
X R D S • s p r i n g 2 0 1 2 • V o l . 1 8 • N o . 3 15

ArefIn Huq: Your upcoming book is
entitled, Computability Theory and
Applications, and it’s subtitled, “The art
of classical computability.” Why did you
choose that title?

Robert Soare: Mathematicians value
work on the basis of beauty. It has to be
correct, but the question is: Is it beautiful?
Is it a beautiful theorem, a beautiful proof?
At the University of Chicago no one asks me
to do the mathematics of building bridges
on a deadline. I choose the problems that
I work on, and I choose problems for my
students, and they work on the things they
enjoy doing. We do it because we hope to
solve important problems but we do it also
because it’s beautiful. So the subtitle, “The
art of classical computability,” is supposed
to represent this thought.

AH: What makes Turing’s model of
computation so compelling?

RS: Why do we give so much credit to
Turing? His advisor, Alonzo Church, was
already a full professor before Turing
even started out, and Church proposed
one definition of computable function in
1934, the lambda-definable functions, and
another one in 1935. Church got it right,
twice, and he got it first. He got it right in
the sense that he proposed a model which
later proved to be correct. Turing came on
the scene only in 1936, when he published
his paper after Church’s paper was already
announced and published. And yet if you
pick up any book on computability now
you’ll see a description of a Turing machine.
You won’t see the lambda-definable
functions of Church and you won’t see the

recursive functions of Herbrand-Gödel, but
you will see Turing’s model because it is
easy to understand. That’s the first part.

The second part is that there are
famous problems in mathematics, like the
Riemann Hypothesis, like the Poincaré
Conjecture that was done recently,
like Hilbert’s Tenth Problem. All these
are specific, concrete, well-defined
mathematical problems and if someone
solves one of these he becomes famous.
Solving means to give a mathematical
proof that other mathematicians can verify
as a correct proof.

Hilbert had proposed in the 1920s
that people find an algorithm for deciding
statements in the logical language of
mathematics. If accomplished it would
have meant that, at least in theory, much
of the work of mathematicians could
have been eliminated, putting many
mathematicians mostly out of business. So

Church and Turing suspected this was not
possible. But to get an undecidable problem
they had to find a way of defining and
listing all computable functions and then
diagonalizing by finding a problem that is
not solved by any one of those computable
functions.

But the first task was to define a
computable (i.e. calculable) function
and then prove that it captured what a
human being could compute or calculate.
Gödel, who was the most famous person
in mathematical logic after 1931,
questioned whether it was possible to
do this. He suspected it was an abstract,
informal notion that couldn’t be captured.
Gödel stated that whether all effectively
calculable functions are recursive, “cannot
be proved, since the notion of finite
computation is not defined, but serves as a
heuristic principle.”

For 3000 years before this, human
beings had been calculating—Euclid,
Archimedes, Leibniz, and so on. A
calculation meant you write down things
on a piece of paper or a slate or whatever
you have in front of you and you move to
the next step and the next step and so
forth. That’s what a calculation represented
for human beings. What Turing said was,
well, the human being could calculate
with an infinite number of symbols, but
if he did, those symbols could be coded
in binary, 0 and 1. So therefore we only
really need two symbols. Next he said that
computation can be carried out in three-
dimensional space: Archimedes could have
had shelves and he could have put part of
the computation on the top shelf and part
on the middle shelf and so forth. But we
can code that by a one-dimensional tape,

An Interview with
Robert Soare

Robert Soare

University of Chicago’s Robert Soare, the Paul Snowden Russell Distinguished Service
Professor of Mathematics and Computer Science, offers his reflections on Alan Turing.
Interviewed by Arefin Huq
DOI: 10.1145/2090276.2090284

X R D S • s p r i n g 2 0 1 2 • V o l . 1 8 • N o . 316

because we can code all the places and the
space and put them on the tape. Also we
can assume that there are distinct squares
and each square holds a single symbol.
One by one he went through all the things
that a human could do and he showed how
his machine could do it. So number one,
he came up with a simple, understandable
model, and number two and perhaps even
more important, he then gave a proof,
not a formal mathematical proof, but a
demonstration that anything that could be
calculated by a human being could be done

by one of his machines.

AH: You’ve compared Turing to
Michelangelo. Please explain.

RS: Around 1450, Donatello, a famous
sculptor, sculpted a bronze statue of David,
the David who killed Goliath. It was a typical
pose at the time. David had on a helmet and
he was holding a sword, and at his feet was
the head of Goliath whom he had slain. This
was a remarkable piece of sculpture. It was
the middle of the Renaissance. It influenced

Michelangelo and other people, and then it
was succeeded in 1475, 25 years later, by
Verrocchio.

Verrocchio was well known as the
teacher of Leonardo da Vinci and Botticelli,
and he sculpted another bronze statue in a
similar pose. Helmet on the head, Goliath’s
head on the ground under David’s foot, and
David with his sword. The pose was a little
different and the expression on his face was
very complex. This again is a remarkable
sculpture, one that’s highly prized around
the world, and was an advance over the
1450 Donatello. Then in 1501 to 1505
Michelangelo got a piece of pure Carrera
marble that was taken from a nearby quarry.
It had already been started by someone
else and had some defects, so he had to
work around the defects, and out came
Michelangelo’s David. Michelangelo’s David
stands in a gallery in Florence called the
Accademia. It’s gleaming white as you come
in and it’s remarkable because the human
figure is much less stiff, much more vibrant,
than in the preceding two. Then he has the
famous contrapposto. That means the upper
part of the body tilts to one side, the lower
part of the body tilts to the other side, and
so it gives a feeling of motion and a feeling of
the human body displaying its muscles.

So my feeling is that David was just a
kid. He had not even yet reached puberty.
He was a shepherd boy and the Israelites
were facing the Philistines. The Philistines
put forward their best warrior, Goliath, a
huge giant, and they demanded one-on-
one conflict of the best warrior against the
best warrior. The Israelites were all afraid
to face this huge giant, and along comes
this little kid, a kid with a slingshot, and he
steps out and he slings the stone, and the
stone hits Goliath in the head and kills him.

So Michelangelo displays David not
standing on the head of Goliath—you don’t
even see Goliath’s head—and displays
David, not with a sword, but with a sling
over his shoulder. Two things about the
statue are remarkable. Number one, it’s an
enormous advance over everything that
had gone before, and number two, it says
something new about human beings and
the human condition. David is standing
there with tension on his face before he
meets Goliath, not afterwards as the others
who are triumphant and gloating over the
death of Goliath. He’s about to go out with
the sling on his shoulder. David and Turing
had a mental triumph, not a physical one.

Turing was only 23 years old when

P
ho

to
 c

ou
rt

es
y

of
 F

lic
kr

 u
se

r b
lo

nd
 a

ve
ng

er
, L

o
va

n
de

n
B

er
g

X R D S • s p r i n g 2 0 1 2 • V o l . 1 8 • N o . 3 17

he heard of the problem. He was just a
kid. He went into the lectures in 1935 of
Max Newman, who was a topologist at
Cambridge. He heard the lectures, got
interested in this problem, went away,
lay down in a meadow, and then in the
meadow he got the idea for what to do.
He came back and gave his solution to
the astonished Max Newman in 1936. So
Turing was a kid with a slingshot. He was
facing a phalanx in Princeton of Gödel,
the most famous person in mathematical
logic in the world, whose Incompleteness
Theorem revolutionized our idea of proofs
in mathematics in 1931. The group also
included Alonzo Church, who had been
working on this problem for a decade, his
students Kleene and Rosser, and Emil Post,
who was nearby in New York and had been
working on this stuff. All these people came
up with various ways of trying to approach
computability. Turing, with a slingshot and a
single stone, hit the mark.

AH: You’ve recommended Turing’s
1936 paper and Post’s 1944 paper as
recommended reading for all computer
science students [1, 2]. Why?

RS: At the University of Chicago in the
1930s they had something called the
“Great Books” program, where people were
supposed to read the original books—
the ancient books of Greece and Rome,
Shakespeare, and the most fundamental
and important books of Western literature.
So I thought a corresponding thing that
would make sense is the “Great Papers”
program. Each paper should be readable: Its
exposition should be beautiful in the sense
we just described. So Turing 1936 and Post
1944 satisfy that. I have two criteria in
recommending these papers. First of all
it should be fundamental to the subject,
then and now, and second it should be very
well written so that it’s intuitive, easy to
understand and appealing.

AH: How is the field of mathematical logic
relevant for the future?

RS: I think it’s very relevant to the future.
Logic was not so central in 1935 when
Church and Turing and the others came
around, but then it’s interesting that
the constructs in logic like lambda
computability, recursive functions, Post
canonical systems, and so forth, have
all had important implementations in

actual computer science. The lambda
calculus was used by another Princeton
graduate in mathematics, John McCarthy,
who created the computer language Lisp
using the lambda calculus. McCarthy is
considered by many to be the father of
artificial intelligence. He completed his
Ph.D. at Princeton in 1951 under Solomon
Leschetz and spent much of his career at
MIT and Stanford. He created Lisp in order
to create Turing machines in the limited
computing environment at his disposal.
The lambda calculus has also been used in
programming languages and other parts
of modern computer science. The 1943
paper by Post had something called normal
systems and Post canonical systems,
which were then taken up by the generative
grammars of Noam Chomsky at MIT. So
logic has had a lot of influence.

There’s a researcher at Microsoft, Yuri
Gurevich, who gave a talk in which he said
engineers study calculus, which they don’t
use, and they do not study logic, which they
do use. My career began in about 1960 when
I took my course from Church and the whole
thing has just mushroomed since then in
terms of the connections with other fields.

I think a good analogy right now is
Turing. If you look at the second category
of papers on my Web page, the bottom
one (not my own paper) is an article in the
Princeton Alumni Weekly listing Turing as
the second most influential alumnus of
all time after James Madison. That puts
him ahead of Woodrow Wilson and John
Foster Dulles and a whole lot of other
people. That’s an amazing statement. I
didn’t think that people even knew who
Turing was, but this was judged by some
independent external committee. The
celebration that’s going on for Turing now
is just enormous. It’s a major event. There’s
just a mushrooming interest in Turing and
his work and his legacy that is indicative
of an appreciation for the role of logic and
computability in our society.

AH: What advice do you have for students
getting started in research today?

RS: Entering graduate school is like entering
a guild. You enter a guild—a medieval guild
like shoemaking or blacksmithing—and
you apprentice yourself to the main person
in that field for a while. You learn the craft
from him and you go deeper and deeper into
that field, into that guild in your second,
third, fourth, fifth year. And then that person

helps you get a job in another village, part of
the same overall guild but in another village,
and it’s mainly your advisor who finds you
that job. The subfields in computer science
are sufficiently developed and technical that
it’s difficult to get into them by yourself. You
need an advisor, and he has to help you learn
the material and help you choose problems
to work on. Turing did it in 1936, yes, but
nowadays it would be hard to work on
problems that you just made up or that you
saw in a paper. If you see them in a paper
that means other people worked on them
and couldn’t get them. So the advisor is key.

I think there is a bright future for
students both in the theoretical part
and the more practical part of computer
science, and I think those parts interact. If
you’re a computer science undergraduate
or graduate student, don’t think of yourself
as necessarily only in the theoretical areas
or only in the practical areas because
there is an interaction between the two.
At least in the beginning I would say: Take
the courses, do as well as you can, and
keep your mind open. Later on, by the third
or fourth year, you tend to specialize in
one particular area and that’s fine, there’s
nothing wrong with that. Then my advice
is: Choose your advisor carefully because
the advisor is the one who plays the
biggest role as far as your future and your
dissertation. So choose an advisor who is
going to take a strong interest in your work
and help you get a job and things like that.
But first, choose the topic that you like. So
follow what you love doing, keep your mind
open, and choose a good advisor.

Professor Soare has been invited to the Isaac Newton
Institute at the University of Cambridge for four months to
celebrate the Turing Centennial where he will lecture around
the U.K. on Turing and computability.

References

[1] �Turing, A.M. On computable numbers, with an application
to the Entscheidungsproblem. In Proceedings London
Mathematical Society, Series 2 Volume 42, Parts 3 and 4
(1936), 230–265.

[2] �Post, E.L. Recursively enumerable sets of positive
integers and their decision problems. Bulletin of the
American Mathematical Society 50 (1944), 284–316.

© 2012 ACM 1528-4972/12/03 $10.00

