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ArefIn Huq:  Your upcoming book is 
entitled, Computability Theory and 
Applications, and it’s subtitled, “The art 
of classical computability.” Why did you 
choose that title?

Robert Soare: Mathematicians value 
work on the basis of beauty. It has to be 
correct, but the question is: Is it beautiful? 
Is it a beautiful theorem, a beautiful proof? 
At the University of Chicago no one asks me 
to do the mathematics of building bridges 
on a deadline. I choose the problems that 
I work on, and I choose problems for my 
students, and they work on the things they 
enjoy doing. We do it because we hope to 
solve important problems but we do it also 
because it’s beautiful. So the subtitle, “The 
art of classical computability,” is supposed 
to represent this thought.

AH: What makes Turing’s model of 
computation so compelling?

RS: Why do we give so much credit to 
Turing? His advisor, Alonzo Church, was 
already a full professor before Turing 
even started out, and Church proposed 
one definition of computable function in 
1934, the lambda-definable functions, and 
another one in 1935. Church got it right, 
twice, and he got it first. He got it right in 
the sense that he proposed a model which 
later proved to be correct. Turing came on 
the scene only in 1936, when he published 
his paper after Church’s paper was already 
announced and published. And yet if you 
pick up any book on computability now 
you’ll see a description of a Turing machine. 
You won’t see the lambda-definable 
functions of Church and you won’t see the 

recursive functions of Herbrand-Gödel, but 
you will see Turing’s model because it is 
easy to understand. That’s the first part.

The second part is that there are 
famous problems in mathematics, like the 
Riemann Hypothesis, like the Poincaré 
Conjecture that was done recently, 
like Hilbert’s Tenth Problem. All these 
are specific, concrete, well-defined 
mathematical problems and if someone 
solves one of these he becomes famous. 
Solving means to give a mathematical 
proof that other mathematicians can verify 
as a correct proof.

Hilbert had proposed in the 1920s 
that people find an algorithm for deciding 
statements in the logical language of 
mathematics.  If accomplished it would 
have meant that, at least in theory, much 
of the work of mathematicians could 
have been eliminated, putting many 
mathematicians mostly out of business. So 

Church and Turing suspected this was not 
possible. But to get an undecidable problem 
they had to find a way of defining and 
listing all computable functions and then 
diagonalizing by finding a problem that is 
not solved by any one of those computable 
functions.

But the first task was to define a 
computable (i.e. calculable) function 
and then prove that it captured what a 
human being could compute or calculate. 
Gödel, who was the most famous person 
in mathematical logic after 1931, 
questioned whether it was possible to 
do this. He suspected it was an abstract, 
informal notion that couldn’t be captured. 
Gödel stated that whether all effectively 
calculable functions are recursive, “cannot 
be proved, since the notion of finite 
computation is not defined, but serves as a 
heuristic principle.”

For 3000 years before this, human 
beings had been calculating—Euclid, 
Archimedes, Leibniz, and so on. A 
calculation meant you write down things 
on a piece of paper or a slate or whatever 
you have in front of you and you move to 
the next step and the next step and so 
forth. That’s what a calculation represented 
for human beings. What Turing said was, 
well, the human being could calculate 
with an infinite number of symbols, but 
if he did, those symbols could be coded 
in binary, 0 and 1. So therefore we only 
really need two symbols. Next he said that 
computation can be carried out in three-
dimensional space: Archimedes could have 
had shelves and he could have put part of 
the computation on the top shelf and part 
on the middle shelf and so forth. But we 
can code that by a one-dimensional tape, 
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because we can code all the places and the 
space and put them on the tape. Also we 
can assume that there are distinct squares 
and each square holds a single symbol. 
One by one he went through all the things 
that a human could do and he showed how 
his machine could do it. So number one, 
he came up with a simple, understandable 
model, and number two and perhaps even 
more important, he then gave a proof, 
not a formal mathematical proof, but a 
demonstration that anything that could be 
calculated by a human being could be done 

by one of his machines.

AH: You’ve compared Turing to 
Michelangelo. Please explain.

RS: Around 1450, Donatello, a famous 
sculptor, sculpted a bronze statue of David, 
the David who killed Goliath. It was a typical 
pose at the time. David had on a helmet and 
he was holding a sword, and at his feet was 
the head of Goliath whom he had slain. This 
was a remarkable piece of sculpture. It was 
the middle of the Renaissance. It influenced 

Michelangelo and other people, and then it 
was succeeded in 1475, 25 years later, by 
Verrocchio.

Verrocchio was well known as the 
teacher of Leonardo da Vinci and Botticelli, 
and he sculpted another bronze statue in a 
similar pose. Helmet on the head, Goliath’s 
head on the ground under David’s foot, and 
David with his sword. The pose was a little 
different and the expression on his face was 
very complex. This again is a remarkable 
sculpture, one that’s highly prized around 
the world, and was an advance over the 
1450 Donatello. Then in 1501 to 1505 
Michelangelo got a piece of pure Carrera 
marble that was taken from a nearby quarry. 
It had already been started by someone 
else and had some defects, so he had to 
work around the defects, and out came 
Michelangelo’s David. Michelangelo’s David 
stands in a gallery in Florence called the 
Accademia. It’s gleaming white as you come 
in and it’s remarkable because the human 
figure is much less stiff, much more vibrant, 
than in the preceding two. Then he has the 
famous contrapposto. That means the upper 
part of the body tilts to one side, the lower 
part of the body tilts to the other side, and 
so it gives a feeling of motion and a feeling of 
the human body displaying its muscles.

So my feeling is that David was just a 
kid. He had not even yet reached puberty. 
He was a shepherd boy and the Israelites 
were facing the Philistines. The Philistines 
put forward their best warrior, Goliath, a 
huge giant, and they demanded one-on-
one conflict of the best warrior against the 
best warrior. The Israelites were all afraid 
to face this huge giant, and along comes 
this little kid, a kid with a slingshot, and he 
steps out and he slings the stone, and the 
stone hits Goliath in the head and kills him.

So Michelangelo displays David not 
standing on the head of Goliath—you don’t 
even see Goliath’s head—and displays 
David, not with a sword, but with a sling 
over his shoulder. Two things about the 
statue are remarkable. Number one, it’s an 
enormous advance over everything that 
had gone before, and number two, it says 
something new about human beings and 
the human condition. David is standing 
there with tension on his face before he 
meets Goliath, not afterwards as the others 
who are triumphant and gloating over the 
death of Goliath. He’s about to go out with 
the sling on his shoulder. David and Turing 
had a mental triumph, not a physical one.

Turing was only 23 years old when 
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he heard of the problem. He was just a 
kid. He went into the lectures in 1935 of 
Max Newman, who was a topologist at 
Cambridge. He heard the lectures, got 
interested in this problem, went away, 
lay down in a meadow, and then in the 
meadow he got the idea for what to do. 
He came back and gave his solution to 
the astonished Max Newman in 1936. So 
Turing was a kid with a slingshot. He was 
facing a phalanx in Princeton of Gödel, 
the most famous person in mathematical 
logic in the world, whose Incompleteness 
Theorem revolutionized our idea of proofs 
in mathematics in 1931. The group also 
included Alonzo Church, who had been 
working on this problem for a decade, his 
students Kleene and Rosser, and Emil Post, 
who was nearby in New York and had been 
working on this stuff. All these people came 
up with various ways of trying to approach 
computability. Turing, with a slingshot and a 
single stone, hit the mark.

AH: You’ve recommended Turing’s 
1936 paper and Post’s 1944 paper as 
recommended reading for all computer 
science students [1, 2]. Why?

RS: At the University of Chicago in the 
1930s they had something called the 
“Great Books” program, where people were 
supposed to read the original books—
the ancient books of Greece and Rome, 
Shakespeare, and the most fundamental 
and important books of Western literature. 
So I thought a corresponding thing that 
would make sense is the “Great Papers” 
program. Each paper should be readable: Its 
exposition should be beautiful in the sense 
we just described. So Turing 1936 and Post 
1944 satisfy that. I have two criteria in 
recommending these papers. First of all 
it should be fundamental to the subject, 
then and now, and second it should be very 
well written so that it’s intuitive, easy to 
understand and appealing.

AH: How is the field of mathematical logic 
relevant for the future?

RS: I think it’s very relevant to the future. 
Logic was not so central in 1935 when 
Church and Turing and the others came 
around, but then it’s interesting that 
the constructs in logic like lambda 
computability, recursive functions, Post 
canonical systems, and so forth, have 
all had important implementations in 

actual computer science. The lambda 
calculus was used by another Princeton 
graduate in mathematics, John McCarthy, 
who created the computer language Lisp 
using the lambda calculus. McCarthy is 
considered by many to be the father of 
artificial intelligence.  He completed his 
Ph.D. at Princeton in 1951 under Solomon 
Leschetz and spent much of his career at 
MIT and Stanford.  He created Lisp in order 
to create Turing machines in the limited 
computing environment at his disposal. 
The lambda calculus has also been used in 
programming languages and other parts 
of modern computer science. The 1943 
paper by Post had something called normal 
systems and Post canonical systems, 
which were then taken up by the generative 
grammars of Noam Chomsky at MIT. So 
logic has had a lot of influence.

There’s a researcher at Microsoft, Yuri 
Gurevich, who gave a talk in which he said 
engineers study calculus, which they don’t 
use, and they do not study logic, which they 
do use. My career began in about 1960 when 
I took my course from Church and the whole 
thing has just mushroomed since then in 
terms of the connections with other fields.

I think a good analogy right now is 
Turing. If you look at the second category 
of papers on my Web page, the bottom 
one (not my own paper) is an article in the 
Princeton Alumni Weekly listing Turing as 
the second most influential alumnus of 
all time after James Madison. That puts 
him ahead of Woodrow Wilson and John 
Foster Dulles and a whole lot of other 
people. That’s an amazing statement. I 
didn’t think that people even knew who 
Turing was, but this was judged by some 
independent external committee. The 
celebration that’s going on for Turing now 
is just enormous. It’s a major event. There’s 
just a mushrooming interest in Turing and 
his work and his legacy that is indicative 
of an appreciation for the role of logic and 
computability in our society.

AH: What advice do you have for students 
getting started in research today?

RS: Entering graduate school is like entering 
a guild. You enter a guild—a medieval guild 
like shoemaking or blacksmithing—and 
you apprentice yourself to the main person 
in that field for a while. You learn the craft 
from him and you go deeper and deeper into 
that field, into that guild in your second, 
third, fourth, fifth year. And then that person 

helps you get a job in another village, part of 
the same overall guild but in another village, 
and it’s mainly your advisor who finds you 
that job. The subfields in computer science 
are sufficiently developed and technical that 
it’s difficult to get into them by yourself. You 
need an advisor, and he has to help you learn 
the material and help you choose problems 
to work on. Turing did it in 1936, yes, but 
nowadays it would be hard to work on 
problems that you just made up or that you 
saw in a paper. If you see them in a paper 
that means other people worked on them 
and couldn’t get them. So the advisor is key.

I think there is a bright future for 
students both in the theoretical part 
and the more practical part of computer 
science, and I think those parts interact. If 
you’re a computer science undergraduate 
or graduate student, don’t think of yourself 
as necessarily only in the theoretical areas 
or only in the practical areas because 
there is an interaction between the two. 
At least in the beginning I would say: Take 
the courses, do as well as you can, and 
keep your mind open. Later on, by the third 
or fourth year, you tend to specialize in 
one particular area and that’s fine, there’s 
nothing wrong with that. Then my advice 
is: Choose your advisor carefully because 
the advisor is the one who plays the 
biggest role as far as your future and your 
dissertation. So choose an advisor who is 
going to take a strong interest in your work 
and help you get a job and things like that. 
But first, choose the topic that you like. So 
follow what you love doing, keep your mind 
open, and choose a good advisor.

Professor Soare has been invited to the Isaac Newton 
Institute at the University of Cambridge for four months to 
celebrate the Turing Centennial where he will lecture around 
the U.K. on Turing and computability.
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