
Mondrian
Parallel blocked matrix library, v0.0

Current snapshot: January 2017

Risi Kondor
Department of Computer Science, The University of Chicago

Contents

Overview 4

Usage 6

Installation . 6
Customization . 6
Calling Mondrian objects . 7

Tutorial Examples 8

1. Basic matrix/vector operations . 8
2. Accessing matrix/vector elements . 9
3. Copying, moving and assigning objects . 10
4. Mapping functions over vectors and matrices . 12

Classes 13

General design 13
Standard methods . 13
Property classes . 15
Packages . 15
Downcasting operators . 15

Vectors and matrices 17
1. Basic vectors . 17

Vector . 18
Cvector . 22
Vectorv, Vectorl, Vectorh . 23
GenericVector . 23

2. Basic matrices . 24
Matrix . 25
Cmatrix . 30
MatrixX<VECTOR> . 31
GenericMatrix . 32

3. Specialized matrices . 33
SymmCmatrix . 33
SymmMatrixX<VECTOR> . 34
CmatrixLA . 35

2

4. Blocked vectors/matrices . 36
BlockedVector<VECTOR> . 36
BlockedMatrix<MATRIX> . 40

5. Vector/matrix views . 45
VectorView<VECTOR> . 45
MatrixView<MATRIX> . 46
BlockedVectorView<VECTOR> . 47
BlockedMatrixView<MATRIX> . 48

6. Active vectors/matrices . 49
ActiveVector<VECTOR> . 49
OrderedVector<VECTOR> . 49
AccumulatedVector<VECTOR> . 50

Operators, etc. 51
7. Operators . 51

GivensRotation . 51
KpointOp<k> . 52
MatrixSum<MATRIX> . 53
MatrixProduct<MATRIX> . 54
OuterProduct<CLASS1,CLASS2> . 55
BiMatrix<MATRIX1,MATRIX2> . 56

8. Index maps . 57
IndexMap . 57
IndexBiMap . 59
BindexMap . 61
BtoBindexMap . 62
BtoBindexBiMap . 63
Activemap . 65
Bactivemap . 67

Multithreading 69
9. Basic multithreading . 69

ThreadManager . 69
MultiLoop . 70
ThreadBank . 70

10. Atomic objects . 71
AtomicVector<VECTOR> . 71
AtomicMatrix<MATRIX> . 72

11. Parallelized objects . 73
MatrixXm<VECTOR> . 73
SymmMatrixXm<VECTOR> . 73

Other Objects 74
12. Wrappers . 74

Detached<CLASS> . 74

Bibliography 75

Overview
Mondrian is a C++11 software library intended to serve as the intermediate layer between low level matrix
libraries such as BLAS and high level numerical algebra, optimization and machine learning code. Mondrian
was originally developed as in-house code for implementing parallel matrix algorithms in the author’s research
group. The library was designed with the following objectives in mind:

1. Interoperability: Mondrian provides a unified interface to a range of dense and sparse vector/matrix
formats, making it possible to write high level code that does not commit to a specific low level matrix
representation.

2. Performance: Mondrian is designed with large scale computations on parallel architectures in mind,
so every effort was made to make the code as efficient as possible.

3. Ease of use: Mondrian has a simple syntax and consistent, object oriented design.

4. Easy linking: Mondrian is a template library, therefore the overhead of installing it is minimal. To
call Mondrian from C++11 code, just include the appropriate header files1.

Mondrian is in the development phase and has not yet reached the stage of a numbered release. The present
snapshot of the code is released to the community on a strictly “as-is” basis. In the following list of features,
features whose implementation or documentation is not yet complete appear in gray.

1. Vector/matrix classes:

(a) Custom dense matrix/vector classes based on native C arrays (Cvector and Cmatrix).

(b) Custom sparse matrix/vector classes based on stl containers (Vectorv, Vectorl, Vectorh, etc.).

(c) Custom matrix types for representing low rank matrices.

(d) Interface to Eigen.

2. Blocked vector/matrix classes:

(a) Blocked vector/matrix template classes supporting the same linear algebra operations as the ele-
mentary matrix types, but with automatic block-level parallelism.

(b) Support for hierarchical matrices (HODLR, H, H2, HSS) via recursive blocking.

(c) Fast, parallel routines for blocking matrices by clustering rows/columns, and for reblocking matrices
from one block structure to another.

3. Operators:

(a) Specialized, highly optimized classes for elementary operators such as Givens rotations, k–point
rotations, and so on.

4. Abstractions:

(a) Matrix/vector views providing access to subvectors/submatrices without copying elements.

(b) Methods for mapping functions or lambda expressions over elements of objects such as vectors and
matrices in a functional programming style.

(c) Active containers that automatically perform certain operations when their contents in changed.

(d) Polymorphic vector/matrix classes that delegate operations to the derived type.

(e) Generalized matrix classes to encapusulate products/sums of operators and other matrices.

(f) Atomic vectors/matrices protected from race conditions in multithreaded code.

1 Currently the only exceptions to this rule are the CmatrixLA and SymmCmatrixLA classes, which provide functionality from
Eigen[1], and are separately compiled to isolate the two libraries and thus reduce compilation time.

4

5. Parallelism:

(a) Multithreading support with a configurable custom thread scheduler.

6. Transparency and convenience functions:

(a) Consistent object oriented design fully utilizing C++11 features.

(b) Expression templates for matrix/vector operations.

7. Input/output:

(a) Capability to load/save vectors and matrices in some of the most common file formats.

(b) Capability to load/save almost all objects in binary format.

(c) Ability to print most objects directly to stdout for diagnostic purposes.

8. Interfaces to other languages and environments:

(a) Matlab and Python interfaces to most objects.

Mondrian was conceived and developed at The University of Chicago by Risi Kondor, starting in 2016.
Certain parts of the library are based on the earlier pMMF library by Risi Kondor, Nedelina Teneva and
Pramod K Mudrakarta [2].

Mondrian is free software, released into the public domain in source code format under the terms of the
GNU Public License (GPL) version 3.0 [3]. Users are encouraged to modify and extend the code, incorpo-
rate it in their own projects, and distribute it to others. However, all derived code must also carry the GPL
license, and commercial use is restricted. The copyright to Mondrian and this documentation is retained by
the authors. The authors reserve the right to separately license the code in part or in whole for commercial
use.

Usage
Mondrian is distributed in C++ source code format. Using the library requires

1. A C++11 compatible compiler, such as clang or a recent version of gcc.

2. The Standard Template Library (STL) included in any C++11 installation.

The following optional components have additional dependencies:

1. The CmatrixLA and SymmCmatrixLA classes require the Eigen linear algebra library for higher level linear
algebra operations [1].

Installation
Mondrian is primarily a header library, that does not require any specific installation or compilation process.
To use the library it is sufficient to download it from http://github.com/risi-kondor/Mondrian, place it
in an appropriate location on your local file system, and call Mondrian objects directly from your own C++
programs.

A small subset of the library (at the present time only the CmatrixLA and SymmCmatrixLA classes) plus the
tutorial examples need to be compiled into object files/executables. To this end:

1. Edit Makefile.options to reflect the location of certain components on your system (see table below).

2. At the root level of the library issue the command make all (it is assumed that make is installed on
your system).

Parameter Description

CC Name of the compiler. Example: clang.

EIGENDIR Path to the directory in which Eigen is found. If empty, Mondrian will be compiled without
Eigen support. Example: /usr/local/include.

Customization
The library can be customized by changing the following typedefs and preprocessor variables in the global
header file include/Mondrian base.hpp.

Type name Default Description

SCALAR double The basic numeric type used in all Vector and Matrix objects, as well as most
computations.

INDEX int The type used for vector/matrix indices (in part of the code this is fixed as int).

6

http://g.llvm.org
https://gcc.gnu.org
http://eigen.tuxfamily.org
http://github.com/risi-kondor/Mondrian
https://www.gnu.org/software/make

Variable name Default Description

UTILITYCOPYWARNING

MATRIXCOPYWARNING

BLOCKEDCOPYWARNING

MMFCOPYWARNING

set

Deep copying/assigning large objects is an expensive operation
which, for the most part, should be avoided. If these variables
are set (defined), a warning will be written to cout whenever an
object of the given category is copied or assigned.

UTILITYMOVEWARNING

MATRIXMOVEWARNING

BLOCKEDMOVEWARNING

MMFMOVEWARNING

not set

C++11’s so-called move semantics can often circumvent having to
make expensive deep copies of objects. If these variables are set
(defined), a warning will be written to cout whenever an object of
the given category is moved or move-assigned.

Calling Mondrian objects
To access Mondrian objects, simply #include the appropriate Mondrian headers in your source code.
Note that Mondrian has its own namespace, therefore, to use, e.g., the Cmatrix class, refer to it as
Mondrian::Cmatrix, or use the command using namespace Mondrian;.

Mondrian uses a small number of global variables (see below for a partial list). To make sure that these are
approriately defined, any top level executable should #include the file include/Mondrian base.inc.

Variable name Default Description

Mondrian::multithreading true Multithreading is disabled if false.

Mondrian::threadManager The global thread manager object. The maximum number of
threads that can be simultaneously active is controlled by set-
ting threadManager.maxthreads.

Tutorial Examples
1. Basic matrix/vector operations

The following example demonstrates how to define vectors and matrices in Mondrian and perform elemen-
tary linear algebra operations.

1 #include "Cmatrix.hpp"

2 #include "Mondrian_base.inc"

3 using namespace Mondrian;

4
5 int main(int argc , char** argv){

6
7 Cvector v={1,0 ,3};

8 cout <<"v="<<v<<endl <<endl;

9
10 SCALAR s=v.dot(v);

11 cout <<"s="<<s<<endl <<endl;

12
13 Cmatrix A={{1,2,3},{4,5 ,6} ,{7 ,8,9}};

14 cout <<"A="<<endl <<A<<endl;

15
16 Cvector u=A*v;

17 cout <<"u="<<u<<endl <<endl;

18
19 }

example1.cpp

Most of the code is self-explanatory:

◦ Line 7 creates a vector v = (1, 0, 3)⊤ and stores it in a Cvector object.

◦ Line 10 computes the dot product v · v (equivalently, v⊤v).

◦ Line 13 creates the Cmatrix A = [1, 4, 7; 2, 5, 8; 3, 6, 9] (in Matlab notation). Note that the matrix elements
are listed in column major order.

◦ Line 16 computes the matrix/vector product Av.

Note the simple syntax for printing each of the objects v, A and s to standard output in lines 8, 11, 14 and
17. Also note the #include statement in line 2: Mondrian base.inc declares certain static objects required
by the library, so this file must be included in all top level executables. Finally, the using namespace

Mondrian directive is included to make the code a little easier to read: without it, we would have to preface
the name of each Mondrian object such as Cvector, Cmatrix, etc. with Mondrian::. The output of the
code is as follows.

8

1 v=(1,0,3)

2
3 s=10

4
5 A=

6 [1.000 4.000 7.000]

7 [2.000 5.000 8.000]

8 [3.000 6.000 9.000]

9
10 u=(22 ,26 ,30)

Output of example1.cpp

2. Accessing matrix/vector elements

The following example demonstrates the basic ways to access individual vector/matrix elements.

1 #include "Cmatrix.hpp"

2 #include "Mondrian_base.inc"

3 using namespace Mondrian;

4
5 int main(int argc , char** argv){

6
7 Cvector v=Cvector :: Gaussian (5);

8 cout <<"v="<<v<<endl;

9 cout <<"v(2) = "<<v(2)<<endl <<endl;

10
11 Cmatrix A=Cmatrix :: Bernoulli (5 ,5);

12 cout <<A<<endl;

13 cout <<"A(2,3) = "<<A(2,3)<<endl;

14
15 A(2 ,3)=2;

16 cout <<"A(2,3) = "<<A(2,3)<<endl;

17
18 cout <<"row 1 : "<<A.row <Cvector >(1)<<endl;

19 cout <<"column 2: "<<A.column <Cvector >(2)<<endl;

20 cout <<"diagonal: "<<A.diag <Cvector >()<<endl;

21 //cout <<"submatrix:"<<A.submatrix (2,2)<<endl;

22
23 }

example2.cpp

1 v=(-1.23974 , -0.407472 ,1.61201 ,0.399771 ,1.3828)

2 v(2) = 1.61201

3
4 [0.000 0.000 1.000 0.000 0.000]

5 [0.000 1.000 1.000 0.000 0.000]

6 [0.000 1.000 1.000 0.000 0.000]

7 [1.000 0.000 1.000 0.000 1.000]

8 [1.000 0.000 1.000 1.000 1.000]

9
10 A(2,3) = 0

11 A(2,3) = 2

12 row 1 : (0,1,1,0,0)

13 column 2: (1,1,1,1,1)

14 diagonal: (0,1,1,0,1)

Output of example2.cpp

3. Copying, moving and assigning objects
The following example illustrates four different ways of copying/assigning objects.

1 #include "Cmatrix.hpp"

2 #include "Mondrian_base.inc"

3 using namespace Mondrian;

4
5 int main(int argc , char** argv){

6
7 Cmatrix A(4 ,4); // Construct a 4-by -4 matrix called A

8
9 for(int i=0; i<4; i++) // Fill its entries with something

10 for(int j=0; j<4; j++)

11 A(i,j)=i+j;

12
13 cout <<"A="<<endl <<A<<endl; // Print out A

14
15 Cmatrix B(A); // Initialize B from A (copying)

16 cout <<"B="<<endl <<B<<endl;

17
18 Cmatrix C;

19 C=A; // Set C=A (assignment)

20 cout <<"C="<<endl <<C<<endl;

21
22 Cmatrix D;

23 D=A*A; // Set D=A*A (move -assignment)

24 cout <<"D="<<endl <<D<<endl;

25
26 Cmatrix E=A.copy (); // Set E=A (silent copy)

27 cout <<"E="<<endl <<E<<endl;

28 }

example3.cpp

The four different ways are the following:

(a) Line 15 constructs B from A, which is done with the Cmatrix class’s copy constructor.

(b) Line 19 set C to the same value as A, which again involves explicit copying, this time using the the
Cmatrix class’s assignment operator.

(c) Line 23 sets D=A*A which seemingly again involves calling the assignment operator. However, as this
statement is executed, the compiler knows that A*A is a temporary object (a so-called r-value), therefore
it can use the move-assignment operator which is generally more efficient because it can avoid explicit
copying.

(d) Line 26 is equivalent to writing E=A except that the copy() function suppresses the copy warning.

1 A=

2 [0.000 1.000 2.000 3.000]

3 [1.000 2.000 3.000 4.000]

4 [2.000 3.000 4.000 5.000]

5 [3.000 4.000 5.000 6.000]

6
7 Warning: "Cmatrix" copied.

8 B=

9 [0.000 1.000 2.000 3.000]

10 [1.000 2.000 3.000 4.000]

11 [2.000 3.000 4.000 5.000]

12 [3.000 4.000 5.000 6.000]

13
14 Warning: "Cmatrix" assigned.

15 C=

16 [0.000 1.000 2.000 3.000]

17 [1.000 2.000 3.000 4.000]

18 [2.000 3.000 4.000 5.000]

19 [3.000 4.000 5.000 6.000]

20
21 D=

22 [14.000 20.000 26.000 32.000]

23 [20.000 30.000 40.000 50.000]

24 [26.000 40.000 54.000 68.000]

25 [32.000 50.000 68.000 86.000]

26
27 E=

28 [0.000 1.000 2.000 3.000]

29 [1.000 2.000 3.000 4.000]

30 [2.000 3.000 4.000 5.000]

31 [3.000 4.000 5.000 6.000]

Output of example3.cpp

Note that lines 15 and 19 (by default) generate explicit copy warnings. To an inexperienced programmer it is
sometimes not clear where exactly the compiler will make explicit copies, which, in the case of large objects
can be very expensive. Mondrian tries to discourage unnecessary copying by issuing these explicit warnings.
In the rare cases where it is absolutely necessary to make a copy, instead of standard copy constructor or
assignment operator, the copy method should be used, which makes it immediately obvious in the code that
a copy is being constructed, but does not issue a copy warning at run time.

4. Mapping functions over vectors and matrices

Mondrian supports functional programming style operations that maps functions or lambda expressions
over elements of objects. In the following example, a lambda expression is mapped over each element of
vector, to compute the sum of the elements.

1 #include "Cmatrix.hpp"

2 #include "Mondrian_base.inc"

3 using namespace Mondrian;

4
5 int main(int argc , char** argv){

6
7 Cvector u=Cvector :: Gaussian (7);

8 cout <<"u="<<u<<endl;

9
10 double t=0;

11 u.for_each ([&t](int i, SCALAR d){t+=d;});

12 cout <<"Sum of elements: "<<t<<endl;

13
14 }

example4.cpp

1 u=(-1.23974 , -0.407472 ,1.61201 ,0.399771 ,1.3828 ,0.0523187 , -0.904147)

2 Sum of elements: 0.895546

Output of example4.cpp

Classes
General design

Standard methods
The following standard methods are implemented by most classes in Mondrian, and are not listed separately
for each class. CLASS stands for the name of the class, and x for the class instance.

CONSTRUCTORS AND COPYING

CLASS(const CLASS& y)

Construct a deep copy of y. Making a deep copy involves copying not just the member variables of
y, but also recursively constructing a copy of every object owned by y. For large objects this is an
expensive operation, which can often be avoided with the move-contructor paradigm (see below). To
discourage deep copying, by default, the copy constructor of many classes, including all matrix classes,
prints a copy warning to standard output.

CLASS(CLASS&& y)

Move-construct a copy of y. In C++11, && signifies an rvalue reference, which means that this method
is invoked instead of the regular copy constructor when y is a temporary. In constrast to deep copying,
the move constructor changes the ownership of each object owned by y, rather than copying them,
potentially resulting in large run-time savings. Mondrian extensively uses this paradigm.

CLASS copy()

Create a deep copy of x. The behavior of this member function is identical to the behavior of the copy
constructor except that it does not generate a copy warning. This is the function that should be used
when it is unavoidable to make an explicit copy of an object such as a matrix.

CLASS shallow()

Create a shallow copy of x, i.e., copy each of its member variables and pointers to the objects it
owns, without making copies of the owned objects. This is the function used by the Detached<CLASS>
wrapper to create a detached version of x. Therefore, every class derived from the abstract class
Detachable must implement this method.

ASSIGNMENT OPERATORS

CLASS& operator=(const CLASS& y)

Delete the current content of x, make x a deep copy of y, and finally return a reference to x. Similarly
to the copy constructor, in most classes the assignment operator prints a warning to standard output.

13

CLASS& operator=(CLASS&& y)

Move-assign y to x. The same as above, except with move semantics, similarly to the move-copy
constructor.

DESTRUCTOR

∼CLASS()
Recursively delete every object owned by x, and then delete x itself.

COMPARATORS

bool operator==(const CLASS& y)

The equality operator. Returns TRUE if x is equal to y.

bool operator!=(const CLASS& y)

Returns TRUE if x is not equal to y.

BINARY I/O (SERIALIZATION)

CLASS(const Filename& filename)

saveto(const Filename& filename)

Load/save x form/to the binary file named filename.

CLASS(Bifstream& ifs)

serialize(Bofstream& ofs)

Load x from the binary file stream ifs / save x to the binary file stream ofs.

PRETTY PRINTING

static string classname()

Return the name of the class CLASS.

string str()

Return a human-readable representation of x as a string. In some classes, str can take arguments, for
example, Dense(), to signify that a matrix is to be printed to string in dense format.

ostream&::operator<<(ostream& os, const CLASS& x)

Write a human-readable representation of x to the stream os.

Property classes
Mondrian uses abstract classes to signify that classes derived from them have certain specific properties:

1. Detachable. The Detached<CLASS> wrapper allows constructing an interface to data stored in another
object. The resulting object is said to be detached, because deleting it does not delete the original object
(of type CLASS). Detachable is the abstract base class of all classes whose instances can be detached via
this mechanism.

2. Serializable. The process of recursively saving objects in a binary file is called serialization. Serializable
is the abstract base class of all classes that support this facility.

3. Interruptable. An interruptable method in a class derived from the abstract class Interruptable

can be stopped from another thread by calling the halt() method. This is useful for classes with time
consuming operations on large data objects.

Packages
It often happens that a function needs to return two or more separate objects (e.g., the eigenvalues and
eigenvectors of a matrix). In Mondrian this is accomplished with the package helper class.
Let us assume that foo() is a function that needs to return a Cmatrix A and a Cvector v. Then:

(a) The return type of foo would be package<Cmatrix,Cvector>.

(b) The actual return statement in foo is return package<Cmatrix,Cvector>(A,v);.

(c) If P is the package returned by foo, then the matrix part is extracted by calling P.first() and the
vector part by calling P.second() (other ways are also possible).

All the above operations are done by move constructors and move assignment operators, so the overhead of
using packages is usually minimal.

Downcasting operators
Mondrian has various instances of base class/derived class (parent class/child class) pairs where the two
classes share the same data layout, and only differ in some of their methods. A simple example are the
matrix classes Cmatrix and SymmCmatrix, which store matrices in exactly the same format, but in the latter
case the matrix is assumed to be symmetric, hence some operations on it can be performed more efficiently.

Assume that a base class Base defines a method called foo that is overriden by a derived class Derived.
Then if x is of type Derived, but for some reason one temporarily wishes to treat it as if it were a base class
object (called upcasting), and call the foo method of the base class on it, this can easily be achieved by
x.Base::foo(...). However, in general, the opposite action of temporarily downcasting an object is not
possible, since the base class need not have any knowledge of the derived class.

Mondrian offers a solution to this problem involving move-copying to a temporary object (which, in the
above example would be called AsDerived, but is opaque to the user) and appropriate convenience functions.
In particular:

(a) If A is a matrix object of any non-symmetric matrix type MATRIX, the convenience function as symmetric

temporarily downcasts it to the corresponding symmetric matrix type SymmMatrix.

(b) If A is a matrix object of type MATRIX, the convenience function linalg downcasts it to type MATRIXLA,
which supports externally called linear algebra operations.

(c) If A is a non-multithreaded object of type CLASS, the convenience function as multithreaded can
downcast it to the corresponding multithreaded type CLASSm.

Example:

1 // The 12 dimensional identity matrix

2 Cmatrix A=Cmatrix :: Identity (12);

3
4 // A random Givens rotation

5 GivensRotation Q=GivensRotation :: Random (12);

6
7 // Conjugate A with Q without taking advantage of symmetry

8 A.conjugate(Q);

9
10 // Conjugate A with Q with taking advantage of symmetry

11 as_symmetric(A). conjugate(Q);

Downcasting operators are also useful for differentiating between downcasting by conversion vs. downcasting
by assumption, as illustrated by the following example:

1 Cmatrix A(12);

2
3 // Construct B by explicitly symmetrizing A, i.e., B=(A+A^T)/2

4 SymmCmatrix B(A);

5
6 // Construct C by assuming that A is symmetric

7 SymmCmatrix C(as_symmetric(A));

Vectors and matrices

1. Basic vectors
Mondrian supports both dense and sparse vector arithmetic. The basic dense vector class is Cvector, which
simply stores the vector as a dense C-style array of numbers. The basic sparse vector classes are Vectorv,
Vectorl and Vectorh, all three of which are based on stl containers: Vectorv stores the vector as an
stl::vector of (index, value) pairs, Vectorl as a linked list, and Vectorh as a hash table. Which one of
these three classes is the most appropriate for a given application depends on many factors, such as the size
of the vector, what operations are to be performed on it, how often elements are to be inserted, and so on.

The important feature of each of these vector classes is that since they all inherit the same interface defined
in the abstract class Vector, they are fully interchangeable. The preferred method for writing polymorphic
code in Mondrian, specifically code that will work with any vector class, is the use of templates (generic
programming). However, the library does provide an additional class called GenericVector, which, by
encapsulating any of the elementary vector types and delegating operations to their respective methods, can
function as a universal polymorphic vector class. This functionality however comes at a slight performance
overhead, and may not be compatible with some higher level features, such as active vectors.

Vector

DenseVector

77nnnnnnnnnnnnn
SparseVector

hhPPPPPPPPPPPPP

Cvector

OO

Vectorv

66nnnnnnnnnnnn
Vectorl

OO

Vectorh

hhPPPPPPPPPPPP

17

Vector

Vector is the abstract class that defines the common interface to all classes in Mondrian that represent
finite dimensional vectors, v = (v1, v2, . . . , vn)

⊤∈Fn. Each vector component vi (also referred to as the i’th
element of v) is of type SCALAR. Every concrete vector class VECTOR provides each of the constructors and
methods listed below.

Mondrian supports both dense and sparse vectors (see the attribute isSparse()). Sparse vector classes
only allocate storage for a subset of their elements. These elements are said to be filled in. Typically the
filled in elements are the non-zero elements of v, although when a non-zero elkelent is set to zero, it might
remain filled in. In dense vector classes all elements are filled in.

CONSTRUCTORS

VECTOR()

Create a new zero dimensional vector.

VECTOR(int n)

Create a new n dimensional vector, v∈Fn. Storage is allocated but the entries of v are not initialized.

VECTOR(const initializer list<SCALAR>& list)

VECTOR(int n, const initializer list<ivpair>& list)

Initialize v from the initializer list list (see example1.cpp).

NAMED CONSTRUCTORS

VECTOR::Zero(int n)

The n dimensional zero vector, 0∈Fn.
VECTOR::Filled(int n, SCALAR t)

An n dimensional vector in which each element is initialized to t.

VECTOR::Uniform(int n)

VECTOR::Gaussian(int n)

VECTOR::Bernoulli(int n, double p=0.5)

An n dimensional random vector in which each element is drawn from (a) the Uniform(0, 1) distribution;
(b) the Normal(0, 1) distribution; (c) the Bernoulli(p) distribution.

ATTRIBUTES

bool isSparseFormat() const

Return true if VECTOR is a sparse vector class.

ELEMENT ACCESS

SCALAR read(int i) const

SCALAR operator()(int i) const
Return the value of the matrix element vi.

void set(int i, SCALAR x)

Set vi= x.

SCALAR& operator()(int i)

Return a reference to vi. For most vector types v(i)=x can be used as a simpler alternative to
v.set(i,x).

bool isFilled(int i) const

Return true if vi is filled in. For dense vectors always true.

int nFilled() const

The number of filled in elements of v.

ITERATORS

void for each(std::function<void(INDEX,SCALAR&)> lambda)

void for each(std::function<void(INDEX,const SCALAR)> lambda) const

Apply the function lambda to each element of v. The two arguments of lambda are i and (a reference
to) vi.

void for each filled(std::function<void(INDEX,SCALAR&)> lambda)

void for each filled(std::function<void(INDEX,const SCALAR)> lambda) const

Apply the function lambda to each filled in element of v. The two arguments of lambda are i and (a
reference to) vi.

VIEWS

VectorView<VECTOR> operator()(const IndexMap& phi)

const VectorView<VECTOR> operator()(const IndexMap& phi) const

Given an index map ϕ : {0, 1, 2, . . . , ns − 1} 7→ {0, 1, 2, . . . ,m− 1}, return a view of the subvector
(vϕ(1), vϕ(2), . . . , vϕ(ns−1))

⊤.

CONVERSIONS

VECTOR(const Cvector v)

Covert the Cvector v to a VECTOR.

operator Cvector() const

Convert v to a Cvector (this method is repeated in the description of the Cvector class).

VECTOR(const BlockedVector<VECTOR>& w)

Convert the blocked vector w to plain (non-blocked) vector format.

REMAPPINGS

VECTOR remap(const IndexMap& map) const

VECTOR remap(const Inverse<IndexMap>& map) const
Remap the elements of v by map or the inverse of map.

IN-PLACE ARITHMETIC

VECTOR& operator+=(SCALAR c)

VECTOR& operator-=(SCALAR c)

VECTOR& operator*=(SCALAR c)

VECTOR& operator/=(SCALAR c)

Increment/decrement/multiply/divide each element of v by c.

VECTOR& operator+=(const VECTOR2& x)

VECTOR& operator-=(const VECTOR2& x)

VECTOR& operator*=(const VECTOR2& x)

VECTOR& operator/=(const VECTOR2& x)

Increment/decrement/multiply/divide each element of v by the corresponding element of x.

VECTOR& apply(const OPERATOR& Q)

VECTOR& applyT(const OPERATOR& Q)
Apply the operator Q or the transpose of Q to v in place.

SCALAR VALUED ARITHMETIC

SCALAR dot(const VECTOR& x) const

Return the dot product of v with x.

VECTOR VALUED ARITHMETIC

VECTOR mult(SCALAR c) const

VECTOR plus(const VECTOR& x) const

VECTOR minus(const VECTOR& x) const
Compute cv, v+x or v−x.

VECTOR mult(const OPERATOR& Q) const

VECTOR multT(const OPERATOR& Q) const
Apply the operator Q or the transpose of Q to v and return the result.

VECTOR operator*(SCALAR c) const

VECTOR operator+(const VECTOR& x) const

VECTOR operator-(const VECTOR& x) const
Synonyms of the mult, plus and minus methods.

VECTOR& add(const VECTOR& x)

VECTOR& add(const VECTOR& x, SCALAR c)
Compute v+x or v + cx. These methods are performance critical, because they are used e.g., when
applying Givens rotations from the right to MatrixX<VECTOR> matrices.

SCALAR METHODS

SCALAR max() const

SCALAR max abs() const

int argmax() const

int argmax abs() const

(a-b) The value of the largest (resp. largest in absolute value) element of v. (c-d) he index of the largest
(resp. largest in absolute value) element of v. If not unique, then the index of the first (lowest index)
maximal element is returned.

SCALAR min() const

SCALAR min abs() const

int argmin() const

int argmin abs() const

The same as above, but for the least (in absolute value) element.

SCALAR sum() const

The sum of the vector elements,
∑n
i=1 vi.

SCALAR norm1() const

The ℓ1 norm of v, ∥v∥1 =
∑n
i=1 | vi |.

SCALAR norm2() const

The squared ℓ2–norm of v, ∥v∥2.
SCALAR diff2(const VECTOR& x) const

The squared ℓ2–norm difference ∥v−x∥2.
int nnz() const

The number of non-zero elements of v. Different from nFilled in that it does not count zero-valued,
but filled in elements.

FORMATTED I/O

VECTOR(MatrixIF& file)

Load v from the file file (see the section on matrix filetypes).

saveto(MatrixOF& file) const

Save v to the file file (see the section on matrix filetypes).

PYTHON INTERFACE

VECTOR(<array>)

Initialize v from the numpy array <array>.

np()

Return v in the form of a numpy array.

VARIABLES

int n

The dimensionality of the vector, n.

Cvector

Cvector is Mondrian’s most basic dense vector class, which simply stores v in a C-style array SCALAR[n].
Cvector provides all the functionality defined in Vector, plus the following additional methods.

Derived from: Vector, Detachable, Serializable

CONVERSIONS

Cvector(const VECTOR& v)

Convert v to Cvector format. While this method looks like a Cvector constructor, it is implemented
as a conversion operator VECTOR::operator Cvector() and defined in the source class VECTOR rather
than in Cvector (see the documentation for the abstract class Vector).

VIEWS

Detached<Cvector> subvectorView(const int i, const int n)

const Detached<Cvector> subvectorView(const int i, const int n) const

Return a view of the subvector (vi, vi+1, . . . , vi+n−1)
⊤.

VARIABLES

SCALAR* array

The array of vector elements.

Vectorv, Vectorl, Vectorh
Vectorv, Vectorl and Vectorh are sparse vector classes directly built atop Standard Template Library
containers:

1. Vectorv stores v as a std::vector of IndexValuePair objects,

2. Vectorl stores v as a std::vector of IndexValuePair objects,

3. Vectorh stores v as a hash map std::unordered map<INDEX,SCALAR> that maps indices to the corre-
sponding matrix elements.

All three classes inherit the generic Vector interface.

Derived from: SparseVector, (Vector), (Serializable), {std::vector<IndexValuePair> or
std::list<IndexValuePair> or std::unordered map<INDEX,SCALAR>}

GenericVector

GenericVector is Mondrian’s polymorphic vector class which can represent a vector of any class derived
from Vector. GenericVector is implemented as a wrapper: the encapsulated concrete vector is pointed to
by obj pointer. In contrast to the deafult way that polymorphism is implemented in C++, function calls to
a GenericVector are delegated to the actual class of *obj rather than being handled by the base class.

Derived from: Vector, (Detachable), (Serializable)

Owned objects: The concrete vector object *obj.

VARIABLES

Vector* obj

Pointer to the concrete vector object.

2. Basic matrices
Similarly to the vector classes, the basic division between Mondrian’s matrix classes is between the dense
and sparse cases. While this kept opaque to the user, to optimize performance, matrix/matrix and ma-
trix/vector operations are generally separately implemented for all combinations of operands. For example,
the expression A*v where A is a matrix and v is a vector will be be evaluated using different methods based
on whether A is of type Cmatrix or MatrixX<VECTOR> (for some vector type VECTOR) and whether v is of type
Cvector, Vectorv, Vectorl or Vectorh. However, similarly to the vector types, all matrix classes conform
to the same API given in Matrix. GenericMatrix is the universal polymorphic matrix class.

Classes prefaced by Symm are for storing matrices that are known to be symmetric. In general, these
classes do not use less storage, but certain operations on them are faster. The “LA” classes (standing for
“linear algebra”) provide methods for higher level linear algebra operations, such as eigendecomposition, by
calling an appropriate external library, which, in the present version of the code is Eigen.

Matrix DenseMatrixoo Cmatrixoo SymmCmatrixoo

CmatrixLA

iiSSSSSSSSSSSSSSSS

SparseMatrix

``AAAAAAAAAAAAAAAAAAAAA

MatrixX<VEC>oo SymmMatrixX<VEC>oo

MatrixXLA<VEC>

iiSSSSSSSSSSSSSSSS

Matrix

Matrix defines the common interface to all matrix classes in Mondrian. Every concrete matrix class MATRIX
provides the following methods and constructors, either by inheritance or separate implementation.

CONSTRUCTORS

MATRIX()

Create a new 0×0 matrix.

MATRIX(int n, int m)

Create a new n×m dimensional matrix A ∈ Fn×m. Storage is allocated but the entries of A are not
initialized. To ensure that matrix elements default to 0, use the Zero constructor, below.

MATRIX(const initializer list<Cvector>& list)

MATRIX(const intializer list<iivtriple>& list)

InitializeA from an initializer list of Cvector objects or (INDEX,INDEX,SCALAR) triples (see example1.cpp
for an example of usage).

NAMED CONSTRUCTORS

MATRIX::Zero(int n, int m)

The n×m dimensional zero matrix.

MATRIX::Identity(int n)

The n×n dimensional identity matrix.

MATRIX::Filled(int n, int m, SCALAR t)

The constant matrix A∈Fn×m in which Ai,j = t for all i and j.

MATRIX::Diagonal(const Cvector& v)

The diagonal matrix in which Ai,i = vi.

MATRIX::Uniform(int n, int m)

MATRIX::Gaussian(int n, int m)

MATRIX::Bernoulli(int n, int m, double p=0.5)

An n×m random matrix in which each element is drawn i.i.d. from (a) the Uniform(0, 1) distribution;
(b) the Normal(0, 1) distribution; (c) the Bernoulli(p) distribution. In symmetric matrix classes such
as SymmCmatrix and SymmMatrixX<VECTOR>, the upper triangle of the matrix is mirrored into the lower
triangle to ensure symmetry.

ATTRIBUTES

bool isSparseFormat() const

Return true if MATRIX is a sparse matrix class.

bool isSymmetricFormat() const

Return true if MATRIX is a symmetric matrix class.

ELEMENT ACCESS

SCALAR read(const int i, const int j) const

SCALAR operator()(const int i, const int j) const
Return the value of the matrix element Ai,j .

SCALAR& operator()(const int i, const int j)

Return a reference to the matrix element Ai,j .

SCALAR set(const int i, const int j, const SCALAR v)

Set Ai,j = v. In most cases this is equivalent to A(i,j)=v except that when there are restrictions on
A (i.e., that it must be symmetric), SCALAR& operator() might be disabled.

bool isFilled(const int i, const int j) const

Returns true if element (i,j) is filled in. For dense matrices always true.

int nFilled() const

The number of filled in elements of A.

SUBVECTORS

VECTOR row<VECTOR>(const int i) const

Return the i’th row of A.

VECTOR column<VECTOR>(const int j) const

Return the j’th column of A.

VECTOR diag<VECTOR>() const

Return the vector of diagonal elements of A.

ITERATORS

void for each filled(std::function<void(INDEX,INDEX,SCALAR&)> lambda)

void for each filled(std::function<void(INDEX,INDEX,const SCALAR)> lambda) const
Apply the function lambda to each filled in entry Ai,j of A. The three arguments of lambda are i, j
and (a reference to) Ai,j .

void for each filled in row(const int i, std::function<void(INDEX,SCALAR&)> lambda)

void for each filled in row(const int i, std::function<void(INDEX,const SCALAR)> lambda) const
Apply the function lambda to each filled in entry Ai,j in row i of A. The two arguments of lambda are
j and (a reference to) Ai,j .

void for each filled in column(const int j, std::function<void(INDEX,SCALAR&)> lambda)

void for each filled in column(const int j, std::function<void(INDEX,const SCALAR)> lambda) const
Apply the function lambda to each filled in entry Ai,j in column j of A. The two arguments of lambda
are i and (a reference to) Ai,j .

VIEWS

MatrixView<MATRIX> operator()(const IndexMap& rmap, const IndexMap& cmap)

const MatrixView<MATRIX> operator()(const IndexMap& rmap, const IndexMap& cmap) const
Return a MatrixView referencing the submatrix of A cut out by rows rmap and columns cmap.

CONVERSIONS

MATRIX(const Cmatrix X)

Covert the Cmatrix X to a MATRIX.

operator Cmatrix() const

Convert M to a Cmatrix (this method is repeated in the description of the Cmatrix class).

MATRIX(const BlockedMatrix<MATRIX>& B)

Convert the blocked matrix B to plain (non-blocked) format.

REMAPPINGS

MATRIX2 remapRows(const IndexMap& map) const

MATRIX2 remapRows(const Inverse<IndexMap>& map) const

Remap the rows of M by map / the inverse of map. If MATRIX is a non-symmetric matrix type,
MATRIX2=MATRIX. For symmetric matrix types, MATRIX2 is the non-symmetric version of MATRIX. For
example, if MATRIX is SymmCmatrix, then MATRIX2 will be Cmatrix.

MATRIX2 remapCols(const IndexMap& map) const

MATRIX2 remapCols(const Inverse<IndexMap>& map) const

Remap the columns of M by map / the inverse of map. See the comment about types above.

MATRIX2 remap(const IndexMap& rmap, const IndexMap& cmap) const

MATRIX2 remap(const Inverse<IndexMap>& rmap, const Inverse<IndexMap>& cmap) const

Remap the rows and columns of M by (the inverse of) rmap and cmap. See the comment about types
above.

IN-PLACE ARITHMETIC

MATRIX& operator+=(const SCALAR c)

MATRIX& operator-=(const SCALAR c)

MATRIX& operator*=(const SCALAR c)

MATRIX& operator/=(const SCALAR c)

Increment/decrement/multiply/divide each element of A by c.

MATRIX& operator+=(const MATRIX2& B)

MATRIX& operator-=(const MATRIX2& B)

MATRIX& operator*=(const MATRIX2& B)

MATRIX& operator/=(const MATRIX2& B)

Increment/decrement/multiply/divide each element of A by the corresponding element of B.

IN-PLACE OPERATIONS

MATRIX& symmetrize()

Set A to (A+A⊤)/2.

MATRIX& normalizeRows()

MATRIX& normalizeColumns()

Normalize each row/column of A so that it sums to 1.

MATRIX& multiplyRowsBy(const VECTOR& v)

MATRIX& divideRowsBy(const VECTOR& v)

Multiply/divide the i’th row of A by vi.

MATRIX& multiplyColumnsBy(const VECTOR& v)

MATRIX& divideColumnsBy(const VECTOR& v)

Multiply/divide the j’th column of A by vj .

MATRIX& applyFromLeft(const OPERATOR& Q)

MATRIX& applyFromLeftT(const OPERATOR& Q)
Apply the operator Q or the transpose of Q from the left in place. In matrix notation, A ← QA or
A← Q⊤A.

MATRIX& applyFromRight(const OPERATOR& Q)

MATRIX& applyFromRightT(const OPERATOR& Q)

Apply the operator Q or the transpose of Q to v from the right in place. In matrix notation, A← AQ⊤

or A← AQ. Note that applying the operator from the right corresponds to multiplication by Q⊤.

MATRIX& conjugateBy(const OPERATOR& Q)

MATRIX& conjugateByT(const OPERATOR& Q)

Conjugate A by (the transpose of) Q in place. In matrix notation, A← QAQ⊤ or A← Q⊤AQ.

VECTOR VALUED ARITHMETIC

VECTOR& mult(const VECTOR& v) const

VECTOR& dot(const VECTOR& v) const

Compute the matrix/vector products Av and A⊤v, respectively. Here VECTOR can be any concrete
vector class, such as a Cvector, Vectorv, etc..

VECTOR& operator*(const VECTOR& v) const

Synonym of mult.

MATRIX VALUED ARITHMETIC

MATRIX mult(const SCALAR c) const

Compute cA.

MATRIX plus(const MATRIX& B) const

MATRIX minus(const MATRIX& B) const
Compute A+B or A−B.

MATRIX mult(const MATRIX& B) const

MATRIX dot(const MATRIX& B) const

MATRIX outer(const MATRIX& B) const

MATRIX dott(const MATRIX& B) const

Compute the matrix/matrix product (a) AB, (b) A⊤B, and (c) AB⊤ and (d) A⊤B⊤.

MATRIX operator*(const SCALAR c) const

MATRIX operator+(const MATRIX& B) const

MATRIX operator-(const MATRIX& B) const

MATRIX operator*(const MATRIX& B) const
Synonyms of plus, minus and mult methods.

MATRIX rowGram() const

MATRIX colGram() const

Compute the symmetric matrix G defined (a) Gi,j = Ai,∗ ·Aj,∗ (b) Gi,j = A∗,i ·A∗,j .

SCALAR VALUED METHODS

int nnz() const

The number of non-zero matrix elements of A.

SCALAR norm2() const

The squared Frobenius norm of the matrix, ∥A ∥2Frob.
SCALAR diff2(const MATRIX& X) const

The squared Frobenius norm difference between A and X, i.e., ∥A−X∥2Frob.

FORMATTED I/O

MATRIX(MatrixIF& file)

Load A from the file file (see the section on matrix filetypes).

saveto(MatrixOF& file) const

Save A to the file file (see the section on matrix filetypes).

PYTHON INTERFACE

MATRIX(<array>)

Initialize A from the numpy array <array>.

np()

Return A in the form of a numpy array.

VARIABLES

int nrows

The number of rows, n.

int ncols

The number of columns, m.

Cmatrix

Cmatrix is the simplest concrete matrix class, which simply stores A in the form of a C-style array
SCALAR[nrows*ncols] in column major order. This class provides all the standard matrix methods de-
scribed in Matrix, plus the following additional methods.

Derived from: Matrix, Detachable, Serializable

CONVERSIONS

Cmatrix(const MATRIX& X)

Convert X to Cmatrix format. While syntactically this method looks like a Cmatrix constructor, it is
actually a conversion operator of type MATRIX::operator Cmatrix(), defined in the source class.

VIEWS

Detached<Cvector> viewOfColumn(const int j)

const Detached<Cvector> viewOfColumn(const int j)const
Return a view of the j’th column of A in the form of a detached Cvector.

Detached<Cmatrix> viewOfColumns(const int j, const int k)

const Detached<Cmatrix> viewOfColumns(const int j, const int k) const
Return a view of columns j, j+1, . . . , j+k−1 in the form of a detached Cmatrix.

VECTOR VALUED METHODS

Cvector vectorize() const

Reshape A into an nm dimensional vector.

MATRIX VALUED METHODS

Cmatrix reshape(const int nnew, const int mnew) const

Reshape A into an nnew×mnew dimensional matrix.

VARIABLES

SCALAR* array

An n×m column major array holding the matrix elements of A.

MatrixX<VECTOR>

MatrixX<VECTOR> is Mondrian’s basic sparse matrix class, which represents A∈Fn×m as m VECTORs, where
VECTOR can be any (dense or sparse) vector class. MatrixX<VECTOR> implements all the methods in Matrix.

Derived from: Matrix, Detachable, Serializable

Owned objects: The VECTOR objects storing each column of the matrix.

VIEWS

Detached<VECTOR> viewOfColumn(const int j)

const Detached<VECTOR> viewOfColumn(const int j) const
Return a view of the j’th column of A in the form of a detached VECTOR.

VARIABLES

vector<VECTOR*> column

Pointers to the VECTOR objects storing the individual columns of A.

GenericMatrix

GenericMatrix is Mondrian’s polymorphic matrix class, which can represent a matrix of any class. The
class is implemented as a wrapper: the encapsulated concrete matrix is pointed to by the obj pointer. In
contrast to the deafult way that polymorphism is implemented in C++, function calls to a GenericMatrix

are delegated to the actual class of *obj rather than being handled by the base class.

Derived from: Matrix, (Detachable), (Serializable)

Owned objects: The concrete vector object *obj.

VARIABLES

Vector* obj

Pointer to the concrete vector object.

3. Specialized matrices

SymmCmatrix

SymmCmatrix is the symmetric variant of the Cmatrix class. While the two classes store A in exactly the
same format (which makes conversions between them easy) the fact that the matrix stored in SymmCmatrix

is known to be symmetric allows SymmCmatrix to perform certain operations much faster.

Derived from: Cmatrix, (Matrix), (Detachable), (Serializable)

NAMED CONSTRUCTORS

ColumnGram(const MATRIX& B)

RowGram(const MATRIX& B)

Initialize A to be the column Gram matrix B⊤B or the row Gram matrix BB⊤. Computing Gram
matrices is often a time critical operation, so these constructors are implemented separately for various
different MATRIX classes.

CONVERSIONS

SymmCmatrix(const Cmatrix& M)

SymmCmatrix(Cmatrix&& M)

Construct A by symmetrizing M , i.e A = (M +M⊤)/2. Move construction is possible because
SymmCmatrix and Cmatrix use the same storage format.

SymmCmatrix(assume symmetric(const Cmatrix& M))

SymmCmatrix(assume symmetric(Cmatrix&& M))
The same as above, except without explicit symmetrization, because M is assumed to be already
symmetric. The second of these methods effectively just changes the data type of M without any
computations, and therefore incurs almost no computational overhead.

SymmMatrixX<VECTOR>

SymmMatrixX<VECTOR> is the symmetric variant of the MatrixX<VECTOR> class. While the the two classes
store the elements of A in exactly the same format (which makes conversions between them easy) the fact
that the matrix stored in SymmMatrixX<VECTOR> is known to be symmetric allows SymmMatrixX<VECTOR> to
perform certain operations much faster.

Derived from: MatrixX<VECTOR>, (Matrix), (Detachable), (Serializable)

NAMED CONSTRUCTORS

ColumnGram(const MATRIX& B)

RowGram(const MATRIX& B)

Initialize A to be the column Gram matrix B⊤B or the row Gram matrix BB⊤. Computing Gram
matrices is often a time critical operation, so these constructors are implemented separately for various
different MATRIX classes.

CONVERSIONS

SymmMatrixX<VECTOR>(const MatrixX<VECTOR>& M)

SymmMatrixX<VECTOR>(MatrixX<VECTOR>&& M)

Construct A by symmetrizing M , i.e A = (M +M⊤)/2. Move construction is possible because
SymmMatrixX<VECTOR> and MatrixX<VECTOR> use the same storage format.

SymmMatrixX<VECTOR>(as symmetric(const MatrixX<VECTOR>& M))

SymmMatrixX<VECTOR>(as symmetric(MatrixX<VECTOR>&& M))
The same as above, except without explicit symmetrization, because M is assumed to be already
symmetric. The second of these methods effectively just changes the data type of M without any
computations, and therefore incurs almost no computational overhead (see the section on downcasting).

CmatrixLA

CmatrixLA is an extension of the Cmatrix class that includes certain linear algebra operations, such as
eigendecomposition, that are performed by calling routines from outside linear algebra pacckages, in the
current implementation of the library, Eigen.

CmatrixLA is separated from Cmatrix to keep the library modular and simplify compilation. In particu-
lar, Cmatrix is a “header only” class, therefore it can be directly #include-ed in user code with no separate
compilation. Any functions in Cmatrix that use Eigen would greatly slow down compiling user code, because
they would “pull in” a large number of header files from Eigen. Segregating these functions in CmatrixLA

solves this problem because CmatrixLA is a compiled class.

Derived from: Cmatrix, (Matrix), (Detachable), (Serializable)

OPERATIONS

package<CmatrixLA,Cvector> symmetricEVD() const

Returns a matrix whose rows are the eigenvectors of A and a vector holding the corresponding eigen-
values. It is assumed that A is symmetric.

4. Blocked vectors/matrices

BlockedVector<VECTOR>

A BlockedVector v consists of nb blocks, where each block is a vector of type VECTOR. Here VECTOR can be
any dense or sparse matrix type derived from the abstract class Vector.

Derived from: Vector, Detachable, Serializable

CONSTRUCTORS

BlockedVector<VECTOR>(const int nb)

Create a blocked vector consisting of nb zero dimensional blocks constructed using the VECTOR class’s
default constructor VECTOR().

BlockedVector<VECTOR>(const BlockStructure& st)

Create a blocked vector with block structure st=(b1, . . . , bp). The i’th block is constructed using the
VECTOR class’s VECTOR(n) constructor with n= bi.

BlockedVector<VECTOR>(VECTOR&& w)

BlockedVector<VECTOR>(const VECTOR& w)
Create a blocked vector with a single block, w. The first method destroys the original vector.

BlockedVector<VECTOR>(const BlockStructure& st, const VECTOR& w)

Convert the vector w to blocked vector format with block structure st.

BlockedVector<VECTOR>(vector<VECTOR>&& vlist)

BlockedVector<VECTOR>(const vector<const VECTOR>& vlist)
Create a blocked vector composed of the elements of vlist. The first of these constructors destroys
the original vectors.

BlockedVector<VECTOR>(vector<BlockedVector<VECTOR>>&& vlist)

BlockedVector<VECTOR>(const vector<const BlockedVector<VECTOR>>& vlist)
Create a blocked vector composed of each of the blocks of the blocked vectors in vlist. The first of
these constructors destroys the original blocked vectors.

NAMED CONSTRUCTORS

BlockedVector<VECTOR>::Zero(BlockStructure& bstruct)

BlockedVector<VECTOR>::Filled(BlockStructure& bstruct, const SCALAR t)

BlockedVector<VECTOR>::Uniform(BlockStructure& bstruct)

BlockedVector<VECTOR>::Gaussian(BlockStructure& bstruct)

BlockedVector<VECTOR>::Bernoulli(BlockStructure& bstruct, const double p=0.5)
Create a bstruct–structured blocked vector with block structure bstruct, composed of blocks con-
structed with the appropriate constructors of VECTOR.

BLOCK LEVEL ACCESS

VECTOR& block(const int i)

VECTOR block(const int i) const

Return (a reference to) the i’th block of v.

VECTOR* block ptr(const int i)

const VECTOR* block ptr(const int i) const
Return a pointer to the i’th block of v.

Detached<BlockedVector<VECTOR>> blocks(const IndexMap& phi)

const Detached<BlockedVector<VECTOR>> blocks(const IndexMap& phi) const

Return a detached blocked vector of blocks (JvKϕ(0), . . . , JvKϕ(k−1))

ELEMENT ACCESS

SCALAR& operator()(const int i)

SCALAR operator()(const int i) const

SCALAR& operator()(const int I, const int i)

SCALAR operator()(const int I, const int i) const

SCALAR& operator()(const IndexPair& ip)

SCALAR operator()(const IndexPair& ip) const

Return (a reference to) vi or v(I,i). In the case of sparse vectors, a potential side effect of returning a
reference is that it might fill in v(I,i), even if the intent is only to read it. To avoid this behavior, use
the read method.

SCALAR read(const int i) const

SCALAR read(const int I, const int i) const

SCALAR read(const IndexPair& ip) const
Return the value of vi or v(I,i), guaranteeing side effect free behavior, even when v is not const.

bool isFilled(const int i) const

bool isFilled(const int I, const int i) const

bool isFilled(const IndexPair& ip) const
Return true if vi or v(I,i) is filled in. For dense vectors always true.

int nFilled() const

The number of filled in elements of v.

ITERATORS

void for each block(std::function<void(INDEX,VECTOR&)> lambda)

void for each block(std::function<void(INDEX,const VECTOR&)> lambda) const

Apply the function lambda to each block of v. The two arguments are i and a reference to JvKi.
VIEWS

BlockedVectorView<VECTOR> operator()(const BindexMap& map)

const BlockedVectorView<VECTOR> operator()(const BindexMap& map) const

Return a view of the subvector (vϕ(0), vϕ(1), . . . , vϕ(k−1))
⊤.

CONVERSIONS

BlockedVector<VECTOR>(const BlockedVector<Cvector> w)

Covert w to a BlockedVector<VECTOR> type vector.

MERGING

void merge(VECTOR&& w)

void merge(const VECTOR& w)
Add w to v as its last block. The first method destroys w.

void merge(BlockedVector<VECTOR>&& w)

void merge(const BlockedVector<VECTOR>& w)
Merge w to v by adding its blocks to the end of v. The first method destroys w.

REMAPPINGS

VECTOR remap(const BindexMap& map) const

VECTOR remap(const Inverse<BindexMap>& map) const
Remap the elements of v by map or the inverse of map.

IN-PLACE ARITHMETIC

BlockedVector<VECTOR>& operator+=(const SCALAR c)

BlockedVector<VECTOR>& operator-=(const SCALAR c)

BlockedVector<VECTOR>& operator*=(const SCALAR c)

BlockedVector<VECTOR>& operator/=(const SCALAR c)

Increment/decrement/multiply/divide each element of v by c.

BlockedVector<VECTOR>& operator+=(const BlockedVector<VECTOR2>& x)

BlockedVector<VECTOR>& operator-=(const BlockedVector<VECTOR2>& x)
Set v to v+x or v−x, respectively.

SCALAR VALUED ARITHMETIC

SCALAR dot(const BlockedVector<VECTOR2>& x) const

The dot product of v with x. v and x must have the same block structure.

VECTOR VALUED ARITHMETIC

BlockedVector<VECTOR> mult(const SCALAR c) const

BlockedVector<VECTOR> plus(const BlockedVector<VECTOR2>& x) const

BlockedVector<VECTOR> minus(const BlockedVector<VECTOR2>& x) const
Compute cv, v+x and v−x, respectively.

BlockedVector<VECTOR> operator*(const SCALAR c) const

BlockedVector<VECTOR> operator+(const BlockedVector<VECTOR2>& x) const

BlockedVector<VECTOR> operator-(const BlockedVector<VECTOR2>& x) const
Synonyms of mult, plus and minus.

MATRIX VALUED ARITHMETIC

BlockedMatrix<MATRIX> outer<MATRIX>(const BlockedVector<VECTOR>& x) const

Compute the outer product vx⊤.

OTHER METHODS

BlockStructure structure() const

Return the block structure of v.

FORMATTED I/O

BlockedVector<VECTOR>(const BlockStructure& st, const MatrixIF& file)

Load v from the file file and block it according to st.

saveto(MatrixOF& file)

Save v to the file file.

VARIABLES

int n

The total dimensionality of the vector (inherited from Vector).

int nb

The number of blocks.

VECTOR** blockp

An array of pointers to the individual blocks of v.

BlockedMatrix<MATRIX>

A BlockedMatrix M consists of nb ×mb blocks, where each block is a matrix of type MATRIX. Here MATRIX
can be any dense or sparse matrix type derived from the abstract class Matrix. The i’th block of rows we
sometimes call the i’th street, and the j’th column of blocks the j’th tower.

Derived from: Matrix, Detachable, Serializable

Owned objects: The individual blocks pointed to by the elements of the array blocks.

CONSTRUCTORS

BlockedMatrix<MATRIX>(const int nb, const int mb)

Construct a blocked matrix consisting of nb×mb zero dimensional blocks constructed using the MATRIX
class’s MATRIX() constructor.

BlockedMatrix<MATRIX>(const Bstructure& rst, const Bstructure& cst)

Construct a blocked matrix that is blocked horizontally according to rst and vertically according to
cst. The individual blocks are constructured using the MATRIX class’s MATRIX(n,m) constructor.

BlockedMatrix<MATRIX>(MATRIX&& B)

BlockedMatrix<MATRIX>(const MATRIX& B)
Create a blocked matrix with a single block, B. The first method destroys the original matrix.

BlockedMatrix<MATRIX>(const Bstructure& rst, const Bstructure& cst, const MATRIX& B)

Convert B to blocked matrix format with block structure given by rst and cst.

NAMED CONSTRUCTORS

BlockedMatrix<MATRIX>::Zero(const BlockStructure& rst, const BlockStructure& cst)

BlockedMatrix<MATRIX>::Filled(const BlockStructure& rst, const BlockStructure& cst)

BlockedMatrix<MATRIX>::RandomUniform(const BlockStructure& rst, const BlockStructure& cst)

BlockedMatrix<MATRIX>::RandomGaussian(const BlockStructure& rst, const BlockStructure& cst)

BlockedMatrix<MATRIX>::RandomBernoulli(const BlockStructure& rst, const BlockStructure& cst,

const double p=0)
Create an rst×cst structured blocked matrix whose individual blocks are constructed with the ap-
propriate constructor of MATRIX.

BlockedMatrix<MATRIX>::Identity(const BlockStructure& st)

Construct the st×st structured identity matrix.

BlockedMatrix<MATRIX>::Diagonal(const BlockedVector& v)

Construct a diagonal blocked matrix whose diagonal elements are given by v and whose block structure
is dictated by the block structure of v.

BlockedMatrix<MATRIX>::ConcatVertically(vector<BlockedMatrix<MATRIX>&& blist>)

BlockedMatrix<MATRIX>::ConcatVertically(const vector<const BlockedMatrix<MATRIX>& blist>)
Construct a blocked matrix by concatenating the elements of blist vertically. The first method
destroys the elements of blist.

BlockedMatrix<MATRIX>::ConcatHorizontally(vector<BlockedMatrix<MATRIX>&& blist>)

BlockedMatrix<MATRIX>::ConcatHorizontally(const vector<const BlockedMatrix<MATRIX>& blist>)
Construct a blocked matrix by concatenating the elements of blist horizontally. The first method
destroys the elements of blist.

BLOCK LEVEL ACCESS

MATRIX& block(const int i, const int j)

MATRIX block(const int i, const int j) const

Return (a reference to) the (i, j) block of M .

MATRIX* block ptr(const int i, const int j)

const MATRIX* block ptr(const int i, const int j) const

Return a pointer to the (i, j) block of M .

Detached<BlockedMatrix<MATRIX>> blocks(const IndexMap& phi, const IndexMap& psi)

const Detached<BlockedMatrix<MATRIX>> blocks(const IndexMap& phi, const IndexMap& psi) const

Return a detached blocked matrix B in which JBKi,j = JMKϕ(i),ψ(j).
ELEMENT ACCESS

SCALAR& operator()(const int i, const int j)

SCALAR operator()(const int i, const int j) const

SCALAR& operator()(const int I, const int i, const int J, const int j)

SCALAR operator()(const int I, const int i, const int J, const int j) const

SCALAR& operator()(const IndexPair& ip, const IndexPair& jp)

SCALAR operator()(const IndexPair& ip, const IndexPair& jp) const

Return (a reference to) the Mi,j or M(I,i),(J,j) matrix element. In sparse matrix classes, returning a
reference might have the unintended side effect of filling in the matrix element (assuming that it is not
already filled in), even when the intent is to just read it. To avoid this behavior, use the read method,
below.

SCALAR read(const int i, const int j) const

SCALAR read(const int I, const int i, const int J, const int j) const

SCALAR read(const IndexPair& ip, const IndexPair& jp) const
Return the value ofMi,j orM(I,i),(J,j), guaranteeing side effect free behavior, even when M is not const.

BlockedVector<Cvector> row(const int i) const

BlockedVector<Cvector> row(const int I, const int i) const

BlockedVector<Cvector> row(const IndexPair& ip) const

Return the i’th or (I, i) row of M .

BlockedVector<Cvector> column(const int j) const

BlockedVector<Cvector> column(const int J, const int j) const

BlockedVector<Cvector> column(const IndexPair& jp) const

Return the j’th or (J, j) column of M .

BlockedVector<Cvector> diag() const

Return the vector of diagonal elements of M .

ITERATORS

void for each block(std::function<void(INDEX,INDEX,MATRIX&)> lambda)

void for each block(std::function<void(INDEX,INDEX,const MATRIX&)> lambda) const
Apply the function lambda to each block of M . The three arguments of lambda are I, J , and a
reference to JMKI,J .

void for each block in street(I,std::function<void(INDEX,MATRIX&)> lambda)

void for each block in street(I,std::function<void(INDEX,const MATRIX&)> lambda) const
Apply the function lambda to each block of M . The two arguments of lambda are J , and a reference
to JMKI,J .

void for each block in tower(J,std::function<void(INDEX,MATRIX&)> lambda)

void for each block in tower(J,std::function<void(INDEX,const MATRIX&)> lambda) const
Apply the function lambda to each block of M . The two arguments of lambda are I, and a reference
to JMKI,J .

VIEWS

BlockedMatrixView<VECTOR> operator()(const BindexMap& phi, const BindexMap& psi)

const BlockedMatrixView<VECTOR> operator()(const BindexMap& phi, const BindexMap& psi) const
Return a view to the submatrix B in which Bi,j =Mϕ(i),ψ(j).

CONVERSIONS

BlockedMatrix<MATRIX>(const BlockedMatrix<MATRIX2> B)

Covert B to a BlockedMatrix<MATRIX> type matrix.

MERGING

void mergeVertically(BlockedMatrix<MATRIX>&& B)

void mergeVertically(const BlockedMatrix<MATRIX>& B)
Merge B to M vertically, i.e., as its last streets. The first method destroys B.

void mergeHorizontally(BlockedMatrix<MATRIX>&& B)

void mergeHorizontally(const BlockedMatrix<MATRIX>& B)
Merge B to M horizontally, i.e., as its last towers. The first method destroys B.

REMAPPINGS

BlockedMatrix<MATRIX> remapRows(const BindexMap& map) const

BlockedMatrix<MATRIX> remapRows(const Inverse<BindexMap>& map) const

Remap the rows of M by map / the inverse of map.

BlockedMatrix<MATRIX> remapCols(const BindexMap& map) const

BlockedMatrix<MATRIX> remapCols(const Inverse<BindexMap>& map) const

Remap the columns of M by map / the inverse of map.

BlockedMatrix<MATRIX> remap(const BindexMap& rmap, const BindexMap& cmap) const

BlockedMatrix<MATRIX> remap(const Inverse<BindexMap>& rmap,

const Inverse<BindexMap>& cmap) const

Remap the rows and columns of M by (the inverse of) rmap and cmap.

IN-PLACE ARITHMETIC

BlockedMatrix<MATRIX>& operator+=(const SCALAR c)

BlockedMatrix<MATRIX>& operator-=(const SCALAR c)

BlockedMatrix<MATRIX>& operator*=(const SCALAR c)

BlockedMatrix<MATRIX>& operator/=(const SCALAR c)

Increment/decrement/multiply/divide each element of M by c.

BlockedMatrix<MATRIX>& operator+=(const BlockedMatrix<MATRIX>2& B)

BlockedMatrix<MATRIX>& operator-=(const BlockedMatrix<MATRIX>2& B)
Set M to M+B or M−B, respectively.

IN-PLACE OPERATIONS

BlockedMatrix<MATRIX>& multiplyRowsBy(const BlockedVector<Cvector>& v)

BlockedMatrix<MATRIX>& divideRowsBy(const BlockedVector<Cvector>& v)

Multiply/divide the i’th row of M by vi.

BlockedMatrix<MATRIX>& multiplyColsBy(const BlockedVector<Cvector>& v)

BlockedMatrix<MATRIX>& divideColsBy(const BlockedVector<Cvector>& v)

Multiply/divide the j’th column of M by vj .

VECTOR VALUED ARITHMETIC

BlockedVector<VECTOR> mult(const BlockedVector<VECTOR>& v) const

BlockedVector<VECTOR> dot(const BlockedVector<VECTOR>& v) const

Compute Mv or M⊤v. The block structure of v must match the column resp. row structure of M .

BlockedVector<VECTOR> operator*(const BlockedVector<VECTOR>& v) const

Synonym of mult.

MATRIX VALUED ARITHMETIC

BlockedMatrix<MATRIX> mult(const SCALAR c) const

Compute cA.

BlockedMatrix<MATRIX> plus(const BlockedMatrix<MATRIX>& B) const

BlockedMatrix<MATRIX> minus(const BlockedMatrix<MATRIX>& B) const
Compute A+B or A−B.

BlockedMatrix<MATRIX> mult(const BlockedMatrix<MATRIX>& B) const

BlockedMatrix<MATRIX> dot(const BlockedMatrix<MATRIX>& B) const

BlockedMatrix<MATRIX> outer(const BlockedMatrix<MATRIX>& B) const

BlockedMatrix<MATRIX> dott(const BlockedMatrix<MATRIX>& B) const

Compute the matrix/matrix product (a) AB, (b) A⊤B, and (c) AB⊤ and (d) A⊤B⊤.

BlockedMatrix<MATRIX> rowGram() const

BlockedMatrix<MATRIX> colGram() const

Compute the symmetric matrix G defined (a) Gi,j = Ai,∗ ·Aj,∗ (b) Gi,j = A∗,i ·A∗,j .

BlockedMatrix<MATRIX> operator*(const SCALAR c) const

BlockedMatrix<MATRIX> operator+(const BlockedMatrix<MATRIX>& B) const

BlockedMatrix<MATRIX> operator-(const BlockedMatrix<MATRIX>& B) const

BlockedMatrix<MATRIX> operator*(const BlockedMatrix<MATRIX>& B) const
Synonyms of plus, minus and mult methods.

OTHER METHODS

Bstructure rowStructure() const

Bstructure columnStructure() const

Return the row/column structure of M.

FORMATTED I/O

BlockedMatrix<MATRIX>(const Bstructure& rst, const Bstructure& cst, const MatrixIF& file)

Load M from the file file and block it according to rst and cst.

saveto(MatrixOF& file)

Save M to the file file.

VARIABLES

int nb, mb

The number of rows/columns of blocks in M (inherited from BlockedArray).

int nrows, ncols

The total number of rows/columns of matrix elements in M (inherited from Matrix).

MATRIX** blockp

An nb×mb column major array of pointers to the individual blocks.

5. Vector/matrix views

VectorView<VECTOR>

Given a parent object v of type VECTOR and an index map ϕ, VectorView<VECTOR> provides an interface
to a subvector w = (vϕ(1), vϕ(2), . . . , vϕ(k)) of v as if it were a separate k dimensional vector. All the usual
vector functionality is available to w, but its elements remain tied to v: changing vϕ(i) will change wi, and
vice versa. Destroying v before w might result in an error or undefined behavior.

Derived from: Vector, (Detachable), (Serializable)

Dependent on: The parent vector, v.

CONSTRUCTORS

VectorView<VECTOR>(VECTOR& v, const IndexMap& phi)

VectorView<VECTOR>(VECTOR& v, IndexMap&& phi)

Create a view of (vϕ(1), vϕ(2), . . . , vϕ(k)). The second version destroys phi.

CONVERSIONS

operator Cvector()

Copy the view into a Cvector. While defined generically in Vector, this method is repeated here
because it is the standard way of extracting a subvector of a vector.

ASSIGNMENTS

operator=(const VECTOR2& u)

Set each element of w equal to the corresponding element of u. Note that, in contrast to the usual
definition of operator=, this method cannot change the size of w, therefore u and w must be of the
same dimension.

VARIABLES

VECTOR& v

A reference to the parent object, v.

IndexMap map

The index map defining which elements of v are included in w.

MatrixView<MATRIX>

MatrixView<MATRIX> provides an interface to a submatrix of a MATRIX object as if it were a separate matrix.
If A is a MatrixView<MATRIX> of a parent matrix M (of type Matrix), then all the usual matrix functionality
is available to A, but its elements will remain tied to the corresponding elements of M. Destroying M before A
may results in an error or undefined behavior.

Derived from: Matrix, (Detachable), (Serializable)

Dependent on: The parent MATRIX M.

CONSTRUCTORS

MatrixView<MATRIX>(MATRIX& M, const IndexMap& phi, const IndexMap& psi)

MatrixView<MATRIX>(MATRIX& M, const IndexMap&& phi, const IndexMap&& psi)
Create a view of the submatrix of M at the intersection of rows phi and columns psi. The second
version destroys phi and psi.

MatrixView<MATRIX>(MATRIX& M, const IdentityIndexMap& dummy, const IndexMap& psi)

MatrixView<MATRIX>(MATRIX& M, const IndetityIndexMap& dummy, const IndexMap&& psi)
Create a view of the submatrix of M consisting of the columns psi. The second version destroys psi.

MatrixView<MATRIX>(MATRIX& M, const IndexMap& phi, const IdentityIndexMap& dummy)

MatrixView<MATRIX>(MATRIX& M, const IndexMap&& phi, const IdentityIndexMap&& dummy)
Create a view of the submatrix of M consiting of the rows phi. The second version destroys phi.

MatrixView<MATRIX>(MATRIX& M, const IndexMap& phi)

MatrixView<MATRIX>(MATRIX& M, const IndexMap&& phi)
Synonyms of the above.

CONVERSIONS

operator Cmatrix()

Copy the view into a Cmatrix. While defined generically in Matrix, this method is repeated here
because it is the standard way of extracting a submatrix of a matrix.

ASSIGNMENTS

operator=(const MATRIX2& B)

Set each element of A equal to the corresponding element of B. Note that, in contrast to the usual
definition of operator=, this method cannot change the dimensions of A, therefore A and B must be
the same size.

VARIABLES

MATRIX& M

A reference to the parent object

IndexMap rmap, cmap

The index sets defining which rows/columns of M are included in A.

BlockedVectorView<VECTOR>

Given a parent object v of type VECTOR and an index set I = (i1, . . . , ik), BlockedVectorView<VECTOR>
provides an interface to a subvector w = (vi1 , vi2 , . . . , vik) of v as if it were a separate k dimensional vector.
All the usual vector functionality is available to w, but its elements remain tied to v: changing vij will
change the corresponding element of w, and vice versa, changing w changes the corresponding elements of v.
Destroying v before w results in an error or undefined behavior.

Derived from: Vector, (Detachable), (Serializable)

Dependent on: The parent vector v.

CONSTRUCTORS

BlockedVectorView<VECTOR>(BlockedVector<VECTOR>& v, const BindexMap& phi)

BlockedVectorView<VECTOR>(BlockedVector<VECTOR>& v, const BindexMap&& phi)

Create a view of (vi1 , vi2 , . . . , vik), where I = (i1, . . . , ik).

CONVERSIONS

operator Cmatrix()

Copy the view into a Cvector. While defined generically in Vector, this method is repeated here
because it is the standard way of extracting a subvector of a vector.

ASSIGNMENTS

operator=(const VECTOR2& u)

Set each element of w equal to the corresponding element of u. Note that, in contrast to the usual
definition of operator=, this method cannot change the size of w, therefore u and w must be of the
same dimension.

VARIABLES

BlockedVector<VECTOR>& v

A reference to the parent object

BindexMap map

The index set defining which elements of v are included in w.

BlockedMatrixView<MATRIX>

BlockedMatrixView<MATRIX> provides an interface to a submatrix of a MATRIX object as if it were a separate
matrix. If A is a BlockedMatrixView<MATRIX> of a parent matrix M (of type Matrix), then all the usual
matrix functionality is available to A, but its elements will remain tied to the corresponding elements of M.
Destroying M before A may results in an error or undefined behavior.

Derived from: Matrix, (Detachable), (Serializable)

Dependent on: The parent MATRIX M.

CONSTRUCTORS

BlockedMatrixView<MATRIX>(BlockedMatrix<MATRIX>& M, const BindexMap& phi, const BindexMap& psi)

BlockedMatrixView<MATRIX>(BlockedMatrix<MATRIX>& M, const BindexMap&& phi, const BindexMap&& psi)

Create a view of the submatrix of M at the intersection of rows phi and columns psi.

CONVERSIONS

operator Cmatrix()

Copy the view into a Cmatrix. While defined generically in Vector, this method is repeated here
because it is the standard way of extracting a submatrix of a matrix.

ASSIGNMENTS

operator=(const MATRIX2& B)

Set each element of A equal to the corresponding element of B. Note that, in contrast to the usual
definition of operator=, this method cannot change the dimensions of A, therefore A and B must be
the same size.

VARIABLES

BlockedMatrix<MATRIX>& M

A reference to the parent object

BindexMap rmap, cmap

The index sets defining which rows/columns of M are included in A.

6. Active vectors/matrices

ActiveVector<VECTOR>

An ActiveVector<VECTOR> object behaves the same way as a VECTOR except that every time one of its ele-
ments changes, the changed method gets called. What this method actually does is defined in the concrete
classes derived from ActiveVector<VECTOR> (see below).

Derived from: VECTOR, (Vector), (Detachable), (Serializable)

CHANGE FUNCTIONS

virtual void changed(const INDEX i, const SCALAR x)

This method is called every time element some vector element vi is changed to value x.

void changed(const INDEX i)

A shortcut for changed(i,VECTOR::read(i)).

OrderedVector<VECTOR>

An OrderedVector<VECTOR> is an active vector that behaves identically to VECTOR except that it internally
maintains and automatically updates an ordering of its elements

Derived from: ActiveVector<VECTOR>, (VECTOR), (Vector), (Detachable), (Serializable)

METHODS

int best(const int k=0)

Return the index of the k+1’th element of v from the top according to the ordering.

int worst(const int k=0)

Return the index of the k+1’th element of v from the bottom accoeding to the ordering.

AccumulatedVector<VECTOR>

An AccumulatedVector<VECTOR> is an active vector that behaves identically to VECTOR except that it inter-
nally maintains and automatically updates an accumulation (in the default case, the sum) of its elements.

Derived from: ActiveVector<VECTOR>, (VECTOR), (Vector), (Detachable), (Serializable)

CONSTRUCTORS

SCALAR sum() const

Return the sum of the elements.

Operators, etc.

7. Operators

GivensRotation

A Givens rotation is a 2×2 elementary rotation

Gθ =

(
cos θ − sin θ
sin θ cos θ

)
on some pair of indices (i1, i2). Being able to apply Givens rotations to vectors/matrices fast is critical, and
strongly dependent on the exact way that the matrix/vector is stored. Therefore, implementing multiplica-
tion by Givens rotations is left to the vector and matrix classes, rather than being defined here.

CONSTRUCTORS

GivensRotation(int i1, int i2, double cos, double sin)

A new Givens rotation on i1 and i2.

GivensRotation(int i1, int i2, double theta)

A new Givens rotation on i1 and i2 with angle θ.

NAMED CONSTRUCTORS

GivensRotation::Random(int n)

A random Givens rotation, where i1 and i2 are chosen from {1, 2, . . . , n} (and are distinct), while
θ ∼ Uniform(0, 2π).

VARIABLES

int i1, i2

The two indices i1 and i2.

double cos, sin

cos θ and sin θ.

51

KpointOp<k>

A KpointOp<K> object represents a k×k elementary rotation on some set of indices (i1, i2, . . . , ik). As for
Givens rotations, being able to apply such rotations to matrices and vectors fast is critical, therefore the
implementation of this operation is relegated to the matrix and vector classes.

CONSTRUCTORS

KpointOp<k>(const int k)

A new k–point rotation, in which map and q are allocated but unitialized.

KpointOp<k>(const IndexMap& map)

KpointOp<k>(const IndexMap& map, const Cmatrix& M)

KpointOp<k>(IndexMap&& map, const Cmatrix&& M)
A new k–point operator initialized from map and M.

CONVERSIONS

operator Cmatrix() const

Return the k × k non-trivial block of O as a Cmatrix.

METHODS

applyTo(SCALAR* v)

applyTo(SCALAR* v)

Apply the (transpose of) T to the k-element array v.

applyTo(SCALAR** vptr)

applyTo(SCALAR** vptr)

Apply the (transpose of) T to [*vptr[0],*vptr[1],...,*vptr[k]].

VARIABLES

IndexMap& map

The index map ϕ.

double* q

The k×k block stored as a raw k × k array.

MatrixSum<MATRIX>

A MatrixSum<MATRIX> object represents a sum M1 +M2 + . . . +Mk, where each Mi is a matrix of type
MATRIX. MatrixSum supports all the usual matrix operations, except, of course, direct assignments to a
MatrixSum object are not possible.

Derived from: Matrix, (Detachable), (Serializable)

Owned objects: The MATRIX constituents

CONSTRUCTORS

MatrixSum<MATRIX>(const vector<MATRIX> mlist)

MatrixSum<MATRIX>(vector<MATRIX>&& mlist)
Create a MatrixSum composed of the elements of mlist. The second of these constructors destroys
the original matrices.

VARIABLES

vector<MATRIX> matrix

The indiviudal MATRIX terms of this sum.

MatrixProduct<MATRIX>

A MatrixProduct<MATRIX> object represents a product M1M2 . . .Mk, where each Mi is a matrix of type
MATRIX. MatrixProduct supports all the usual matrix operations, except, of course, direct assignments to a
MatrixProduct object are not possible.

Derived from: Matrix, (Detachable), (Serializable)

Owned objects: The MATRIX constituents

CONSTRUCTORS

MatrixProduct<MATRIX>(const vector<MATRIX> mlist)

MatrixProduct<MATRIX>(vector<MATRIX>&& mlist)
Create a MatrixProduct composed of the elements of mlist. The second of these constructors destroys
the original matrices.

VARIABLES

vector<MATRIX> matrix

The indiviudal MATRIX factors of this sum.

OuterProduct<CLASS1,CLASS2>

Given a matrix or vector object V of type CLASS1 and another one, V of type CLASS2 an object of type
OuterProduct<CLASS1,CLASS2> formed from them represents UV ⊤. The OuterProduct class supports all
the usual matrix operations, except, of course, direct assignments to a OuterProduct object are not possible.

Derived from: Matrix, (Detachable), (Serializable)

CONSTRUCTORS

OuterProduct<CLASS1,CLASS2>(const CLASS1& U, const CLASS2& V)

OuterProduct<CLASS1,CLASS2>(CLASS1&& U, const CLASS2&& V)

VARIABLES

CLASS1 U

CLASS2 V
The left and the right factors in the outer product.

BiMatrix<MATRIX1,MATRIX2>

Some composite matrix types mix blocks of different types. For example, each block in a HODLR matrix is
either a low rank matrix (i.e, an OuterProduct) or a smaller HODLR matrix. BiMatrix makes such compos-
ite blocked matrices possible by functioning as a wrapper for two matrices at the same time, of different types.

Derived from: Matrix, (Detachable), (Serializable)

CONSTRUCTORS

BiMatrix<MATRIX1,MATRIX2>(const MATRIX1& M1, const MATRIX2& M2)

BiMatrix<MATRIX1,MATRIX2>(MATRIX1&& M1, const MATRIX2&& M2)

VARIABLES

bool type

Switch to determine whether this object functions as a MATRIX1 or MATRIX2.

MATRIX1 M1

MATRIX2 M2
The alternative matrix object.

8. Index maps

IndexMap

An IndexMap ϕ maps {0, 1, 2, . . . , n−1} to (a subset of) the row or column indices {0, 1, 2, . . . ,m−1} of a
vector or a matrix. IndexMap is normally used in one of the following two ways: (a) to define a subset of
the indices of a vector or a matrix (for example to construct a VectorView), (b) to define a (possibly non-
surjective) mapping from the indices of one vector to the indices of another (for example, in VECTOR::remap).

CONSTRUCTORS

IndexMap(const int n)

An IndexMap with domain {0, 1, 2, . . . , n−1} whose elements are uninitialized.

IndexMap(const initializer list<INDEX> list)

Initialize the IndexMap from the initializer list list.

NAMED CONSTRUCTORS

IndexMap::Identity(const int n)

The identity map from {0, 1, 2, . . . , n−1} to itself.

IndexMap::Random(const int n, const int m)

A random index map from {0, 1, 2, . . . , n−1} to {0, 1, 2, . . . ,m−1}.

CONVERSIONS

IndexMap(const IndexBiMap& psi)

IndexMap(IndexBiMap&& psi)
Upcast an IndexBiMap to an IndexMap.

ELEMENT ACCESS

INDEX& operator()(const int i)

INDEX operator()(const int i) const

Return (a reference to) ϕ(i).

METHODS

void sort()

Permute ϕ from the left so that ϕ(0)≤ϕ(1)≤ . . . ≤ ϕ(n).
IndexMap inverse() const

Compute the inverse map ϕ−1.

IndexMap& applyFromLeft(const IndexMap& psi)

Apply psi to phi in place to get the composite map ψ ◦ ϕ.
IndexMap& applyFromRight(const IndexMap& psi)

Apply psi to phi in place to get the composite map ϕ ◦ ψ−1.

VARIABLES

int nsource n

INDEX* forward

The i’th element of this array is ϕ(i).

IndexBiMap

An IndexBiMap is a bidirectional index map ϕ from ϕ : {1, 2, . . . , n} to {1, 2, . . . ,m}. The map might or
might not be a bijection. If i ∈ {0, 1, 2, . . . , n−1} is not mapped to any {0, 1, 2, . . . ,m−1} by ϕ, forw(i)
(equivalent to operator()(i)) returns -1. Similarly, if j ∈ {0, 1, 2, . . . ,m− 1} is not the preimage of any
i∈ {0, 1, 2, . . . , n−1}, then backw(j) returns -1.

Derived from: IndexMap

CONSTRUCTORS

IndexBiMap(const int k)

An unitialized IndexBiMap from {0, 1, 2, . . . , k−1} to itself.

IndexBiMap(const initializer list<INDEX> list)

Initialize the IndexBiMap from the initializer list list.

NAMED CONSTRUCTORS

IndexBiMap::Identity(const int n)

The identity map from {0, 1, 2, . . . , n−1} to itself.

IndexBiMap::Random(const int n, const int m)

A random index map from {0, 1, 2, . . . , n−1} to {0, 1, 2, . . . ,m−1}.

CONVERSIONS

IndexBiMap(const IndexMap& psi, const int m=-1)

IndexBiMap(IndexMap&& psi, const int m=-1)

Construct an IndexBiMap from ψ with range {0, 1, 2, . . . ,m−1}. If m=-1, then m will be the largest
index in the range of ψ.

ELEMENT ACCESS

INDEX operator()(const int i) const

INDEX forw(const int i)

Return ϕ(i) or −1 is i is not mapped to any element of {1, 2, . . . ,m}.
INDEX backw(const int j)

Return ϕ−1(j) or −1 is j is not the preimage of any i∈ {1, 2, . . . , n}.

METHODS

void sort()

Permute ϕ from the left so that ϕ(0)≤ϕ(1)≤ . . . ≤ ϕ(n).

IndexBiMap& swap(const int i1, const int i2)

Swap the locations where i1 and i2 are mapped.

IndexBiMap inverse() const

Return the inverse map ϕ−1.

IndexBiMap& applyFromLeft(const IndexMap& psi)

Apply psi to phi in place to get the composite map ψ ◦ ϕ.
IndexBiMap& applyFromRight(const IndexMap& psi)

Apply psi to phi in place to get the composite map ϕ ◦ ψ−1.

VARIABLES

int nsource n

int ndest m

INDEX* forward

The i’th element of this array is ϕ(i) (inherited from IndexMap).

INDEX* backward

The j’th element of this array is ϕ−1(j).

BindexMap

A BindexMap ϕ (short for “blocked index map”) maps {0, 1, 2, . . . , n−1} to (a subset of) the row or column
indices of a blocked vector or a blocked matrix. Therefore, for any i∈ {0, 1, 2, . . . , n−1}, ϕ(i) is a block/index
pair (J, j) stored in an iipair object.

CONSTRUCTORS

BindexMap(const int n)

An uninitialized index map with domain {0, 1, 2, . . . , n−1}.
BindexMap(const initializer list<iipair> list)

Initialize the BindexMap from the initializer list list (see example1.cpp).

NAMED CONSTRUCTORS

BindexMap::Identity(const Bstructure& st)

Construct the identity index map from {0, 1, 2, . . . , n− 1} to st.

ELEMENT ACCESS

iipair& operator(const int i)

iipair operator(const int i) const

Return (a reference to) ϕ(i).

VARIABLES

int nsource n

vector<iipair>

The i’th element of this vector is ϕ(i).

BtoBindexMap

A BtoBindexMap ϕ : (I, i) 7→ (J, j) (short for “blocked to blocked index map”) maps the (row or column)
indices of one blocked vector or matrix to the (row or column) indices of another.

CONSTRUCTORS

BtoBindexMap(const int bsource)

An uninitialized index map with nsource blocks in its domain.

NAMED CONSTRUCTORS

BtoBindexMap::Identity(const Bstructure& st)

Construct the identity index map from an index set of structure st to itself.

CONVERSIONS

BtoBindexMap(const BtoBindexBiMap& psi)

BtoBindexMap(BtoBindexBiMap&& psi)
Upcast psi to a BtoBindexMap.

ELEMENT ACCESS

iipair& operator(const int I, const int i)

iipair operator(const int I, const int i) const

iipair& operator(const iipair& ip)

iipair operator(const iipair& ip) const

Return (a reference to) ϕ((I, i)).

METHODS

BtoBindexMap inverse() const

Return the inverse of ϕ (if it exists).

VARIABLES

int nsource The number of source blocks

vector<BindexMap> forward

The I’th element of this array is the BindexMap describing where each element of the I’th source block
is mapped.

BtoBindexBiMap

A BtoBindexBiMap ϕ is a bidirectional BtoBIndexMap mapping the (row or column) indices of one blocked
vector or matrix to the (row or column) indices of another.

Derived from: BtoBindexMap

CONSTRUCTORS

BtoBindexBiMap(const int bsource, const int bdest)

An uninitialized BtoBindexBiMap with bsource source blocks and bdest destination blocks.

NAMED CONSTRUCTORS

BtoBindexBiMap::Identity(const Bstructure& st)

Construct the identity index map from an index set of structure st to itself.

CONVERSIONS

BtoBindexBiMap(const BtoBindexMap& psi)

BtoBindexBiMap(BtoBindexMap&& psi)
Construct a bidirectional index map from psi.

ELEMENT ACCESS

iipair operator(const int I, const int i) const

iipair operator(const iipair& ip) const

iipair forw(const int I, const int i) const

iipair forw(const iipair& ip) const

Return ϕ((I, i)).

iipair backw(const int J, const int j) const

iipair backw(const iipair& jp) const

Return ϕ−1((J, j)).

METHODS

BtoBindexMap inverse() const

Return the inverse of ϕ (inherited from BtoBIndexMap).

VARIABLES

int nsource

The number of source blocks (inherited from BtoBindexMap).

int ndest

The number of destination blocks.

vector<BindexMap> forward

The I’th element of this array is the BIndexMap describing where each element of the I’th source block
is mapped (inherited from BtoBindexMap).

vector<BindexMap> backward

The J ’th element of this array is the BIndexMap describing where each element of the J ’th source block
is mapped by ϕ−1.

Activemap

Various algorithms involve eliminating rows/columns of a matrix one-by-one. An Activemap is an IndexBiMap
that is used in such situations to keep track of which rows/columns are active at any point in time.

Derived from: IndexBiMap

CONSTRUCTORS

Activemap::AllActive(const int n)

An active map in which all the indices {0, 1, 2, . . . , n−1} are initialized to be active.

Activemap::NoneActive(const int n)

An active map in which all the indices {0, 1, 2, . . . , n−1} are initialized to be inactive.

ELEMENT ACCESS

INDEX operator()(const int i)

Return the i’th active index (it is assumed that i < nactive, and the indices do not necessarily appear
in order).

MAPPING OVER ELEMENTS

void for each active(std::function<void(const INDEX)> lambda)

Apply the function lambda to each active index.

ACTIVATING/DEACTIVATING INDICES

void activate(const int j)

void deactivate(const int j)

Add/remove j to/from the list of active indices.

void activate at pos(const int j)

void deactivate at pos(const int j)

Add/remove the index at the i’th position to/from the list of active indices.

METHODS

INDEX random()

Return one of the nactive active indices, chosen uniformly at random.

IndexMap sample(const int k)

Sample k indices uniformly at random (without replacement) from the list of active indices.

VARIABLES

nactive

The number of active indices, nactive.

Bactivemap

Bactivemap is the analog of Activemap for indexing into blocked vectors/matrices.

Derived from: BindexBiMap

CONSTRUCTORS

Bactivemap::AllActive(const Bstructure& st)

An active map in which all the indices are initialized to be active.

Bactivemap::NoneActive(const Bstructure& st)

An active map in which all the indices are initialized to be inactive.

ELEMENT ACCESS

iipair operator()(const int i)

Return the i’th active index block/index pair (J, j) (it is assumed that i < nactive.)

MAPPING OVER ELEMENTS

void for each active(std::function<void(const iipair)> lambda)

Apply the function lambda to each active (J, j) pair.

ACTIVATING/DEACTIVATING INDICES

void activate(const iipair& p)

void activate(const int J, const int j)

Add (J, j) to the list of active block/index pairs.

void deactivate(const iipair& p

void deactivate(const int J, const int j)

Remove (J, j) from the list of active block/index pairs.

void activate at pos(const int i)

void deactivate at pos(const int i)

Add/remove the block/index pair at the i’th position to/from the list of active indices.

METHODS

INDEX random()

Return one of the nactive active block/indices pairs, chosen uniformly at random.

IndexMap sample(const int k)

Sample k block/index pairs uniformly at random (without replacement) from the active list.

VARIABLES

nactive

The number of active block/index pairs, nactive.

Multithreading

9. Basic multithreading

ThreadManager

Every Mondrian program must have a single global ThreadManager object, called threadManager (defined
in the Mondrian base.inc) which coordinates the sequence in which MultiLoop and ThreadBank objects
launch threads. Amongst other things, threadManager ensures that the system’s limit on the number of
enqued threads is not exceeded.

Note that “launching” a thread in this context really means passing it to the system’s own low level
thread scheduler. Similarly, by the number of active threads we mean the number of threads that are either
running or waiting to be launched by the low level scheduler.

CONSTRUCTORS

ThreadManager(const int maxthreads)

Construct a ThreadManager object, which will limit the total number of active threads (i.e., running or
queued to the low level scheduler) to maxthreads. In general, there is no advantage to maxthreads

exceeding the number of cores on the system.

METHODS

void enqueue(ThreadBank* bank)

Add bank to the list of ThreadBank objects waiting to launch a new thread. When a new slot becomes
available (i.e., nthreads falls below maxthreads), the manager will signal to one of the ThreadBank

objects on this list that it may launch a single new thread (see release).

void release(ThreadBank* bank)

This function is called when a thread from bank terminates. It decrements bank’s number of active
threads and attempts to find another ThreadBank waiting to launch a new thread in place of the one
that is terminating.

int get nthreads()

Return the number of active threads, not counting privileged threads (see ThreadBank).

69

MultiLoop

MultiLoop is the simplest multithreading class in Mondrian, which simply implements a parallel for loop.
Internally, every MultiLoop instance has its own ThreadBank.

CONSTRUCTORS

MultiLoop(const int n, std::function<void(int)> lambda)

Execute the function lambda(const int i) a total of n times, in parallel, with i set to 1, 2, . . . , n.

ThreadBank

The ThreadBank class is used to spawn independent threads in a given block of code and then wait for
them to finish (the ThreadBank’s destructor joins all the threads, therefore the code will wait on all the
threads to finish before exiting the block). In addition to the global number of active threads being limited
by threadManager.maxthreads, each ThreadBank can individually limit how many of its threads may be
active at any one time. This can be useful for balancing resources in situations where multiple threads spawn
further threads of their own via separate ThreadBank objects.

Another issue that may arise when n threads each attempt to launch further threads is that the global
thread manager delays each of them because n already counts towards the number of active threads. To
avoid this problem, each ThreadManager instance is allowed to have a certain number of “privileged” threads
that do not count towards the grand total.

CONSTRUCTORS

ThreadBank(const int maxthreads=1000, const int maxprivileged=1)

Construct a new ThreadBank in which the number of active threads is limited to maxthreads, and
which has the given number of privileged threads.

METHODS

void add(FUNCTION lambda, const OBJ x)

Launch lambda as an independent thread with argument x. The type of lambda must match the type
of x. For example if OBJ is int, FUNCTION might be std::function<void(int)>. If the global limit
on the number of active threads has not been reached, lambda is launched immediately. Otherwise,
execution stalls until the global thread manager signals that a slot has become available.

void add(FUNCTION lambda, const OBJ1 x1, const OBJ2 x2)

void add(FUNCTION lambda, const OBJ1 x1, const OBJ2 x2, const OBJ3 x3)
The same as above, but with multiple arguments.

bool is ready()

True if this ThreadBank has a launchable thread, and is waiting on the global manager for permission
to launch it.

10. Atomic objects

AtomicVector<VECTOR>

When multiple threads concurrently try to access the same vector, race conditions may occur. This issue
is particularly serious for sparse vectors, because if one thread forces the underlying data structure (such
as an stl::vector for Vectorv) to be reorganized, and another thread attempts to access it before the
reorganization is complete, the code may crash.

The AtomicVector wrapper solves this problem by using a mutex to ensure that any one time only on
thread is allowed to write to the vector. Read accesses are not protected from race conditions. In every
other aspect AtomicVector<VECTOR> behaves the same way as a VECTOR object.

Derived from: VECTOR, (Vector),

PROTECTED MEMBER FUNCTIONS

void for each(std::function<void(INDEX,SCALAR&)> lambda)

VECTOR& operator+=(const SCALAR c)

VECTOR& operator-=(const SCALAR c)

VECTOR& operator*=(const SCALAR c)

VECTOR& operator/=(const SCALAR c)

VECTOR& operator+=(const VECTOR& x)

VECTOR& operator-=(const VECTOR& x)

void apply(const OPERATOR& Q)

void applyInv(const OPERATOR& Q)

VARIABLES

mutex mx

The mutex used to block concurrent write accesses to v.

AtomicMatrix<MATRIX>

AtomicMatrix<MATRIX> functions similarly to AtomicVector<VECTOR> but for matrices.

Derived from: MATRIX, (Matrix)

PROTECTED MEMBER FUNCTIONS

void for each(std::function<void(INDEX,INDEX,SCALAR&)> lambda)

void for each in row(const int i, std::function<void(INDEX,SCALAR&)> lambda)

void for each in column(const int j, std::function<void(INDEX,SCALAR&)> lambda)

MATRIX& operator+=(const SCALAR c)

MATRIX& operator-=(const SCALAR c)

MATRIX& operator*=(const SCALAR c)

MATRIX& operator/=(const SCALAR c)

MATRIX& operator+=(const MATRIX& x)

MATRIX& operator-=(const MATRIX& x)

MATRIX& MultiplyRowsBy(const Cvector& v)

MATRIX& DivideRowsBy(const Cvector& v)

MATRIX& MultiplyColsBy(const Cvector& v)

MATRIX& DivideColsBy(const Cvector& v)

void applyFromLeft(const OPERATOR& Q)

void applyFromLeftInv(const OPERATOR& Q)

void applyFromRight(const OPERATOR& Q)

void applyFromRightInv(const OPERATOR& Q)

Other Objects

11. Wrappers

Detached<CLASS>

The Detached<CLASS> wrapper allows constructing an interface to data stored in another object (called the
mother object). The resulting object is said to be detached, because deleting it does not delete the mother
object (of type CLASS). This mechanism is often used in situations where normally bare pointers might be
employed.

The Detached wrapper works by overriding the destructor of the underlying object, together with some
of its copy constructors and assignment operators. Any Mondrian object can be detached in this way, as
long as its type, CLASS, is derived from the abstract property class Detachable. In particular, CLASS must
define the shallow copy function shallow().

Derived from: CLASS

Dependent on: The mother object (of type CLASS).

73

Bibliography
[1] Gaël Guennebaud, Benôıt Jacob, et al. Eigen, version 3. http://eigen.tuxfamily.org, 2010.

[2] Risi Kondor, Nedelina Teneva, and Pramod K. Mudrakarta. pMMF: a parallel MMF library. Hosted at
https://github.com/risi-kondor/pMMF, 2015.

[3] The GNU Public License, version 3. http://www.gnu.org/licenses/gpl-3.0.en.html, 2007.

74

http://eigen.tuxfamily.org
https://github.com/risi-kondor/pMMF
http://www.gnu.org/licenses/gpl-3.0.en.html

	Overview
	Usage
	-6pt Installation
	-6pt Customization
	-6pt Calling Mondrian objects

	Tutorial Examples
	-6pt 1. Basic matrix/vector operations
	-6pt 2. Accessing matrix/vector elements
	-6pt 3. Copying, moving and assigning objects
	-6pt 4. Mapping functions over vectors and matrices

	-10ptClasses2pt
	General design
	Standard methods
	Property classes
	Packages
	Downcasting operators

	Vectors and matrices
	-6pt 1. Basic vectors
	Vector
	Cvector
	Vectorv, Vectorl, Vectorh
	GenericVector

	-6pt 2. Basic matrices
	Matrix
	Cmatrix
	MatrixX<VECTOR>
	GenericMatrix

	-6pt 3. Specialized matrices
	SymmCmatrix
	SymmMatrixX<VECTOR>
	CmatrixLA

	-6pt 4. Blocked vectors/matrices
	BlockedVector<VECTOR>
	BlockedMatrix<MATRIX>

	-6pt 5. Vector/matrix views
	VectorView<VECTOR>
	MatrixView<MATRIX>
	BlockedVectorView<VECTOR>
	BlockedMatrixView<MATRIX>

	-6pt 6. Active vectors/matrices
	ActiveVector<VECTOR>
	OrderedVector<VECTOR>
	AccumulatedVector<VECTOR>

	Operators, etc.
	-6pt 7. Operators
	GivensRotation
	KpointOp<k>
	MatrixSum<MATRIX>
	MatrixProduct<MATRIX>
	OuterProduct<CLASS1,CLASS2>
	BiMatrix<MATRIX1,MATRIX2>

	-6pt 8. Index maps
	IndexMap
	IndexBiMap
	BindexMap
	BtoBindexMap
	BtoBindexBiMap
	Activemap
	Bactivemap

	Multithreading
	-6pt 9. Basic multithreading
	ThreadManager
	MultiLoop
	ThreadBank

	-6pt 10. Atomic objects
	AtomicVector<VECTOR>
	AtomicMatrix<MATRIX>

	-6pt 11. Parallelized objects
	MatrixXm<VECTOR>
	SymmMatrixXm<VECTOR>

	Other Objects
	-6pt 12. Wrappers
	Detached<CLASS>

	Bibliography2pt

