic, and the triviality problem is to decide
whether G is the trivial group 〈e〉 (i.e., consisting only of the identity e).
A c.e. set C is m-complete if for every c.e. set A there is a computable
function f such that n ∈ A iff f(n) ∈ C, because C codes at least as much
information as any such A. (See Soare [1987, p. 41] for more information on
r-completeness for various reducibilities r.)

Theorem 3.2 (Adjan (1958b), Rabin (1958) Triviality Theorem)
(i) The isomorphism problem is unsolvable, and the triviality problem is
unsolvable.

(ii) Indeed, the triviality problem is m-complete for c.e. sets in the fol-
lowing sense. For any c.e. set A there is a computable sequence of finitely
presented groups {Gk}k∈ω such that:

k ∈ A ⇐⇒ Gk
∼= 〈e〉.

Property (ii) plays a key role in the NW results below and in the following
earlier results on which they are based.

3.3 The homeomorphism problem

Lemma 3.3 Given a presentation P of a f.p. group G one constructs a
2-dimensinal complex K2(P) which corresponds to P whose fundamental
group π1(K2(P)) is isomorphic to G. (The fundamental group is defined
§4.5.)

Proof (Sketch). (See Haken [1973, p. 431] for details.) Choose a point O
for the only vertex of K2(P). Corresponding to each generator gi in P
choose a 1-dimensional cell Gi of K2(P) which is an arc that originates and
terminates at O. Except for their endpoints, the Gi are chosen pairwise
disjoint. Thus,

⋃k
i=1 Gi is a wedge of k loops with fundamental group the

free group of rank k. For each relation Rj choose a 2-dimensional cell Hj of
K2(P) which is a disk whose boundary ∂Hj is identified to a closed curve
in

⋃k
1=1 Gi which runs through Gi in the same order that Gi occurs in Rj

(going in the same direction as Gi for a positive occurrence of gi in Rj and
in the opposite direction for a negative occurrence of g−1

i in Rj).
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The unsolvability of triviality problem Theorem 3.2 immediately implies
the unsolvability of the simply connectedness (i.e., triviality of the funda-
mental group) for 2-complexes, and thus of related problems for 2-complexes,

In order to construct an n-dimensional manifold Mn(P) with fundamen-
tal group Mn(P) ∼= G corresponding to a group presentation P, where G
is the group presented by P, we may extend the 2-complex K2(P) into the
Euclidean space R(n+1), provided that n ≥ 4. Choose a simplicial, regular
neighborhood N of K2(P) in R(n+1). The fundamental group of N , but also
the fundamental group of its boundary, is isomorphic to G.

From this we can conclude (Haken [1973, p. 432]) the unsolvability of
the triviality problem, word problem, conjugacy problem, isomorphism prob-
lem of the fundamental groups for n-manifolds with n ≥ 4. Markov made
the remarkable discovery that we can also conclude the unsolvability of the
homeomorphism problem for n-manifolds with n ≥ 4. (See Haken [1973, p.
432].)

Theorem 3.4 (Markov, (1958)) For each dimension n ≥ 4 the homeo-
morphism problem for n-manifolds is unsolvable.

Markov studied certain simple Tietze transformations, called Markov op-
erations of a presentation P to another group presentation P′. He showed
that if P′ is obtained from P by a Markov operation, then Mn(P) is homeo-
morphic to P′. From this he showed that a solution of the homeomorphism
problem for n-manifolds (n ≥ 4) would imply a solution of the triviality
problem of group theory. (See Haken [1973, p. 432–433], and Boone, Haken,
and Poenaru [1968].)

3.4 Other undecidability results in topology

Boone, Haken, and Poenaru [1968] extend this method to prove many
stronger results such as the following. For this subsection only let ≈1, ≈2,
≈3, and ≈4 denote diffeomorphic, homeomorphic, combinatorially equiva-
lent, homotopy equivalent respectively.

Theorem 3.5 (Boone, Haken, and Poenaru, (1968, Theorem 1))
For each dimension ≥ 4 and for each computably enumerable degree d there
is a computable class C(n, D) of finite presentations of n-manifolds, endowed
with a differential and a compatible combinatorial structure, such that for
each 1 ≤ i ≤ 4:

(i) the decision problem

{(M1,M2) : M1,M2 ∈ C(n, d) & M1 ≈i Mi}
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is unsolvable.
(ii) The decision problem

{M : M∈ C(n, D) & M(M) is simply connected }

has degree d where M(M) is the manifold with presentation M.

3.5 Novikov’s Theorem on diffeomorphisms

Novikov improved Markov’s Theorem 3.4 from “homeomorphic” to “diffeo-
morphic.” A very good proof can be found in the Appendix of Nabutovsky
[1995a, p. 86]. In addition, Markov proved only that there is no algorithm
to decide for a pair of 4-manifolds whether or not they are homeomorphic,
while Novikov proved that for any single 5-manifold M one cannot tell which
manifolds N are diffeomorphic to M .

Definition 3.6 Let M ≈diff N denote that manifolds M and N are diffeo-
morphic.

Theorem 3.7 (S. P. Novikov) For each dimension n ≥ 5, and for each
n-manifold M , it is unsolvable for an n-manifold P whether M ≈diff P . (In
particular, it is unsolvable whether P ≈diff Sn.)

Indeed, one can show for n ≥ 5 that the diffeomorphism problem is
m-complete in the sense that for every c.e. set A there is an effective sequence
of n-manifolds {Pk}k∈ω, such that

(1) k ∈ A ⇐⇒ Pk ≈diff Sn,

where Sn is the sphere in standard position, defined in (2), and ≈diff denotes
diffeomorphic. Very roughly, the idea is this. Construct each Pk to be a
homology sphere (i.e., to have the same homology groups as Sn), so that
the homology of Pk is not an obstacle to being diffeomorphic to Sn. Using
the idea of the triviality problem above, construct a sequence of groups
{Gk}k∈ω such that k ∈ A iff Gk is trivial, and arrange that the fundamental
group of Pk is Gk. Further arrange that Pk ≈ Sn iff Gk is trivial. If k 6∈ A
then the fundamental group is not trivial so Pk 6≈ Sn. If k ∈ A then the
fundamental group is trivial and Pk ≈ Sn. (See the Nabutovsky Weinberger
extension of this idea in §9.2.)
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4 Some basic differential topology

The Nabutovsky-Weinberger results are about local minima of the distance
function for metrics on Riem(M), the space of Riemannian metrics of a
certain manifold M . There are at least four different metrics we need to
consider, Riemannian metrics on M , metric space metrics, the Gromov-
Hausdorff (G-H) metric on Riem(M), and the path metric defined from
the G-H metric. To explain these carefully we need to review some basic
differential and Riemannian geometry, and some algebraic topology for con-
cepts like the fundamental group and homology spheres. Good introductory
references for differential topology are Guillemin-Pollack [1974], and Milnor
[1965]; for algebraic topology, [Massey, 1967]; and for Riemannian geometry,
Petersen [1998], Cheval [1993], and Do Carmo [1992].

4.1 Smooth manifolds and smooth maps

Good references for this section are Milnor [1965] and Guillemin-Pollack
[1974]. We mostly use Milnor’s notation. Let Rn denote n-dimensional
Euclidean space. A point x ∈ Rn is a n-tuple (x1, x2, . . . , xn) of real numbers.
A mapping f of an open set U ⊂ Rn into Rm is smooth if it has continuous
partial derivatives of all orders, i.e., is C∞. A mapping f : X → Rm defined
on an arbitrary subset X ⊆ Rm is smooth if it can be locally extended to a
smooth map on open sets.

A smooth map f : X → Y of subsets of two Euclidean spaces is a diffeo-
morphism if it is one to one and onto, and if the inverse map f−1 : Y → X
is also smooth. (In particular, f is a homeomorphism from X to Y .) A
manifold M is a k-dimensional manifold if it is a subset of Rn and is locally
diffeomorphic to Rk. By the Whitney embedding theorem the manifolds we
consider can be embedded in Euclidean space.

A diffeomorphism ϕ : U → V is called a parametrization of the neighbor-
hood V , and the inverse diffeomorphism ϕ−1 : V → U is called a coordinate
system of V . The subject of differential topology is the study of those prop-
erties of a set X ⊆ Rk which are invariant under diffeomorphisms. (Here we
follow Milnor [1965] section 1, page 1, using embedded manifolds to define
smoothness using the coordinates of the Euclidean space.)

For example, the unit sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1}

is a smooth manifold of dimension 2. The diffeomorphism

(x, y) 7→ (x, y,
√

1− x2 − y2)
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for x2 + y2 < 1 parametrizes the region z > 0 of S2. By rearranging the
roles of the variables and the regions x > 0, y > 0, x < 0, y < 0, and z < 0
one obtains parametrizations for the latter regions. These cover S2 which is
therefore a smooth manifold.

Definition 4.1 The sphere, sometimes called the unit sphere in standard
position, Sn ⊂ Rn+1, is a smooth manifold of dimension n where

(2) Sn = {(x1, . . . , xn+1) :
n+1∑
i=1

x2
i = 1}.

4.2 Derivatives on Manifolds

We define the derivative similarly as in a freshman calculus case, and then
extend to several variables as in Spivak [1965]. Fix a smooth map f from
an open set in Rn into Rm and any point x in the domain of f . For any
vector h ∈ Rn, define the derivative of f in the direction h taken at x to be
the usual limit

dfx(h) = limt→0
f(x + th)− f(x)

t

Therefore, for fixed x we define a mapping dfx : Rn → Rm by taking
the vector h ∈ Rn to the directional derivative dfx(h). This is called the
directional derivative of f at x. In multivariate calculus courses one proves
that the derivative mapping df : Rn → Rm is linear (see Spivak [1965]) and
hence may be represented by a matrix in terms of the standard basis. This
matrix is the Jacobian matrix of f at x:


∂f1

∂x1
(x) . . . ∂f1

∂xn
(x)

...
...

...
∂fm

∂x1
(x) . . . ∂fm

∂xn
(x)


The derivative operation obeys the next two fundamental properties.

Chain Rule. If f : U 7→ V and g : V 7→ W are smooth maps, with
f(x) = y, then

d(g ◦ f)x = dgy ◦ dfx.

Namely, to every commutative triangle of smooth maps between open sets
⊆ Rn, there corresponds a commutative triangle of linear maps on Rn.
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Identity. If I is the identity map on the open set U ⊂ Rn, then dIx is the
identity map of Rn.

The close connection between diffeomorphisms and linear maps is
brought into even sharper focus by the next remarkable theorem.

Theorem 4.2 (Inverse Function Theorem) Suppose that f : X 7→ Y is
a smooth map with derivative dfx at the point x. If the linear map dfx is an
isomorphism, then f is a local diffeomorphism at x.

Note that dfx is an isomorphism iff the corresponding matrix has nonzero
determinant, so that dfx is nonsingular. (For a proof of the Inverse Function
Theorem see Dieudonné [1960, p. 268] or Spivak [1965].)

4.3 Tangent spaces

This connection between diffeomorphisms and linear maps, crucial for Rie-
mannian metrics, is made even stronger by introducing the tangent space
TMx of M at a point x ∈ M . Choose a parametrization

g : U 7→ M ⊆ Rm

of a neighborhood g(U) of x ∈ M with g(u) = x, and U ⊂ Rn an open set.
Regard g as a mapping from U to Rm so that the derivative

dgu : Rn 7→ Rm

is defined. Define TMx to be the image dgu(Rn) of dgu. Intuitively, we think
of the tangent space as a hyperplane tangent to M at x, for example the
plane tangent to the sphere S2 at x.

The derivative of a mapping is its best linear approximation, so the
derivatives are used to specify the linear space TMx which best approximates
a manifold M at a point x. It is easy to show (Milnor [1965, p. 5]) that
the definition is independent of the parameterization. Hence, TMx is well
defined.

4.4 Immersions and hypersurfaces

For the inverse function theorem to apply to f : Mn 7→ Nk the dimensions
n and k must be equal. If n < k, then we can demand that dfx : TMx 7→
TMf(x) be injective, in which case we say that f is an immersion at x. If
f is an immersion at every point x then f is an immersion. In addition,
if f is a homeomorphism onto f(M) ⊆ N , where f(M) has the subspace
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topology induced from N , then we say that f is an embedding . If M ⊆ N
and the inclusion i : M 7→ N is an embedding, we say M is a submanifold
of N . If f : Mn 7→ Nk is an immersion, then n ≤ k and the difference
k− n is the codimension of the immersion f . (For examples, see Do Carmo
[1992, p. 11].) A hypersurface in Euclidean space of a manifold in Euclidean
space is a submanifold of codimension one, namely smoothly embeds in
Euclidean space of one dimension higher. By “hypersurface” we shall mean
“hypersurface in Euclidean space.” Nabutovsky and Weinberger tend to
construct hypersurfaces because certain results, like Smale’s Theorem 4.5,
work for homeomorphisms but not for diffeomorphisms unless the manifold
is a hypersurface.

4.5 Fundamental groups and homology groups

Poincaré [1895] was the first to construct an algebraic group which is a
topological invariant of the space Y to which it is associated, called the
fundamental group, or first homotopy group. Let Y be a topological space,
and let y0 be a point in Y . The y0-neighborhood of curves in Y , C(Y, y0) is
the collection of all continuous mappings f : I1 7→ Y of the unit interval into
Y such that f(0) = f(1) = y0. Given f and g in C(Y, y0), f is homotopic to
g modulo y0 if f can be continuously transformed into g, namely there exists
a continuous map h : I1 × I1 7→ Y such that h(x, 0) = f(x), h(x, 1) = g(x)
for all x ∈ I1, and h(0, t) = y0 = h(1, t) for all t ∈ I1. The equivalence
classes form the fundamental group of Y modulo y0. It can be shown that
this is independent of the choice of y0, so it is simply called the fundamental
group of Y , and written π1(Y ). If the fundamental group of Y is the identity,
then Y is called simply connected .

The fundamental group of the circle S1 in Euclidean 2-space is (Z,+), the
group of the integers under addition, and the fundamental group of the torus
T 2 in 3-space is (Z⊕Z,+) because it has two generators. The fundamental
group of the standard sphere Sn for n ≥ 2 is the identity because any curve
on Sn can be shrunk to a point. This property of the fundamental group of
Sn is the key feature used by Novikov and by Nabutovsky and Weinberger.

Homology groups are easier to compute than homotopy groups but more
difficult to define. We refer the reader to a reference on topology but give this
intuitive example. Picture the torus T 2 in Euclidean 3-space lying flat like a
donut. Make two vertical slices. These produce two circles f and g in cross
section. We say that f and g are homologous because they bound a region,
namely that portion of the surface of the torus between then. Now make a
horizontal cut through the center of the torus to produce another circle h,

13



and note that f and h are not homologous because they do not bound a two
dimensional portion of the torus. Homology groups are computed by taking
equivalence classes under this equivalence relation.

4.6 The Generalized Poincaré Conjecture

Definition 4.3 (i) A homology n-sphere is an n-manifold Mn with homol-
ogy groups all isomorphic to those of the n-sphere Sn.

(ii) A homotopy n-sphere is a homology n-sphere Mn whose fundamental
group π1(Mn) is isomorphic to that of Sn.

Conjecture 4.4 (The Poincaré Conjecture) A compact simply con-
nected 3-manifold without boundary is a 3-sphere. (Namely, a homotopy
3-sphere is homeomorphic to the 3-sphere.)

This famous conjecture is still open for dimension 3, but has been solved
for dimension n ≥ 4.

Theorem 4.5 (Generalized Poincaré Conjecture) (i) (Smale [1961],
Stallings [1960]) For all n ≥ 5 a homotopy n-sphere Mn is homeomorphic
to the n-sphere.

(ii) (Freedman [1982]) Part (i) holds also for n = 4.

Nabutovsky and Weinberger [NW1, p. 26] use the following theorem.

Theorem 4.6 Let S be a smooth n-homotopy sphere S which is also a hy-
persurface ( i.e., smoothly embeds in Rn+1). Then S is homeomorphic to Sn

iff S is diffeomorphic to Sn.

Proof sketch (Weinberger). Milnor [1965b] proves as a corollary to h-
cobordism that if X is a contractible manifold with simply connected bound-
ary (and high enough dimension) then X is diffeomorphic to a disk, and a
fortiori, the boundary is diffeomorphic to the sphere.

If a homotopy sphere is embedded in Euclidean space as a hypersurface,
then it separates Euclidean space into 2 components: the closure of one of
these is compact, which one can check (using Alexander duality, the White-
head theorem, and Van Kampen’s theorem – see Spanier’s basic text on
Algebraic topology) is contractible. Since the boundary, namely the homo-
topy sphere, is simply connected, this closure is a disk, and the homotopy
sphere is diffeomorphic to the sphere. Note that the Whitehead theorem
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plus the Hurewicz isomorphism theorem (see Spanier) tell us that a homol-
ogy n-sphere, n > 1, is a homotopy sphere iff it is simply connected.

Smale’s Theorem 4.5 (i) does not necessarily hold with “diffeomorphic”
in place of “homeomorphic,” because for all n ≥ 7 there are differentiable
manifolds homeomorphic to Sn but not diffeomorphic to Sn. These are
called exotic spheres. Therefore, some further hypothesis such as being a
hypersurface is required in addition to the hypothesis in Theorem 4.5 (i)
to achieve a diffeomorphism, which is why Theorem 4.6 is necessary. See
Kervaire and Milnor [1963] for work on groups of homotopy spheres, and
then Levine [1985] for further work there.

4.7 Connected sum

To take the connected sum of two manifolds X2 and Y 2 just cut a small
piece from each and join them at the pieces removed. For higher dimensions
do the same but pay attention to the orientation.

Definition 4.7 Let X#Y denote the connected sum of X and Y .

Theorem 4.8 Fix n ≥ 5, M a smooth manifold of dimension n and and P
any smooth hypersurface in Euclidean space Rn+1. Then

(M#P ) ≈diff M ⇐⇒ P ≈diff Sn.

One direction is easy. If P is not simply connected (i.e., has nontrivial
fundamental group) then (M#P ) 6≈diff M .

5 Riemannian geometry

For Riemannian geometry, see Do Carmo [1992] and Petersen [1962]. Rie-
mannian geometry developed out of the differential geometry of surfaces
S ⊂ R3. Given a surface S ⊂ R3, we can measure the lengths of vectors
tangent to S at a point x by taking the inner product 〈u, v〉. To compute the
length of a curve, by definition, we integrate its velocity vector (as below).
The inner product also allows us to measure the area of domains in S, and
the angle between curves, as well as to define special curves called geodesics
discussed later, along which the length of the curve between points x and
y sufficiently close together is less than or equal to the length of any other
curve joining x and y. Note that the inner product at each point x ∈ S
yields a symmetric bilinear form Ix, defined in the tangent plane, TSx, by
Ix(v) = 〈v, v〉, v ∈ TSx.
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5.1 Riemannian metrics

We now wish to extend these definitions to more general smooth manifolds
which will be assumed to be Hausdorff spaces with countable bases. (See
Do Carmo [1992, pp. 35–45], and Peterson [1998, pp. 2–3].)

Definition 5.1 A Riemannian manifold (or Riemannian structure) (M, g)
consists of a smooth manifold M and an inner product (i.e., a symmetric,
bilinear, positive-definite form) gp, sometimes written 〈. , .〉p, on the tangent
spaces TMp for every point p ∈ M . We also assume that gp varies smoothly.
That is, for any two smooth vector fields X, and Y , the inner product
gp(X, Y ) must be a smooth function of p. This is equivalent to the following
condition. If f : U ⊂ Rn 7→ M is a system of coordinates around p ∈ M ,
with f(x1, x2, . . . xn) = q ∈ f(U), and if ∂

∂xi
(q) = dfq(0, . . . , 1, . . . , 0), then

〈 ∂
∂xi

(q), ∂
∂xj

(q)〉q = gij(x1, . . . , xn) is a differentiable function on U . In this
case, we call g a Riemannian metric on M . Given (x1, x2, . . . , xn) we think
of (gij(x1, . . . , xn)) as a matrix corresponding to the linear map on TMy.
We call gij the local representation of the Riemannian metric (or the gij of
the metric) in the coordinate system f : U ⊂ Rn 7→ M .

The most important Riemannian manifold is Euclidean space (Rn, geuclid)
with ∂

∂xi
identified with ei = (0, . . . , 1, . . . 0). The metric geuclid is given by

〈ei, ej〉 = ∂ij . It is clear that the metric is independent of p.

5.2 Isometries

Let (M, g) and (N,h) be Riemannian manifolds and fix a diffeomorphism
f : M 7→ N .

Definition 5.2 (i) f is an isometry if:

(∀p ∈ M)(∀u, v ∈ TMp) [ 〈u, v〉p = 〈dfp(u), dfp(v)〉f(p) ].

(ii) If f : (M, g) 7→ (N,h) is a diffeomorphism of Riemannian manifolds,
define the induced mapping (or pull back) f∗h on Riemannian metrics by:

f∗h(u, v)p = h(df(u), df(v))f(p).

Note that f is an isometry iff f∗h = g.

Recall that the set of diffeomorphisms of a manifold M forms a group,
called Diff(M). The main interest is not in the space of metrics on M
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but rather in its quotient by Diff(M). Isometries play a key role in the
Nabutovsky Weinberger results since in Met(M) = Riem(M)/Diff(M) (see
§7) Nabutovsky and Weinberger take the space of Riemannian metrics on
M modulo isometries, i.e., modulo the group of diffeomorphisms Diff(M).
The Gromov-Hausdorff metric will not work on Met(M) unless we identify
Riemannian metrics under isometries.

5.3 Immersed manifolds

Let f : Mn 7→ Nn+k be an immersion (as defined in §4.4). If N has a
Riemannian structure (say with Riemannian metric h), then f induces a
Riemannian metric g = f∗h on M by the pullback f∗ as in Definition 5.2.
Namely, g(u, v)p = 〈u, v〉p defined by

〈u, v〉p = h(dfp(u), dfp(v))f(p).

Since dfp is injective, g is positive definite. This metric g is called the metric
induced by f , and we say that f is an isometric immersion.

5.4 The length of paths in M

Definition 5.3 Given a Riemannian manifold (M, g) we use the Rieman-
nian metric g(u, v) = 〈u, v〉 to define the length of a C2-path γ : [a, b] 7→ M
as follows. Let γ̇(t) = dγ

dt , the velocity vector. Define

`(γ) =
∫ b

a
〈γ̇(t), γ̇(t)〉

1
2

γ(t) dt

in which case we call 〈γ̇(t), γ̇(t)〉1/2 the velocity or speed of γ at t.

Definition 5.4 Define a metric space metric d : M ×M 7→ R as follows:

d(x, y) = inf{`(γ) : γ a C2 path from x to y}.

Note that this metric satisfies the usual metric space metric properties:

1. d(x, x) = 0,

2. d(x, y) = d(y, x),

3. d(x, y) + d(y, z) ≤ d(x, z) [triangle inequality]

This is the metric space metric on M which is induced by the Riemannian
metric g.
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Definition 5.5 Given a compact Riemannian manifold (M, g) let d(x, y)
be the metric space metric as defined in Definition 5.4. Define the diameter
of (M, g) to be

D((M, g)) = max {d(x, y) : x, y ∈ (M, g)}.

In the space Met(M) considered by Nabutovsky and Weinberger in §7,
the points will be metrics on M modulo diffeomorphisms. Each such metric
(M, g) on the compact manifold M will have associated with it a diameter
D((M, g)) as just defined in Definition 5.5. The local minima in the space
Met(M) discussed in §7 and §9 will all be taken with respect to the value of
the diameter function on these manifolds.

6 Unsolvable fundamental groups and geodesics

6.1 The covariant derivative and geodesics

Let S ⊂ R3 be a surface and let c : I 7→ S be a parametrized curve in S
with V : I 7→ R3 a vector field along c tangent to S. The vector dV

dt (t),
t ∈ I, does not always belong to the tangent plane of S, TSc(t). To correct
this, geometers define the orthogonal projection of dV

dt (t) on TSc(t). This
is the covariant derivative and is denoted by DV

dt (t). (In this section we
assume that the Reimannian manifold is embedded in Euclidean space. See
Do Carmo [1992, pp. 48–50] and Petersen [1998] to discover how to define
covariance for an abstract Reimannian metric not embedded in Euclidean
space.)

Definition 6.1 A parametrized curve γ : I 7→ M is a geodesic at t0 ∈ I if
D
dt(

dγ
dt ) = 0 at the point t0, where D

dt is the covariant derivative described
above. If γ is a geodesic at t for all t ∈ I we say γ is a geodesic.

Intuitively, a geodesic is a curve with zero acceleration, hence with con-
stant velocity. The concept of geodesic is a curve which minimizes the
distance between two nearby points. For surfaces in R3 the geodesics are
those curves γ(s) for which the acceleration γ′′(s) in R3 is perpendicular to
the surface (and hence from the viewpoint of the surface is zero). For ex-
ample, the geodesics on the sphere S2 are great circles since these minimize
distance between two nearby points.
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6.2 The Fundamental Group and Geodesics

The following theorem by Gromov gives a powerful connection between com-
putability properties (the unsolvability of the fundamental group) and geo-
metric properties (the number of closed, contractible geodesics).

Theorem 6.2 (Gromov (1981)) Let M be a smooth manifold whose fun-
damental group has an unsolvable word problem. Then there exist infinitely
many contractible, closed geodesics on M .

Nabutovsky [1996c] gives a proof, and Nabutovsky and Weinberger
[NW2, §5] give a proof sketch under the title “A toy problem,” because
it foreshadows their work. The idea is that if M is a manifold with funda-
mental group π and no contractible geodesics, then we can solve the word
problem for π as follows. For any word in the generators of π, construct a
simple closed curve representing that word in the fundamental group, and
apply curve shortening. If in the asymptotic process one obtains a closed
curve of positive length, then it must be nontrivial, but if it continually
shortens to small length, then it is contractible. If there are only finitely
many closed, contractible geodesics, then this gives the solvability of π.

6.3 Curvature

For a discussion of curvature see Guillemin and Pollack, pages 75 and 195,
and Do Carmo pages 94, 131, and 162. For example, the curvature of the
round 2-sphere of radius r in Euclidean 3-space is 1/r2 everywhere. As the
radius increases, the curvature decreases, and large spheres are flatter than
small ones.

In higher dimensions one usually considers sectional curvature, a more
complex notion presented in Chavel [1993, pp. 49–100]. Nabutovsky and
Weinberger will assume (in Definition 7.1) that the manifold M has sectional
curvature |K| ≤ 1 for the reasons explained in §9. They wish to study the
local minima of the diameter function on A`(M) as defined in Definition 7.3.
Any Riemannian metric (M, g) may be rescaled to (M,h) by simply defining
h(x, y) = λg(x, y) for λ ∈ R. Hence, by continually rescaling we might not
get a local minimum at all. However, in this case the sectional curvature
Kh = (1/λ2)Kg. Hence, the curvature hypothesis |K| ≤ 1 limits the amount
of rescaling and allows local minima to exist. The hypothesis |K| ≤ 1 is a
weak assumption and roughly says (up to rescaling) that K is uniformly
bounded away from I∞.
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7 The Geometric Space Riem/Diff

7.1 Met(M)

Definition 7.1 Fix a smooth, compact, manifold M of dimension n ≥ 5
and sectional curvature |K| ≤ 1. (See the explanation in §6.3.) Define
Riem(M) to be the space of Riemannian metrics on M (as in §5.1), and
define

Met(M) = Riem(M)/Diff(M)

the space of Riemannian metrics on M modulo diffeomorphisms which are
isometries (as in §5.2). Met stands for “metrizable.”

It is key that we take Riem(M) modulo isometries because the Gromov-
Hausdorff metric dGH defined in §7.2 will not work without identifying iso-
metric elements. Note that we may regard Riem(M) as a subspace of the
space M of all compact metric spaces by identifying (M, g) of Riem with
(M,dM ) where dM is the length metric on M coming from g. However, M
is not complete with respect to the Gromov-Hausdorff metric defined below.

To foreshadow later ideas, note that if a smooth hypersurface in Eu-
clidean space is diffeomorphic to, say, the sphere Sn, then it defines a well-
defined element of Met(Sn), with the metric induced by Euclidean space.
However, one would need the specific diffeomorphism between that hyper-
surface and the sphere to ”lift” that element to Riem(Sn). Later on Nabu-
tovsky and Weinberger produce interesting sets of hypersurfaces, and hence
of Riemannian metrics. The key is, of course, that they will not be produc-
ing them as g’s, i.e., by explicitly writing down a Riemannian metric g, but
rather as hypersurfaces in Euclidean space.

7.2 The Gromov-Hausdorff metric

Hausdorff had defined the classical distance between two subsets of a metric
space, and in 1980 Gromov improved upon it to get the following definition.
We call this the Gromov-Hausdorff distance between two abstract metric
spaces. See Peterson [1993, p. 490].

Definition 7.2 [Gromov-Hausdorff metric] (i) For compact A,B ⊆ metric
space C, define

dGH(A,B;C)

to be the least x such that every point of A is within distance x of some
point of B and vice versa.
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(ii) For A, B abstract metric spaces their distance

dGH(A,B)

is the infimum over all metric spaces C containing A and B isometrically.

Note that if dGH(X, Y ) = 0 then X and Y are isometric. Hence, we must
consider Riem(M) modulo isometries for dGH to work, because we must
identify isometric spaces. Also any two Riemannian manifolds of diameter
≤ x are 2x-close to each other in the dGH metric.

7.3 A path metric on A`(M)

The authors Nabutovsky and Weinberger work not with Met(M) itself but
rather with the following well behaved subset A`(M).

Definition 7.3 Define A`(M) to be the subset of Met(M) consisting of the
closure in the Gromov-Hausdorff metric of isometry classes of metrics (in
Riem(M)/Diff(M).

Nabutovsky and Weinberger do not work with the Gromov-Hausdorff
metric directly but prefer to use the path metric on A`(M) defined as follows
in Nabutovsky-Weinberger [NW]. Furthermore, they work not with zero, but
with a very small constant ε > 0 which depends on Cheeger’s work [1970],
and all their estimates of local minima, and so on, are as functions of ε.

Definition 7.4 The distance between two metrics µ1 and µ2 on M is de-
fined as the length of the shortest path connecting these metrics in A`(M).
Namely, define this as

d(µ1, µ2) = inf Σ1≤i<k dGH(νi, νi+1),

where µ1 = ν1, . . . , νk = µ2 is a sequence of metrics in A`(M) such that
for any i < k, dGH(νi, νi+1) ≤ ε, and the infimum is taken over all such
finite sequences and all ε > 0. From now on we use Met(M) to mean its
completion A`(M) and we use d(µ, ν) to mean the path metric defined here.

Note that this same conversion from a metric to a path metric on the
same space works for any metric space metric d not only the Gromov-
Hausdorff metric dGH . Nabutovsky and Weinberger introduce the path met-
ric, rather than simply using dGH under which the space Riem(M)/Diff(M)
is already complete. The reason is that if we have a manifold, like the sphere
S2, we may have a metric d̂ which measures distances between antipodal

21



points x and y along a diameter. In this case, we might have d̂(x, y) = d1,
the length of the diameter, but have no path in S2 from x to y which has
length d1. Using the path metric d(x, y) guarantees that if d(x, y) = d1 then
there is a path of length d1 on the manifold M from x to y.

7.4 Local minima on Met(M)

Definition 7.5 Let f : X 7→ [0,∞) and x, y ∈ X.

(i) π(x, y) denotes an arbitrary path from x to y such that f(y) < f(x).

(ii) Define the rise of the path,

ρ(π(x, y)) = max {f(z)− f(x) : z on π(x, y)}.

Namely, ρ represents how much higher above x you must climb to tra-
verse the path to y.

(iii) If x is a local minimum for f , define the depth of x,

δ(x) = min{ρ(π(x, y)) : all π(x, y) : f(y) < f(x) & y 6= x}.

Hence, δ(x) is the minimum altitude over dx to reach any local minimum
y below x by any path. This has the usual intuitive meaning. Picture
a mixing bowl with sides of height four above the bottom, but one side
lowered to three inches for easier pouring. The bowl would hold three inches
of water, and that is its depth by this definition.

7.5 Sublevel sets

Definition 7.6 Let f : X 7→ [0,∞) be any function. For any positive real
x the set f−1( [0, x] ) is called a sublevel set of f .

In the following results on sublevel sets Nabutovsky and Weinberger
always take X = Riem/Diff(M) and take f(x) to be D(x), the diameter
function, defined in Definition 5.5.

If all sublevel sets of f are compact and f is continuous, then f has a
local minimum on every connected component of every sublevel set. These
local minima on connected components of sublevel sets are local minima of
f on X. Indeed, the value of f at any point outside a sublevel set is greater
than the value of f at any point of the sublevel set.

The component of the sublevel set f−1((0, D(x) + δ(x))) which contains
x is regarded as a basin containing x. It has the absolute minimum of D(x)
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restricted to this component as the basin’s minimum, and the basin has
depth at least δ(x). Typically δ(x) is much larger than D(x) and we can
intuitively think of x as lying “near the bottom” of the basin. If x is a global
minimum, then the whole space is the corresponding basin of infinite depth.
See [NW2, p. 1].

8 Computability results for differential geometry

In this section we give the definition and statement of the computability re-
sults to be applied to differential geometry. The proofs of the computability
results in this section will appear in Csima and Soare [ta]. Theorem 8.12
was announced by Soare in answer to the question posed by Nabutovsky and
Weinberger. Later in her Ph.D. thesis under Soare, Csima [2003] strength-
ened this to Theorem 8.14, and developed a number of other properties of
the dominating ordering relation A � B defined in Definition 8.11.

8.1 Standard definitions

The following standard notions of computability theory can be found in
[Soare, 1987].

Definition 8.1 (i) Let {Pe}e∈ω be an effective indexing of all Turing pro-
grams.

(ii) Define ϕe(x) = y if Pe with input x eventually halts with output y.

(iii) Define ϕe,s(x) = y if ϕe(x) = y in < s steps of Pe and x, y, e < s.

(iv) Let We = domain(ϕe), the eth computably enumerable (c.e.) set.
We refer to {We : e ∈ ω} as the standard listing or Kleene listing of all
computably enumerable (c.e.) sets.

(v) We,s = domain(ϕe,s), the approximation to We at stage s.

(vi) Two sets A and B (or functions) have the same (Turing) degree if
A is computable from B (A ≤T B) and B ≤T A.

(vii) The Halting Problem is the c.e. set K0 = {〈e, x〉 : x ∈ We}. (Hence,
We ≤T K0 for every e, so K0 has the greatest degree, denoted by boldface
0′, among c.e. sets.

(viii) A�n = A∩ [0, n), the restriction of the set A to integers {k : k < n},
and similarly define the restriction f�n of a function to [0, n).
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Essential to the NW results is the following settling function.

Definition 8.2 (i) For each We define the partial computable halting func-
tion,

θe(x) =
{

(µs)[x ∈ We,s] if s exists,
↑ otherwise.

(ii) For every We define the settling function:

σe(x) = (µs)[We,s�x = We�x], namely

σe(x) = max{θe(y) : y < x & θe(y)↓ }.

(This is also called the computation function in Soare [1987, p. 99].)

Proposition 8.3 For all e ∈ ω, We ≡T σe.

Note that, although σe clearly has the same Turing degree as the c.e. set
We, its graph will generally not be a c.e. set, i.e., it will not be a computable
function. Furthermore, if We = K0, then σe will have degree 0′.

Remark 8.4 Note that the settling function is not defined for a c.e. degree
or even for a c.e. set such as K0. It is only defined when we have a specific
index for a specific c.e. set A. Other indices for A can have vastly different
settling functions even though these are all Turing equivalent. We regard
e for We = A as a specific algorithm (among many) to enumerate A, and
the settling time σe(x) measures speed of convergence of this algorithm. We
never write σA(x) unless we have in mind a particular index e such that
We = A. Likewise, σd is not defined for a c.e. degree d, but only for some
specific We ∈ d. However, there is a sense in which local minima in geometry
can have depths and density related to a c.e. degree as we explain in §9.

8.2 Dominating the settling time

Nabutovsky and Weinberger [NW2] used the following partial orderings on
c.e. sets defined in terms of domination properties.

Definition 8.5 (i) A � B iff (∃Wi = A) (∃Wj = B)

(3) (∀ computable f)(a.e. x)[ σi(x) > f(σj(x)) ].

(ii) A �� B iff (∀Wi = A) (∀Wj = B) we have equation (3).
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Definition 8.6 A ≤ibT B if A <T B by a computation with use u(x) ≤ x.

(The notation A ≤bT B means that A is bounded Turing reducible to B,
namely Turing reducible by a procedure in which the computation on input
x is bounded by a computable function f(x). The notation ibT suggests
that the bounding function is the identity f(x) = x. Here u(x) denotes the
largest integer used by the oracle Turing machine to compute A from B on
argument x.)

Theorem 8.7 (Csima)

(4) [We ≤ibT Wi & Wi ≺ Wk] =⇒ We ≺ Wk

(5) [We � Wi & Wi ≤ibT Wk] =⇒ We ≺ Wk.

Corollary 8.8 (Nies) B ≺ A iff B ≺≺ A.

Csima’s theorem implies that the ordering ≺ is well defined on c.e. sets.

Corollary 8.9 (Csima and Nies, Transitivity)

[A = B & B ≺ C] =⇒ A ≺ C.

However, Csima [2003] has also proved that it is not well defined on
Turing degrees of c.e. sets.

Theorem 8.10 (Csima) Given c.e. sets A � B, there exists a c.e. set
C ≡T A such that C � B.

8.3 A dominating sequence

Definition 8.11 A sequence {An}n∈ω of c.e. sets is a dominating sequence
if there is a computable function h(x) such that An = Wh(n), n ∈ ω, and

(∀n)[ Wh(n) � Wh(n+1) ].

Namely, for A we take not only the set Wh(n) = An but also its specific
index h(n) and we require that

(6) (∀ computable f)(∀n)(a.e. x)[ σh(n) (x) > f(σh(n+1) (x)) ].

Theorem 8.12 (Soare) There is a dominating sequence {An}n∈ω.

25



Weinberger originally asked Soare to prove the theorem in this form,
Soare did. He then asked Soare to prove it with �� in place of �, which
Soare also did by a small variation of the original argument. By Theorem 8.7
and Corollary 8.8 this extension is unnecessary since it follows by the original
Soare Theorem 8.12. Let Z denote the set of positive and negative integers.
Then Weinberger asked for both an ascending and descending dominating
sequence. By the same proof Soare proved Theorem 8.12 in the form with
Z in place of ω.

Definition 8.13 Fix a monotonically increasing computable function g. A
sequence {Wh(n)}n∈ω of c.e. sets is a g-dominating sequence if for all n ∈ ω,

(7) (∀ computable f)(a.e. x)[ σh(n)(x) > f(σh(n+1) ( g(x) )) ].

This is the same as Definition 8.11 except that the elements A�x must
“guard” B � g(x) not merely B � x as before, where A = Wh(n) and B =
Wh(n+1). By a similar proof, Csima extended Soare’s Theorem 8.12 in the
following form which Weinberger had later requested of Soare because it
simplifies some of the proofs in his paper with Nabutovsky.

Theorem 8.14 (Csima) For any monotonically increasing computable
function g, there is a g-dominating sequence {Wh(n)}n∈ω.

8.4 Degrees of members of dominating sequences

Nabutovsky and Weinberger have also been interested in the Turing degree
of the c.e. sets in the dominating sequence as we shall see in §9. Suppose
A � B as in Theorem 8.12. What can we say about the degrees of A and
B? Clearly, A ≥T B because A�x settles more slowly than B�x. But what
of the degree of A itself? The next proposition says that A is high if B is
infinite. (All the sets in the dominating sequence of Theorem 8.12 must be
infinite.)

Proposition 8.15 (Csima-Soare) If A and B are c.e. sets such that B
is infinite and A � B, then A has high degree (i.e., A′ ≡T 0′′).

Proof. Let A = Wa and B = Wb. Choose an infinite computable subset
{xi}i∈ω of B such that xi enters Wb at stage si with si < si+1 for all i ∈ ω.
We define a computable sequence of partial computable functions ϕh(n),
n ∈ ω, such that if ϕn = g is total, then ϕh(n) is also total but is defined
more slowly on si so that f = ϕh(n) (used as in Definition 8.5) forces a late
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change in A�xi and thereby causes σa(x) to dominate g. Hence, A is high
by Martin’s Theorem in Soare [1987, p. 208].

Computably enumerable sets We such that σe(x) dominates all total
computable functions are called e-dominant in Soare [1987, p. 220]. These
have been studied by R.W. Robinson.

Can we improve Proposition 8.15 to make A Turing complete? No. That
method is appropriate for forcing an infinite computable set into A but not
for delicately coding K into A. The next theorem says that all the preceding
results can be improved be making the sequence decrease in Turing degree
as well as with respect to the domination properties.

Theorem 8.16 (Csima-Soare) There is an effective sequence of c.e. sets
{An}n∈ω such that for all n

An � An+1 & An >T An+1.

Here � may be taken as in the original Definition 8.5 or the stronger g
dominating as in Definition 8.13, and we may replace ω by Z.

The proof of Theorem 8.16 is a 0′′ priority tree construction. This theo-
rem and all other results in this section will appear in Csima-Soare [ta].

9 The Nabutovsky Weinberger (NW) Results

The Nabutovsky Weinberger results are very difficult to state precisely. Even
in their paper [NW2] they state several versions of one of the main theorems,
Theorem 0.1, an intuitive version and later a formal version, and even that
version avoids some of the more subtle points. Here we give an intuitive
version which relates the geometry to the computability. The best references
are [NW1] and [NW2] for the results and Weinberger’s Porter lectures [ta]
for a global introduction to the subject. We supply a number of definitions,
explanations, and details not explicitly given in these papers.

9.1 C.E. degrees and local minima

Notation 9.1 Following Nabutovsky and Weinberger [NW2] we let lower
case Greek letters, α, β, and γ denote computably enumerable (c.e.) degrees.

Definition 9.2 For notational convenience from now on we call a manifold
M suitable if it is smooth, compact, of dimension n ≥ 5, and of sectional
curvature |K| ≤ 1.
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Definition 9.3 (i) If f is a real valued function on a metric space X with
metric m(x, y) and Y ⊆ X, then Y is f-dense if

(∀x)(∃y ∈ Y )[m(x, y) ≤ f(x)].

(ii) If α is a c.e. degree, then Y is α-dense if Y is f -dense for a function
of degree α.

(iii) For g a function from ω to ω, a set {Nk}k∈ω of local minima on
Met(M) is g-deep if d(Nk) ≥ g([D(Nk)]) where d(Nk) is the depth of Nk, D
is the diameter function, and [r] denotes the greatest integer less than the
real r.

(iv) For α a c.e. degree a set {Nk}k∈ω of local minima on Met(M) is
α-deep if it is g-deep for some function g of degree α.

Theorem 9.4 (NW1, Theorem 0.1, Informal)
For every suitable n-manifold there are infinitely many local minima of the
diameter functional on the subset A`(M) of Met(M). Moreover, there is a
constant c(n) depending only on n such that for every c.e. degree α the local
minima of depth at least α are α-dense in the path metric on A`(M), and
the number of α-deep local minima where the diameter does not exceed d is
not less than exp(c(n)dn).

The authors write that more precisely, this theorem asserts that for any
c.e. degree α, any c.e. set A ∈ α, and any index e such that We = A there
exist increasing functions f and g equicomputable with the settling function
for We such that for all sufficiently large d there exist at least exp(c(n)dn)
local minima of the diameter functional on A`(M), where the value of the
diameter does not exceed d, and such that for each of these minima the
depth of the graph of diameter corresponding to this minimum is at least
f(d). Moreover, such local minima are g(d) dense in a path metric on
A`(M), and the number of β-deep local minima where the diameter does
not exceed d is not less than exp(c(n)dn).

Each possible value d for the diameter functional D(x) determines a
sublevel set D−1( [0, d] ) as defined in Definition 7.6, and we look for lo-
cal mimima where the diameter does not exceed d. Informally, each c.e.
degree α determines what the authors call a “scale,” and there are many
distinguished local minima of the diameter functional which are deep at that
scale, meaning that the depth of the local minima is equicomputable with a
function of degree α. Nabutovsky and Weinberger later state this theorem
more formally in [NW2, §12].
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Theorem 9.5 (NW1, Theorem 0.1, Rigorous version) Let M be a
suitable n-manifold, let A be any c.e. set and We = A, and let σe(x) be
its settling function as defined in Definition 8.2. There is a constant c(n)
depending only upon n, and increasing unbounded computable functions f
and g, (f < g), such that for all sufficiently large d the number of local
minima of the diameter functional D(x) on A`(M) such that the value of
diameter does not exceed d and of depth between f(σe(d)) and g(σe(d)) is
at least exp(c(n)dn). Moreover, these f(σe(d))-deep local minima form a
g(σe(d))-dense in the path metric subset of D−1((0, x]) ⊂ A`(M).

9.2 The idea of the proof

The outline of the proof very roughly is this. Fix n ≥ 5, a suitable n-manifold
M , a c.e. set A, an index e such that We = A and let σe(x) be the settling
function for We.

By the Boone-Novikov Theorem 3.1 there is a finitely presented group
H whose word problem has the same degree as that of A. By the Adjan-
Rabin Triviality Theorem 3.2 we can use H to find a computable sequence
of finitely presented groups {Gk}k∈ω such that

k ∈ A ⇐⇒ Gk
∼= 〈e〉.

By Novikov’s Theorem 3.7, these groups can be used to construct an effective
sequence of n-manifolds, {Pk}k∈ω such that

k ∈ A ⇐⇒ Pk ≈diff Sn.

Nabutovsky and Weinberger considerably extend these ideas, making use of
the deep refinement of the Boone-Novikov theory from Sapir, Birget, and
Rips [2002]. They construct a homology sphere in a very careful way using
ideas of Clozel from number theory and ideas of Hausmann Vogel from geo-
metric topology to get a homology sphere with computability properties of
the word problem. In particular, they build a sequence {Pk}k∈ω of homology
spheres, which are also hypersurfaces, and they use the connected sum to
obtain the desired objects Nk =dfn (M # Pk). (As described earlier, the Pk

inherit the metric of Euclidean space.) Now by Smale’s Theorem 4.5 and
its extension for hypersurfaces Theorem 4.8, we have for every k,

Nk = (M # Pk) ≈diff M ⇐⇒ Pk ≈diff Sn.

Putting these lines together we have that for every k,

(8) k ∈ A ⇐⇒ Nk ∈ Met(M).
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Hence, Nabutovsky and Weinberger construct from every c.e. set We

an effective sequence of n-manifolds {N e
k}k∈ω such that k ∈ We iff

N e
k ∈ Met(M). The event “k ∈ A” is c.e. by definition and the event

N e
k ∈ Met(M) is also c.e. because it depends on the collapse to the identity

of the group Gk which is a c.e. event. The P e
k are both homology spheres

and hypersurfaces, but the resulting manifolds N e
k = M#P e

k are more com-
plicated, and are probably neither.

As N e
k is revealed to be a point of Met(M) a process (called “nonde-

terministic gradient flow”) takes place for finding other points on Met(M)
closely associated with and nearby to N e

k which are local minima. Their
construction guarantees that these local minima exist in the quantity and
depth specified in Theorem 9.5. The authors do not claim that uniformly ef-
fectively in e and k they can find the required local minimum Qe

k, but rather
they can produce a set Se

k which contains it. What is uniformly computable
in the settling function σe(k) is the estimate of the depth of at least one
local minimum Qe

k in Se
k as specified in Theorem 9.5. Most of this depth is

achieved by the complexity “above” N e
k rather than moving “below” N e

k to
obtain the local minima in Se

k.
Nabutovsky and Weinberger also prove that if k ∈ We, then the distance

in Met(Sn) from P e
k to Sn, the standard sphere, is equicomputable with

the settling time σe(k), and this also is equicomputable with the distance
function in Met(M) from N e

k to the standard point M . The intuitive reason
that the depth and distance must be this complicated is very roughly that
shallower depths or shorter paths would give a shorter proof of the triviality
of a group, and hence a shorter proof of the halting problem for a certain
Turing machine.

9.3 How deep is deep?

Suppose we wish to compare the depth d of a small basin, such as a bath tub,
with the depth e of a giant basin, such as the Grand Canyon. We could say
that the exponential 2d is still less than e. However, when we iterate a few
more exponentials this inequality will no longer be true. Nabutovsky and
Weinberger wanted a much more impressive comparison of relative depth in
that any computable function of the smaller is still less than the larger, at
least on almost all arguments. This definition makes sense only if we are
dealing with infinite sequences, but their construction above produces just
such a infinite sequence {N e

k}k∈ω for each c.e. set We.
Nabutovsky and Weinberger began by using c.e. degrees to make the

comparison of relative depths. For example, if We <T Wi then for any
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computable function f there are infinitely many arguments k ∈ ω at which
f(σe(k)) < σi(k) and hence at which the local minima associated with N i

k

are vastly deeper than those associated with N e
k . If We <T Wi then by

the Sacks Density Theorem there exists Wj such that We <T Wj <T Wi.
Hence, for any computable function f there is an infinite set X of arguments
k at which f(σe(k)) < σj(k) and an infinite Y set of arguments k at which
f(σj(k)) < σi(k), but the sets X and Y need not coincide. To get the depth
comparisons they wanted, Nabutovsky and Weinberger asked Soare for a
finer measure.

9.4 Using the settling function

As in Definition 8.5 Nabutovsky and Weinberger defined for c.e. sets A and
B the ordering A � B if

(9) (∃Wi = A)(∃Wj = B)(∀ computable f)(a.e. x)[σi(x) > f(σj(x))].

By Nies’s Corollary 8.8 this does not depend on the choice of i and j.
If we apply Theorem 9.5 to c.e. sets Wi � Wj then the sequences {N i

k}k∈ω

and {N j
k}k∈ω will have the property that the associated local minima of the

former are vastly deeper almost everywhere than those of the latter.
At Weinberger’s request Soare constructed in Theorem 8.12 the domi-

nating sequence {An}n∈Z such that An � An+1. Applying Theorem 9.5 to
the Soare sequence {Ae}e∈Z we get a sequence of manifolds such that the
local minima determined by Ae are vastly deeper than those determined by
Ae+1. As the ideas in the Nabutovsky-Weinberger theory developed, the cor-
respondences became sharper. For example, in Theorem 9.4 the depth and
density of the local minima corresponding to the sequence {N e

k}k∈ω are only
correlated with some function in Turing degree of We, while in Theorem 9.5
they are correlated more precisely with the settling function σe(x). Notice
that in the Soare sequence {An}n∈Z we do not claim that An >T An+1 in
Turing degree, but merely that An � An+1.

However, it is not only the depth of the local minima which is important
but also their distribution and proximity to one another. The property in
Theorem 9.5 that the local minima are form a g(σe(d))-dense in the path
metric subset of D−1((0, x]) ⊂ A`(M) implies the various local minima are
relatively close together. For example, this means that there are very deep
local minima with medium size local minima coming off their sides, with
very small local minima coming off their sides and so forth. This gives
justification for the word “fractal” in the title of [NW2]. To express this
intuition Nabutovsky and Weinberger [NW2, §12] wrote:
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PANORAMIC VIEW OF THE GRAPH OF DIAMETER ON
A`(M). There are ‘pits’ or ‘basins’ in the graph of diameter with
depth of the magnitude roughly equal to the ‘halting function’
[i.e., settling function] for A2 and spaced at intervals growing
slightly faster than their depth. These are merely bumps in the
basins of the (spaced much further apart) much deeper basins
that correspond to A1. And even these huge basins are merely
bumps in the basins corresponding to A0. And so on.

9.5 The simplicial norm and lower bounds on volume

The next theorem is formally contained in Theorem 9.5. However, studying
the proof sheds light on another aspect of how computability is applied in
differential geometry, in this case to show the existence of even a single local
minimum on Met(M) where M is, say, the torus T 5. Here the statement of
the theorem requires no mention of sets or degrees, but no proof is known
which avoids computability.

Theorem 9.6 (Nabutovsky-Weinberger) For any smooth compact
manifold Mn, n ≥ 5, there are infinitely many extremal metrics g on M
in the sense that:

1. |K(g)| ≤ 1, and

2. Any nearby metric h on M has either |K(h)| > 1 at some point or
D(h) > D(g).

After stating Gromov’s Theorem 9.8 below relating lower bounds on
Ricci curvature to such bounds on volume in the presence of an estimate on
simplicial norm, Nabutovky and Weinberger prove the following theorem.

Theorem 9.7 (NW2, Theorem 9.2) For every n ≥ 5, there is an effec-
tive sequence {Pk}k∈ω of homology spheres such that for every k either:

1. Pk is diffeomorphic to Sn (written Pk ≈diff Sn), or

2. the simplicial norm ||Pk|| > 1.

Furthermore,

S = {k : case (1) holds } is computably enumerable, and

T = {k : case (2) holds } is not computably enumerable.

and S ∩ T = ∅.
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We will be using manifolds of the form M#Pk to refine Novikov’s the-
orem to learn that even in the presence of a simplicial norm estimate one
cannot decide whether a smooth manifold is diffeomorphic to M . The reason
one wants such estimates is that they prevent noncompactness of sublevel
sets, and therefore allow one to show local minima exist. To see this, we use
another two theorems from differential geometry.

Theorem 9.8 (Gromov) For any n there is a constant cn > 0 such that
for any Riemannian metric (M, g) if the Ricci curvature is greater than −1
(which occurs if the sectional curvature |K| ≤ 1, as always assumed by
Nabutovsky and Weinberger) then

vol(M, g) ≥ cn ||M ||,

where ||M || denotes the simplicial norm of (M, g).

Guaranteeing that ||Pk|| > 1 will also guarantee by Theorem 9.8 that
vol (M#Pk) > cn > 0, because ||M#Pk|| = ||M || + ||Pk||, The final link in
the chain is the next theorem.

Theorem 9.9 (Cheeger-Gromov) Let T be the set of metrics g on a
manifold M such that:

1. |K| ≤ 1; (The sectional curvature of (M, g) has absolute value ≤ 1.)

2. vol (g) > ε > 0; (The volume of (M, g) is bounded away from 0.)

3. diam (g) < c < ∞. (The diameter of (M, g) is bounded below ∞.)

Then T is compact, and hence the diameter function D(g) has a minimum
on this set T .

We have ignored issues of the analytic regularity of the metrics.
Now we can put it all together as follows. Fix a sublevel set U =

f−1((0, D(g) + y)) for some point g ∈ Met(M). This restriction gives a
bound on the diameter and yields (3) of Theorem 9.9. The universal as-
sumption of Nabutovsky and Weinberger guarantees (1). Their construction
in Theorem 9.7 guarantees that (2) can be assumed to hold for a class of
components of the sublevel set that contain manifolds impossible to algo-
rithmically disentangle from M .

As a result of (2), there must be infinitely many components of the
sublevel sets of D on Met(M) which satisfy the volume bound v > cn/2, for
if not, one could use this to enumerate T as follows. Keep a list of the finitely
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many components which satisfy the volume bound (by recording an element
of each). Check whether Nk lies in a component of the space of manifolds
with |K| < 1 and diam < 2D, that satisfies the volume bound. (This is
algorithmically checkable.) If not, k ∈ S (by Gromov’s theorem). If so,
check whether it is one of the finitely many exceptional components on our
list. If so, then also k ∈ S, otherwise k ∈ T . Now, one has in Met(M) many
components of sublevel set satisfying the volume inequality. The Cheeger-
Gromov theorem implies the compactness of each of these components. Since
D is a continuous function on these compact spaces, in each component it
has a global minimum. The global minima are the desired local minima,
since a local minimum for a function is exactly the same thing as a global
minimum of the function restricted to an open set. The proof is complete.
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