PMMF: a C++ library for parallel multiresolution
nmatrix factorization

Risi Kondor, Nedelina Teneva and Pramod K. Mudrakarta
Department of Computer Science, The University of Chicago

Working draft, August 2015

Contents

1. Overview
MMFand pMMF e
Algorthms . . . o o
Design . . .

2. Using the library
Installation
Customization

3. Tutorial examples
1. Basic class functionality
2. Asimple MMF computation

4. The pMMF classes
0. Global objectsand variables
1. Vector Classes e
Vector e e e e e e e
CVeCTOoT . . . o e e e e e e e e e
SparseVector L e
Vectorv e e e e e e e e e s e e

SVpair
2. MatriXx ClASSES e
MatriX . . . e e e e e e e e e s e s e e
CmatrixX e e e e e e e e e e e e e e
MatrixX<COLUMNTYPE> o i ittt e i e e e e e e e s s

3. Blocked vector/matrix classes
BlockedVector<VECTOR> e e e e e e e e e e
BlockedMatrix<MATRIX> e e e e e
Street<MATRIX> L e e e e e e e
Tower<MATRIX> o o e e e e e e e
BlockedRemap L e

4. The MMF CIASSES o o
MME . . e e e e e e e e e
MMFparams o i i e e e e e e e e e e e e e
MMEstage o e e e e e e e e e e e
MMEchannel e e e e e e e e e e e e e

MMFmatrix<MATRIX> o e e e
MMFprocess<MATRIX> e
WaveletTransform<VECTOR> it
S.Helperclasses e
GivensRotation L L L e e e
KpointRotation L
Log . o e e e
6. Filetype classes e
MatrixFile o o o e e

Bibliography

1. Overview

Multiresolution Matrix Factorization (MMF) has applications in matrix compression, solving large linear
systems, constructing wavelet bases on graphs, and learning problems [1]. The first efficient parallel algorithm
for computing MMF factorizations was introduced in [2].

pMMF is an open source software library implementing the algorithm described in [2], specifically designed
for large scale MMF computations on modern multi-core and multi-processor computer architectures. pMMF is
written in C++4, but also provides a MATLAB interface to its core functionality.

PMMF is optimized for speed and minimizing memory footprint. To maximally fulfill these objectives,
the library defines its own vector, matrix and blocked matrix classes. The design of the library emphasizes
modularity and expansibility, and follows a consistently object oriented approach.

PMMF is free software, released into the public domain in source code format under the terms of the GNU
Public License (GPL) version 3.0 [3]. Users are encouraged to modify and extend the code, incorporate
it in their own projects, and distribute it to others. However, all derived code must also carry the GPL
license, and commercial use is restricted. The copyright to pMMF and to this documentation is retained by
the authors, Risi Kondor, Nedelina Teneva and Pramod K. Mudrakarta. The authors reserve the right to
separately license the code in part or in whole for commercial use.

MMF and pMMF

In the following, [n] denotes the set {1,2,...,n}. Given a matrix A € R™*" and two ordered sets Sy, Se C [n],
Ag, s, denotes the |Sy[x|S2| dimensional submatrix of A cut out by the rows indexed by S; and the columns
indexed by Ss. Given S C [n], S denotes [n]\S. A.; or [A].; denotes the i’th column of A.

The notation B1WUBsU...UB,, = [n] signifies that the sets By, ..., By, form a partition of [n].

Multiresolution Matrix Factorization (MMF)

Given a symmetric matrix A € R"*", the Multiresolution Matrix Factorization (MMF) of A is a
multi-level approximate factorization of the form

ArQ{ ...QL_1QIHQLQr 1...Qx, (1)

where Q1,...,Qyr is a sequence of carefully chosen orthogonal matrices (rotations) obeying the following

constraints:

MMF1. Each Qy is chosen from some subclass Q of highly sparse orthogonal matrices. In the simplest case,
Q is the class of Givens rotations, i.e., orthogonal matrices that only differ from the identity

matrix in the four matrix elements

[le}i = COSO, [Qz]i,i = —sin 9,
[Qelj,i = sin®, (Q¢]j,; = cos 0,

for some pair of indices (4,j) and rotation angle 6. Alternatively, @ may be the class of so-called
k—point rotations, which rotate not just two, but & coordinates, (i1,...,x).

MMF2. The effective size of the rotations decreases according to a set schedule n =y > 61 > ... > 0, i.e.,
there is a nested sequence of sets [n] = Sp 2 S1 2 ... 2 Sy, with [S¢| = &, such that [Q/]5,— 5 is
the n—4§,_1 dimensional identity. Sy is called the active set at level £. In the simplest case, exactly
one row/column is removed from the active set after each rotation.

MMF3. H is Sy—core-diagonal, which means that it is all zero, except for (a) the submatrix [H]s, s, ,
called its core, and (b) the rest of its diagonal.

Moving Q1,Qa, ..., Qr over onto the left hand side of (1), MMF can be represented graphically as

N~ ()L) ([W)-(N)-(N) e

Here P is a permutation matrix whose purpose is to ensure that S1,.S,...,Sy, always comprise the first oy
indices in [n]. P is introduced solely for the sake of making the MMF structure easier to visualize: an actual
MMF factorization would not involve such an explicit permutation matrix.

Parallel Multiresultion Matrix Factorization (oMMF)

In a Parallel Multiresolution Matrix Factorization (pMMF) the Q1,Q2,...,Qr rotations satisfy
additonal block diagonality constraints. Given a partition By U Bo U ... By, of [n], we say that a matrix
M e R"*" is (By,..., By)-block-diagonal if M; ; =0 unless ¢ and j fall in the same set B,, for some u.
In a pMMF, By U...d B,, is formed by clustering the rows/columns of A. Constraining a rotation @ to be
(B1,. .., By)-block-diagonal is equivalent to requiring that it only mix rows/columns of A within clusters
rather than across clusters.

Similarly to e.g., block Jacobi methods, imposing such a block structure on the Q,’s can greatly reduce
the time required to compute the (approximate) MMF factorization of large matrices, especially on multi-
processor machines. Clustering also meshes well with the notion of locality, one of the key ingredients of the
Harmonic Analysis theory behind MMF.

However, imposing a single, fixed block structure on all of the @Q;’s would be too restrictive, effectively
decoupling the MMF into m separate factorizations. Instead, pMMF groups Q1,Q2,...,Q into P sub-
sequences (Q1,...,Qun), (Qr+1,---,Q1s)y -y (Qip_y+1,---,Q1p), and allows each subsequence to have its
own clustering structure BY ... BP,. The p’th subsequence is called the p’th stage of the factorization.
Letting Q, = Qu, ---Qu,_,, this results in a factorization of the form

A~Q Qs .. QpHQp... Q0 (3)

where each Q,, is (BY,..., B?,)-block diagonal.

The big advantage of pMMF is that given the partition B} U... B2, each diagonal block [Q,]p, 5.
of CZ, can be computed independently of the other blocks. The pMMF algorithm described in [2] exploits
this fact, as well as some other computational tricks, to fully parallelize the factorization. Empirically, the

running time of pMMF has been observed to scale close to linearly in n, assuming that A is sparse.

Algorithms

Fixing 9, L, and 41,02, ...,0r, in general, there is no guarantee that one can find an exact factorization

A=Q] ..Q 1QIHQLQL 1...Q, (4)

where @1, @2, ...,Qr and H obey the MMF constraints, MMF1-MMF3. If an exact factorization does exist,
there is no guarantee that it is unique.

Consequently, rather than trying to find a single perfect factorization, MMF algorithms usually take an
optimization approach, trying to find a combination of the sets S, S5, ..., Sy and the rotations @1, Qs, ..., QL
that minimize some notion of error quantifying how close H is to core-diagonal form. The optimization prob-
lem is attacked in a greedy way, taking A through the sequence of transformations

Ar— QAQ{ — Q2Q1AQ{Q; — @Q3Q:Q1AQ{Q,Q3 — ...,
Ay Ao As

choosing each Qg so as to minimize the “out-of-core energy” of the next matrix, A, (see [1] for details).
Parallel MMF similarly maps

A — @1A@1T — @2@1A@1T@2T — @3@2@1A§1T@2T@?)T —
— D e— ~

A1 A2 AS

However, now
(a) Each stage A,_1 + A, also involves finding the clustering B} U ... BP, for the active part of A, ;.

(b) Each Q, is a (BY,..., BE,)-block diagonal matrix in which each diagonal block [@,]5, B, is a product
of a potentially large number of separate rotations from Q.

Parallel MMF computes each [Q,]B,, B, block independently and in parallel with the other blocks.

Given a partition B;WBaU...UBy, of [n], the blocked matrix form of M € R™*™ conceives of M as the
union of mxm smaller matrices, { Mp, 5, };’fj:l. Storing large matrices in blocked form potentially has many
advantages, especially if the different blocks can be allocated to different processors or different machines.

A key observation in pMMF is that not only @p, but Zp,l can also be stored in blocked matrix form.

Moreover, computing the u’th block of rotations, [@p] B..B.,, only requires the part of A, ; formed by the

column of blocks {[A,-1]5,.5, }™,. Therefore, once A, 1 has been separated into m xm blocks according to
BYYUBE\. . .UBP | each column of blocks can be sent to a different processor or machine, which can perform all

computations necessary to determine the appropriate [Qp] B.,B, block without having to communicate with
the other m—1 processors/machines. Once all the [@,] 5, 5, rotations have been determined, the matrix A, is

reassembled and reblocked according to the next clustering, BY ty BSH W...WBPFL Efficiently performing
this repeated blocking and reblocking process with minimum communication overhead is a critical component
of pMMF.

Another important point is that given the size of matrices that pMMF is designed for, the @p matrices or

the [Q,]B, B, blocks must not be stored in explicit matrix form. Rather, pMMF defines specialized classes for
Givens rotations and k—point rotations (consisting of minimal data structures comprising only the indicies
and coefficients), and stores @p as a sequence of these elementary objects.

In many downstream applications of MMF, including preconditioning and other numerical linear algebra
tasks, the factorized form of A is used to repeatedly multiply a vector v. Once again, this operation is
performed by multiplying v by the rotations individually with specialized routines, rather than expressing
the rotations in matrix form. Moreover, to parallelize this operations as well, v is blocked just like the @p
matrices.

Design

The pMMF library is made up of: (a) the pMMF base system, comprising all the classes involved in the mechanics
of computing MMF factorizations (b) various add-on modules, including, or soon to include code for:

(i) preconditioning and solving linear systems

(ii) visualization
(iii) the MATLAB interface.

The library’s object oriented design makes the code highly modular, and easy to adapt to new hardware
environments. For example, to port the library to a new type of multiprocessor or GPU architecture,
users can simply replace the performance-critical sparse matrix classes with their own hardware specific

implementations. The pMMF classes form the following hierarchy:

‘ MATLAB interface and other add-ons ‘

A

|

Core MMF classes

|

A

|

Blocked matrix/vector classes

|

A

Matrix/vector classes

A

Filetype classes

A

Helper classes

A

C++ base system and STL library

|

A class at a given level in the hierarchy may only depend on classes at the same or lower levels.

2. Using the library

Installation

pMMF is distributed in C+4+4 source code format. The library makes extensive use of the Standard Template
Library and C++411 specific language features, therefore compiling it requires a C+411 compatible compiler,
such as clang. Newer versions of gcc also support C++11, but only on an experimental basis.

Optional dependencies

The pMMF base system is designed to be stand alone software and does not require anything beyond a standard
C++11 installation. However, some of the added functionality does use external libraries:

1. The preconditioning functions, and certain other routines require standard linear algebra operations,
such as matrix inversion, computing eigenvectors, etc.. To use the Eigen template library for these
operations, compile the code with the option _withEigen. To use LAPACK, compile the code with
_withLAPACK. If neither library is specified, pMMF will still compile, but some of its functionality will be
unavailable.

2. To compile pMMF with Matlab file support, make sure that MatIO0 is installed on your system, and compile
the library with the option _withMatIO.

3. To include support for the Boeing matrix file format, install hb_io on your system, and compile the
library with the option _withMatIO.

Customization

Preprocessor variables

The following user definable preprocessor variables are set in the global header file pMMFbase . hpp.

Variable name Default Description
_UTILITYCOPYWARNING Deep copying/assigning large objects is an expensive operation
_MATRIXCOPYWARNING undefined which, for the most part, should be avoided. If these variables
_BLOCKEDCOPYWARNING are defined, a warning will be written to cout whenever an object
_MMFCOPYWARNING of the given category is copied or assigned.

Typedefs

The following user definable typedefs are also set in pMMFbase . hpp.

Type name | Default | Description

FIELD double | The basic numeric type used in all Vector and Matrix objects, as well as most
computations.
INDEX int The type used for vector/matrix indices. Not yet consistently implemented.

Global variables

The following global variables are defined in the global include file pMMFglobal.inc, but their value can be
changd dynamically, during run time.

Variable name Default | Description

int mlog.verbosity 0 The verbosity level (from 0 to 6).

bool multithreading true Multithreading is disabled if false.

int threadManager.maxthreads | 4 The maximum number of threads that can be simultane-
ously active.

3. Tutorial examples

The directory examples cointains a number of example programs to showcase different features of pMMF.

1. Basic class functionality

The example basic.cpp uses the Cmatrix class (which stands for “C-style dense matrix”) to demonstrate
some of the basic functionality implemented in almost all pMMF classes, including deep copying and move-
assignment, loading/saving to binary file, and self-reporting via the overloaded << operator.

#include "Cmatrix.hpp"
#include "pMMFglobal.inc" // Include this in all top level executables
int main(int argc, char*x argv){
Cmatrix A(4,4); // Construct a 4-by-4 dense matrix called A
for(int i=0; i<4; i++) // Fill its entries
for (int j=0; j<4; j++)
A(i,j)=i+j;
cout <<"A="<<endl<<A<<endl; // Print out A
Cmatrix B(A); // Construct a copy of A
cout <<"B="<<endl <<B<<endl; // Print out B
B=AxA; // Now set B=Ax*A
cout <<"B="<<endl<<B<<endl; // Print it out again
B.save ("B.bin"); // Save B to a file called ’B.bin’
Bifstream ifs("B.bin"); // Load it into a new matrix called C
Cmatrix C(ifs);
cout <<"C="<<endl<<C<<endl; // Print out C
}

The output of this code is as follows.

.000
.000
.000
.000

.000 2.000
.000 3.000
.000 4.000
.000 5.000

.000
.000
.000
.000

L R R i
w N = O
W N
o O bW
—_ e

WARNING: Cmatrix copied.
B=

[.000
.000
.000

.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

— e
w N = O
W N e
o W N
o O b W
—_ e

[14.000 20.000 26.000 32.000
[20.000 30.000 40.000 50.000
[26.000 40.000 54.000 68.000
[32.000 50.000 68.000 86.000

— e

[14.000 20.000 26.000 32.000
[20.000 30.000 40.000 50.000
[26.000 40.000 54.000 68.000
[32.000 50.000 68.000 86.000

— e

Note the warning generated by the copy constructor in the line ’Cmatrix B(A)’. This warning can be
suppressed by commenting out the definition of the preprocessor variable MATRIXCOPYWARNING in pMMF . hpp.

Also note that the assignment ’B=A*A’ does not generate a warning, despite the fact that, at first sight,
it also seems to involve copying a matrix object. This is because A*A is a temporary (or a so-called rvalue),
and so, rather than invoking the regular assignment method ’Cmatrix& operator=(const Cmatrix& y)’,
the compiler invokes the move-assignment operator ’Cmatrix& operator=(Cmatrix&& y)’, which avoids
making an explicit deep copy of y, effectively by pilfering its contents. This C4++11 construct is extensively
used in pMMF to avoid unnecessarily copying large objects.

10

2. A simple MMF computation

The following program, randomMMF . cpp computes the MMF of a random symmetric matrix.

#include "MMF.hpp"

#include "pMMFglobal.inc"

int main(int argc, char**x argv){
mlog.verbosity=4;
Cmatrix A=Cmatrix::RandomSymmetric (12);

MMF mmf (A, MMFparams::k(2));

11

4. The pMMF classes

This section describes the APIs of some of the more important pMMF classes. For brevity, not all classes are
listed, and not all methods/variables are necessarily listed for each class.

PMMF makes extensive use of inheritance. In accordance with C++ terminology, the parent class is referred
to as to as the base class and the child class is referred to as the derived class. A base class whose sole
function is to define a common interface for its descendants, and no actual objects can be of that class
directly (in particular, because it has “pure virtual” functions), is called an abstract class.

PMMF also uses templates. The template argument is always in uppercase. For example, VECTOR stands
for a generic vector class, MATRIX stands for a generic matrix class, and so on.

An object x is said to own another object y if (a) x has the information for accessing y in memory; (b)
when x is deleted, it is responsible for also deleting y. As usual in C++, there are two ways that x can own
y: either y is explicitly a member variable of x, or x has a pointer to y. Whenever the latter happens, it is
explicitly indicated in the class descriptions.

Standard methods

The following standard methods/functions are not listed separately for each class, because they implemented
by almost all classes. Here CLASS is the name of the class and x is the class instance.

CONSTRUCTORS

CLASS(const CLASS& y)
Construct a deep copy of the object y. Recall that making a deep copy involves copying not just the
member variables of y, but also recursively constructing a copy of every object owned by y.

CLASS(CLASS&& y)
Move-construct y. In C++11, && signifies an rvalue reference, so this method is invoked instead of the
regular copy constructor when y is a temporary, which allows it to “move” each object owned by y
(i.e., just change their ownership), rather than copying them, potentially resulting in large run-time
savings. pMMF extensively uses such “move semantics”.

DESTRUCTOR

~CLASS()
Recursively delete every object owned by x, and then delete x itself.

12

ASSIGNMENT OPERATORS

CLASS& operator=(const CLASS& y)
Delete the current content of x, make x a deep copy of y, and finally return a reference to x.

CLASS& operator=(CLASS&& y)
Move-assign y to x. The same as above, except with move semantics, similarly to the move-copy
constructor.

DEBUGGING

string str()
Return a human-readable representation of x as a string. In some classes, str can take arguments, for
example, Dense (), to signify that a matrix is to be printed to string in dense format.

ostream ::operator<<(ostream os, const CLASS& x)
Write a human-readable representation of x to the stream os. Note that, as signified by the : :, this is
a global function, rather than a method of CLASS.

Serialization

Most core classes in pMMF can load/save their instances from/to files in binary format via the classes
Bifstream and Bofstream using a process called serialization. Serialization is a recursive process, whereby
a given object first loads/saves its member variables, then serializes every other object that it owns. All
serializable classes are derived from (i.e., children of) the abstract class Serializable, and implement each
of the following methods.

LOADING

CLASS (Bifstream& ifs)
Construct a new object of class CLASS by loading it from ifs.

SAVING

serialize(Bofstream& ofs)
Serialize the object to ofs.

save(const char* filename)
Save the object to a file named filename by serialization.

13

0. Global objects and variables

The following global objects are defined in the file pMMFglobal.inc, which must be #include-ed in all top
level source files (i.e., .cpp files that have a main function).

GLOBAL OBJECTS

Log mlog
The object to which status/log messages are written. The level of verbosity is controlled by the variable
mlog.verbosity. A verbosity level of 0 corresponds to the fewest log messages and 6 corresponds to
the most.

ThreadManager threadManager
This class controls the number of queued or active threads. The maxixmum number of threads is set
by threadManager .maxthreads.

GLOBAL VARIABLES

bool multithreading
Multithreading is enabled if true.

14

1. Vector classes

The abstract class Vector provides the generic API for all pMMF classes representing vectors in R™. In ad-
dition to the usual basic linear algebra operations, any class derived from Vector must have methods for
applying Givens rotations and k—point rotations to the vector. DenseVector and SparseVector are abstract
classes that specialize Vector to the dense and sparse cases.

The basic dense vector class is Cvector, which stores v € R" as a plain C-style array FIELD [n]. Vectorv,
Vectorl and Vectorh are sparse vector classes which respectively store v using the std: :vector, std::1list
and std: :unordered map Standard Template Library containers.

T

Sparsevector

| T

Vector

Vector is the abstract class that defines the common interface to all classes used to represent vectors, v € R™.
Any class VECTOR derived from Vector must provide the following constructors and methods.

CONSTRUCTORS

VECTOR (const int n)
A new n dimensional vector. Storage is allocated but the entries of v may not be initialized.

NAMED CONSTRUCTORS

VECTOR: : Zero(const int n)
The n dimensional zero vector.

VECTOR: :Random(const int n)
A random vector in which each component is drawn from the uniform distribution on [0, 1].

ELEMENT ACCESS

FIELD& operator() (const int i)
Returns a reference to the i’th component of v. This can be used to both read v; and to set its value.
For sparse vector classes, if there is no (index,value) pair with index 4, this method may add a new
(index,value) pair, even when used to just read v. If this is undesirable, use the read method instead.

FIELD operator() (const int i) const
The const version of the above, which can be used to read v;, but not set it. Unlike the previous
method, this does create a new (index,value) pair.

FIELD read(const int i) const
Synonym of the above, intended to guarantee side-effect free behavior, even when v is not const.

void foreach(std::function<void (INDEX,FIELD&)> lambda)
Applies the function lambda to each filled-in entry of v.

bool isFilled(const int i) comnst
Returns true if element i is filled in (i.e., if the vector contains an (index,value) pair with index i).
For dense vectors always true.

int nFilled() const
The number of filled-in entries of v.

SCALAR VALUED OPERATIONS

int nnz() const
The number of non-zero elements of v. Different from nFilled in that it does not count zero-valued,
but filled in elements.

16

int argmax() const

int argmax_abs() const
The index of the largest (resp. largest in absolute value) component of v. If not unique, then the index
of the first (lowest index) maximal component is returned.

FIELD norm2() const
The squared fo—norm ||v]|?.

FIELD diff2(const VECTORCLASS& x) const
The squared ¢o—norm difference ||v —z||?.

FIELD dot(const VECTORCLASS& x) const
The dot product of v with x.

IN-PLACE OPERATIONS

VECTOR& operator*=(const FIELD c)
VECTOR& operator/=(const FIELD c)
Multiply /divide v by the scalar c.

VECTOR& operator*=(const Cvector& x)
VECTOR& operator/=(const Cvector& x)
Elementwise multiply/divide v by the vector «.

VECTOR& operator+=(const VECTOR& x)
VECTOR& operator-=(const VECTOR& x)
VECTOR& operator*=(const VECTOR& x)
VECTOR& operator/=(const VECTOR& x)
Elementwise add/subtract/multiply/divide v by the vector x.

void apply(const GivensRotation& Q)
void apply(const KpointRotation& Q)
void applyInverse(const GivensRotation& Q)
void applyInverse(const KpointRotation& Q)
Apply the (inverse of the) Givens or k—point rotation @ to v.

VECTOR& add(VECTOR& x, const FIELD c=1)
Add c times @ to v. The methods in MatrixX implementing rotations from the right use this operation
as their primitive, so efficiency is critical.

VARIABLES

int n
The dimension n.

17

Cvector

The plain vanilla C-style dense vector that stores its entries in a simple array of type FIELD [n]. The interface
of Cvector is inherited from Vector via DenseVector.

Derived from: DenseVector, Serializable

VARIABLES

FIELD* array
The array of vector elements.

SparseVector

MMFc has three different classes to represent sparse vectors: Vectorv, which represents v as an unordered
list of (4,v;) pairs, implemented as an std::vector container; Vectorl, which represents v as an ordered
list of (4,v;) pairs, implemented as an std::1list container; and Vectorh, which represents v as a hash
map, implemented with std: :unordered map. SparseVector provides the common interface to these three
classes.

Derived from: Vector

METHODS

virtual void insert(const int i, const FIELD x)
Add (i, x) to the set of (index, value) pairs without checking whether a pair with index i exists already.

virtual void append(const int i, const FIELD x)
Add (i, x) to the set of (index, value) pairs without checking whether a pair with index i exists already.
The difference to insert is that for list/vector based implementations, the new pair is added at the
end, and it is assumed that this does not violate the index-based ordering of the (index,value) pairs.

virtual void zero(const int i)
Set v; = 0 and remove the pair (i,0) from the list, if practicable, to increase sparsity. Currently,
SparseVectorl and SparseVectorh remove such zeroed entries, but SparseVectorv does not.

virtual void sort()

Certain operations, such as multiplying two sparse vectors together, involve traversing both vectors in
parallel. In the case of ordered containers (such as std::list and std::vector) this is much faster
when the (4, v;) pairs are sorted by index. This method does the sorting. Vector classes that implement
this function, such as Vectorv, maintain a flag, sorted, that signals whether the the list is currently
in a sorted state. For example, the non—const operator() member function and the insert member
function can destroy the ordering, so these revert sorted to false. On the other hand, append does
not change the value of this flag.

18

Vectorv

A concrete sparse vector class that stores v as an std::vector of SVpair objects. Vectorv inherits its
public interface from the Vector and SparseVector classes.

Derived from: SparseVector, std::vector<SVpair>, Serializable

Vectorl

A concrete sparse vector class that stores v as an std: :1ist of SVpair objects. Vectorv inherits its public
interface from the Vector and SparseVector classes.

Derived from: SparseVector, std::1list<SVpair>, Serializable

Vectorh

A concrete sparse vector class that stores v as an std: :unordered map. Vectorv inherits its public interface
from the Vector and SparseVector classes.

Derived from: SparseVector, std::unordered map<INDEX,FIELD>, Serializable

SVpair
A helper class for holding the (i, v;) pairs in Vectorv and Vectorl (but not Vectorh).
CONSTRUCTORS

SVpair(const INDEX& index, const FIELD& value)
Construct a new (i, v;) pair.

VARIABLES

INDEX first The index i.

FIELD second The value v;.

19

2. Matrix classes

The matrix classes form a similar hierarchy to the vector classes. The abstract class Matrix provides the
generic API for all pMMF classes representing real matrices, M € R"*™. In addition to the usual basic linear
algebra operations, any class derived from Matrix must support a number of specialized operations needed in
the process of computing MMF factorizations, including fast routines for multiplying matrices on the left and
the right by (the transposes of) Givens rotations and k—point rotations. DenseMatrix and SparseMatrix
are abstract classes that specialize Matrix to the dense and sparse cases.

The basic dense matrix class is Cmatrix, which stores M as a C-style array FIELD[n*m]. The basic
sparse matrix class is the template class MatrixX<COLUMNTYPE>, which stores M as a collection of m vectors
of type COLUMNTYPE, where COLUMNTYPE can be any of the sparse matrix classes, such as Vectorv, Vectorl
or Vectorh.

/\

Sparseiatrix

| e

MatrixX<Vectorv> ‘ ‘MatrixX<Vectorl> ‘ ‘MatriXX<Vectorh>

20

Matrix

Matrix is the abstract class that defines the common interface to all classes that represent matrices,
M € R™ ™ All classes derived from Matrix must implement the following methods and constructors.
MATRIX stands for the concrete matrix type derived from Matrix.

CONSTRUCTORS AND 1/O

MATRIX(const int n, const int m)
A new n x m matrix. Storage is allocated but the entries of M may not be initialized.

MATRIX(SparseMatrixFile& file)

MATRIX (DenseMatrixFile& file)
Load M from the file file. This method is intended for interfacing to a number of different standard
matrix formats, and is distinct from the serialization mechanism. Deprecated.

MATRIX (MatrixIF& file)
Load M from the file file. This method is intended for interfacing to a number of different standard
matrix formats, and is distinct from the serialization mechanism.

saveTo(Matrix0F& file) const
This method is intended for interfacing to a number of different standard matrix formats, and is distinct
from the serialization mechanism.

NAMED CONSTRUCTORS

MATRIX: :Zero(const int n, const int m)
The n X m zero matrix.

MATRIX::Identity(const int n)
The n dimensional identity matrix.

MATRIX: :Random(const int n, const int m)
MATRIX: :RandomSymmetric(const int n)
An n xm random matrix or n x n random symmetric matrix with Uniform(0, 1) entries.

ELEMENT ACCESS

FIELD& operator() (const int i, comst int j)

FIELD operator() (const int i, const int j) const

FIELD read(const int i, comnst int j) const
(a) Return a reference to the (7, j) element of M. As with Vector, if M is sparse and M, ; is not filled
in, then a new entry is created with M; ; =0. (b) Return the value stored at (¢,7). If M is in sparse
format and M; ; is not filled in, return 0. (c¢) Equivalent to (b).

void foreach(std::function<void(int,int,FIELD)> lambda)
Apply the function lambda(int i, int j, FIELD& val) to each filled in entry of M.

21

void foreach_in_column(const int j, std::function<void(INDEX,FIELD)> lambda)
Apply the function lambda(int i, FIELD& val) to each filled in entry in the j’th column of M.

bool isFilled(const int i, const int j) const
true if element (i,j) is filled in. For dense matrices always true.

int nFilled() const
The number of filled-in entries in M.

bool isSparse() const
Return true if MATRIX is a sparse matrix class.

SCALAR VALUED OPERATIONS

int nnz() const
The number of non-zero matrix entries of M.

FIELD norm2() const
The squared Frobenius norm of the matrix, [|M |2,

FIELD diff2(const MATRIX& X) const
The squared Frobenius norm difference between M and X, i.e., | M — X%,

VECTOR VALUED OPERATIONS

VECTOR operator*(const VECTOR& v)
Compute the matrix/vector product Mwv.

VECTOR dot(const VECTOR& v)
Compute the matrix/vector product M "v.

MATRIX VALUED OPERATIONS

MATRIX operator*(const MATRIX& X)
Compute the matrix/matrix product M X.

MATRIX dot(const MATRIX& X)
Compute the matrix/matrix product M "X.

IN-PLACE METHODS

MATRIX& operator+=(const MATRIX& X)
MATRIX& operator-=(const MATRIX& X)
Set M to resp. M+ X or M — X.

MATRIX& MultiplyRowsBy(const Cvector& v)
MATRIX& DivideRowsBy(const Cvector& v)
Multiply /divide the i’th row of M by v;.

22

MATRIX& MultiplyColsBy(const Cvector& v)
MATRIX& DivideColsBy(const Cvector& v)
Multiply/divide the j’th column of M by v;.

void applyFromLeft(const GivensRotation& Q)
void applyFromLeft(const KpointRotation& Q)
void applyFromLeftT(const GivensRotation& Q)
void applyFromLeftT(const KpointRotation& Q)
Multiply M from the left by Q or QT, respectively.

void applyFromRight(const GivensRotation& Q)
void applyFromRight(const KpointRotation& Q)
void applyFromRightT(const GivensRotation& Q)
void applyFromRightT(const KpointRotation& Q)
Multiply M from the right by @ or QT, respectively.

VARIABLES

int nrows
The number of rows, n.

int ncols
The number of columns, m.

Cmatrix

The plain vanilla dense matrix class that stores M as a C-style array FIELD [n*m] in column major order.

Derived from: DenseMatrix, Serializable

METHODS

Cvector operator() (const Cvector& v)
Compute the product Mv.

Cvector::Virtual column(const int j) const
Return a virtual copy of column j.

VARIABLES

FIELD* array
A column major array holding the matrix entries.

23

MatrixX<COLUMNTYPE>

A generic column—based sparse matrix class that represents M € F"*™ as a collection of m sparse vectors.

Derived from: SparseMatrix, Serializable
Owned objects: The sparse vectors of type COLUMNTYPE storing each column.

METHODS

void applyFromLeft(const GivensRotation& Q)

void applyFromLeft(const KpointRotation& Q)
Multiply M from the left by Q. Since each column is multiplied by @ independently, the implementation
is relegated to the COLUMNTYPE class.

void applyFromRightT(const GivensRotation& Q)

void applyFromRightT(const KpointRotation& Q)
Multiply M from the right by the transpose of Q. Since this involves mixing columns, these functions
are implemented in the present class and not passed down to COLUMNTYPE.

COLUMNTYPE operator*(const COLUMNTYPE& v)
Compute the product Mwv.

VARIABLES

vector<COLUMNTYPE*> column
Pointers to the columns.

24

3. Blocked vector/matrix classes

The “blocked vector” and “blocked matrix” data structures are critical for parallelizing MMF. In pMMF, they
are implemented via the BlockedVector<VECTOR> and BlockedMatrix<MATRIX> template classes, where
VECTOR can be any class derived from Vector and MATRIX can be any class derived from Matrix. For good
performance on parallel architectures it is important to be able to distribute the blocks across multiple pro-
cessors with minimum communication overhead. The critical operation in pMMF from this point of view is
the reblocking from one stage to the next. BlockedRemap is a specialized class designed for this purpose.

Note that, at least in the present version of pMMF, BlockedVector<VECTOR> is not a derived type of
Vector, and BlockedMatrix<MATRIX> is not a derived type of Matrix. Therefore, the blocking construction
cannot be applied recursively.

BlockedVector<VECTOR>

A vector v consisting of NV blocks, where each block is a vector of type VECTOR. VECTOR can be any dense or
sparse vector class derived from the abstract class Vector.

Derived from: Serializable
Owned objects: The individual blocks pointed to by elements of the array block.

CONSTRUCTORS

BlockedVector<VECTOR>(const int _nblocks)
Construct a placeholder for a blocked vector in which each element of block is nullptr.

BlockedVector<VECTOR>(const BlockedVector<VECTOR>& x, const BlockedRemap& map,
const bool inverse=false)
Construct a new BlockedVector from x by remapping its entries according to map. When inverse is
true, the inverse remapping is applied.

NAMED CONSTRUCTORS

BlockedVector<VECTOR>: :Zero(Bstructure& structure)

BlockedVector<VECTOR>: :Random(Bstructure& structure)
Construct a blocked vector with block structure structure with (a) all entries initialized to 0; (b) each
entry initialized to a random number in [0, 1].

25

METHODS

FIELD& operator() (const int I, const int i)

FIELD operator() (const int I, const int i) const

FIELD read() (const int I, const int i) const
Return a reference to the i’th entry in the I’th block or return the actual value. The semantics is the
same as of the analogous methods in Vector and Matrix.

int nnz() const
The number of non-zero elements of v.

VARIABLES

int nblocks
The number of blocks, N.

VECTOR** block
An array of pointers to the individual blocks.

BlockedMatrix<MATRIX>

A matrix M consisting of n x m blocks, where each block is a matrix of type MATRIX. MATRIX can be any
dense or sparse matrix type derived from the abstract class Matrix. The ¢’th block of rows we sometimes
call the i’th street, and the j’th column of blocks the j’th tower.

Derived from: Serializable
Owned objects: The individual blocks pointed to by the elements of the array block.

CONSTRUCTORS

BlockedMatrix<MATRIX>(const int _nstreets, const int _ntowers)
Construct a placeholder for a blocked matrix, in which each element of block is nullptr.

BlockedMatrix(const BlockedMatrix<MATRIX>& X, const BlockedRemap& rmap, Identity(), bool inverse)

BlockedMatrix(const BlockedMatrix<MATRIX>& X, Identity(), const BlockedRemap& cmap, bool inverse)

BlockedMatrix(const BlockedMatrix<MATRIX>& X, const BlockedRemap& rmap, const BlockedRemap& cmap,
bool inverse)

Construct a new blocked matrix from X by (a) remapping its rows by rmap; (b) remapping its columns
by cmap; (c) remapping both its rows and columns. Whether the pull or push method is used depends
on MATRIX, so these constructors should only be used when the mappings are bijections. When inverse
is true, the inverse mapping is applied. The default is false.

26

NAMED CONSTRUCTORS

BlockedMatrix<MATRIX>: :Zero(const BlockStructure& rst, const BlockStructure& cst)
An all-zeros blocked matrix with block structure rstxcst.

BlockedMatrix<MATRIX>: :Identity(const BlockStructure& st)
An identity blocked matrix with block structure st.

BlockedMatrix<MATRIX>: :Random(const BlockStructure& rst,const BlockStructure& rst)
BlockedMatrix<MATRIX>: :RandomSymmetric(const BlockStructure& st)
(a) a random blocked matrix with with block structure rstxcst, (b) a random symmetrix blocked
matrix with with block structure stxst.

ELEMENT ACCESS

FIELD& operator() (const int I, const int i, const int J, const int j)

FIELD operator() (const int I, const int i, const int J, const int j) const

FIELD read(const int I, const int i, comst int J, const int j) const
Return a reference to the (4,7) entry in the (I, J) block or return the actual value. The semantics is
the same as for the Vector and Matrix classes.

bool isFilled(const int I, const int i, comnst int J, const int j)
If MATRIX is a sparse matrix type, true if element ((I,1),(J,j)) is filled in. If MATRIX is a dense
matrix type, always true.

Street<MATRIX> virtual_street(const int I)
const Street<MATRIX> virtual_street(const int I) const
Return a virtual Street consisting of the I’th row of blocks.

Tower<MATRIX> virtual_tower(const int J)
const Tower<MATRIX> virtual_tower(const int J) const
Return a virtual Tower consisting of the J'th column of blocks.

VECTOR VALUED OPERATIONS

BlockedVector<VECTOR> operator*(const BlockedVector<VECTOR> v) const
Compute Mwv. The block structure of v must be the same as the column structure of M.

MATRIX VALUED OPERATIONS

BlockedMatrix<MATRIX> operator*(const BlockedVector<MATRIX> B) const
Compute M B. The row structure of B must be the same as the column structure of M.

VARIABLES

int nstreets n

27

int ntowers m

MATRIX** block
An n xm column major array of pointers to the individual blocks.

Street<MATRIX>

A special kind of blocked matrix consisting of 1 x m blocks.

Owned objects: The individual blocks pointed to by elements of the array block.

CONSTRUCTORS

Street (const int nblocks, const int nrows)
Construct a placeholder Street, where each element of the array block is nullptr.

Street(const Street<MATRIX>& X, const BlockedRemap& cmap, const bool inverse=false)
Construct a new Street from X by remapping its columns by cmap. Whether the pull method or
push method is used might depend on MATRIX, so this constructor should only be used when cmap is
a bijection. When inverse is true, the inverse mapping is applied.

METHODS

Street<MATRIX> pullColumns(const Street<MATRIX>& X, const BlockedRemap& cmap, bool inverse=false)
Similar to the remapping constructor above, except guaranteed to use the pull method, therefore cmap
(or its inverse) need only be surjective.

IN-PLACE OPERATIONS

void multiplyRowsBy(const Cvector& v)
Mulitply row i of each block by v;.

applyFromLeft (const ROTATION& Q)
applyFromLeftT(const ROTATION& Q)
Apply (the transpose of) @ to each block from the left.

VARIABLES

int nrows
The number of rows in each matrix making up the street.

int nblocks
The number of blocks, m.

28

MATRIX**
An array of pointers to the blocks.

Tower<MATRIX>

A special kind of blocked matrix consisting of N x 1 blocks.

Owned objects: The individual blocks pointed to by the elements of block.

CONSTRUCTORS

Tower (const int nblocks, const int ncols)
Construct a placeholder Tower, in which each block is NULL.

Tower (const Tower<MATRIX>& X, const BlockedRemap& rmap, const inverse=false)
Construct a new Tower from X by remapping its rows by rmap. Whether the pull method or push
method is used might depend on MATRIX, so this constructor should only be used when rmap is a
bjection. When inverse is true, the inverse mapping is applied.

IN-PLACE OPERATIONS

void multiplyColsBy(const Cvector& v)
Mulitply column 7 of each block by v;.

void applyFromRight(const ROTATION& Q)
void applyFromRightT(const ROTATION& Q)
Apply (the transpose of) @ to each block from the right.

VARIABLES

int ncols
The number of columns in each block.

int nblocks
The number of blocks, N.

MATRIX**
An array of pointers to the blocks.

29

BlockedRemap

The map between the rows (or columns) of one blocked matrix or vector object and the rows (or columns)
of another. The map need not be a bijection.

CONSTRUCTORS

BlockedRemap(const int _nsource, const int _ndest)
Construct a placeholder object in which the forward and backward arrays consist of NULL pointers.

METHODS

BlockIndexPair& operator() (const int I, const int i)
Return a reference to the BlockIndexPair object describing where (I,4) is mapped.

BlockIndexPair& inv(const int J, const int j)
Return a reference to the BlockIndexPair object describing what is mapped to (J, j).

void set(const int I, const int i, const int J, const int j)
Set the forward and backward maps so that (I,) is mapped to (J, j).

VARIABLES

int nsource The number of blocks in the domain of the mapping.
int ndest The number of blocks in the range of the mapping.

vector<BlockIndexPair>** forward
The I'th element in this array (of size nsource) is a pointer to a vector, in which the ¢’th entry
specifies where (7,4) is mapped.

vector<BlockIndexPair>** backward
The J’th element in this array (of size ndest) is a pointer to a vector, in which the j’th entry specifies
what is mapped to (J, 7).

30

4. The MMF classes

This section describes the classes that do the “heavy lifting” of computing MMF factorizations, chief amongst
them, the class MMF, each instance of which holds the actual MMF factorization of some matrix A. An MMF
objects owns a number of MMFstage objects, each one corresponding to a single stage of the factorization.
Each MMFstage object, in turns, owns a number of MMFchannel objects, each one corresponding to a single
cluster of rows/columns (one of the BE’s in the partitioning BY U BY W ... J B?). This nomenclature is
inspired by the flow of data when a matrix v by an MMF factorization (see the MMF: :operator*(const
VECTOR&) method): at each stage the vector is reblocked, and each of its blocks is sent through a different

“channel”, where each of the rotations in the corresponding [@p] B,.B, Submatrix are applied to it.

us

MMFchannel

The process of building MMF factorizations requires two more classes. The current active matrix Zp is stored
in an MMFmatrix<MATRIX> object, and each cluster of rows/columns corresponds to an MMFprocess<MATRIX>
object.

| MMFmatrix<BLOCK> |

T

‘MMFprocess<BLOCK>‘

The routines involved in finding the MMF rotations, applying them to Zp, etc., are implemented in these
two classes. The naming of MMFprocess reflects the fact that the computations involved in each MMFprocess
can be carried out in parallel to the others.

MMF

The object representing an entire MMF factorization A= QI .. .@;H Qp ...Q;. The factorization is com-
puted by calling the appropriate constructor of this class, with the matrix A and the parameter helper object
params as arguments. Once the factorization has been computed (or loaded from file), it can be applied to
vectors, matrices, etc., to various ends.

Derived from: Serializable
Owned objects: The MMFstage objects corresponding to each stage, and the core matrix finalA.

CONSTRUCTORS

MMF (const MATRIX& A, const MMFparams& params)

MMF (const MMFmatrix<BLOCK>& A, const MMFparams& params)
Compute the MMF of the matrix A with the parameters in params. This constructor is the workhorse
of the entire library.

METHODS

WaveletTransform<VECTOR> transform(const BlockedVector<VECTOR>& v)
Compute the MMF wavelet transform of the vector v.

BlockedVector<VECTOR> inverseTransform(const Wtransform<VECTOR>& W)
Compute v from its MMF wavelet transform W.

VECTOR operator*(const VECTOR& v)
BlockedVector<VECTOR> operator*(const BlockedVector<VECTOR>& v)
Apply the MMF to the (blocked) vector v.

VECTOR hit(const VECTOR& v)
BlockedVector<VECTOR> hit(const BlockedVector<VECTOR>& v)
Synonym of the operator* methods.

FIELD diffSpectral(const BlockedMatrix<BLOCK>& M)
Approximate the spectral norm of A— M.

void invert (FIELD eps=0)
void invertSqrt(FIELD eps=0)

(a) Invert the MMF, i.e., convert it to A=!. (b) Convert the MMF to A~'/2. To avoid numerical
overflow, any entries on the diagonal of H less than eps in absolute value will be set to 0.

VARIABLES

vector<MMFstage*> stage
The first MMFstage is a dummy stage that contains no rotations and just clusters the rows/columns of
A. The rest of the MMFstage objects are the actual stages of the factorization.

BlockedMatrix<Cmatrix> core
The final core matrix.

32

MMFparams

MMFparams is a helper class that stores the parameters needed to compute MMF factorizations. MMFparams
objects are typically constructed using the MMFparams: :k(const int k) named constructor that sets the
order of rotations parameter, k. The signature of the parameter setting methods allows the rest of them to
be daisy-chained. For example,

MMFparams params=MMFparams::k(2) .nsparsestages(5) .nclusters(7).fraction(0.3);

constructs an MMFparams object in which k = 2, the number of sparse stages is 5, the nominal number of
clusters in each stage is 7, and so on.

NAMED CONSTRUCTORS

MMFparams: :k(const int _k)
Construct a new MMFparams object with k set to k.

METHODS

MMFparams& nsparsestages(const int x) The number of sparse stages in the factorization.
MMFparams& ndensestages(const int x) The number of dense stages in the factorization.
MMFparams& nclusters(const int x) The target number of clusters in each stage of the factorization.

MMFparams& minclustersize(const int x) The lower bound on the number of rows/columns in each
cluster. Any clusters that have fewer rows/columns will get merged in the clustering process.

MMFparams& minclustersize(const int x) The upper bound on the number of rows/columns in each
cluster. Any clusters that have more rows/columns will get split in the clustering process, maxclusterdepth
permitting.

MMFparams& maxclusterdepth(const int x) The maximum depth of the recursive cluster refinement
process.

MMFparams& fraction(const double f)
MMFparams& bypass

MMFparams& prenormalize

MMFparams& ncoreclusters
MMFparams& dcore

MMFparams& selection_normalize
MMFparams& n_eliminate_per_rotation
MMFparams& fraction_eliminate_after

MMFparams& selection_criterion

33

MMFstage

The object corresponding to a given MMF stage @p = Qe 1 +1Qe,_1+1--- Qo -

Derived from: Serializable
Owned objects: The MMFchannel objects corresponding to each channel of rotations, and the remap.

CONSTRUCTORS

MMFstage (const MMFmatrix<BLOCK>& M)
Construct an MMFstage for M. All the MMFchannel objects are constructed and the rotations are copied
over from the MMFprocess objects. However, remap is kept NULL.

METHODS

pair<BlockedVector<VECTOR>*,VECTOR*> transform(BlockedVector<VECTOR>& v)
Apply the rotations QZDAH’ QZ;—I‘FI . QZP to v. The first element of the returned pair is a pointer
to the scaling space part of the resulting vector, structured according to the block structure of the next
stage. The second element of the returned pair is a pointer to the wavelet space part. Warning: this
method operates directly on v, therefore, if v is not to be modified, first a copy should be made.

BlockedVector<VECTOR>* inverseTransform(const BlockedVector<VECTOR>& v, const VECTOR& w)
Merges v and w into a single blocked vector structured according to the block structure of this stage,
and then applies the rotations Q" T, Q;”flT, LT

BlockedMatrix<CstyleDense>* matrix()
Return the matrix form of this stage.

VARIABLES

nchannels The number of channels.
vector<MMFchannel*> channel The channels constituting this stage.

BlockedRemap remap
The remapping applied to vectors after the rotations. The last block of the remapped vector is the
wavelet space part. The other blocks constitute the scaling space part.

CstyleDenseVector freq The wavelet frequencies (diagonal elements of the eliminated rows/columns).

34

MMFchannel

A single channel of a given MMF stage. Mostly just a container for the rotations.

Derived from: Serializable

CONSTRUCTORS

MMFchannel (const int n)
Create a new MMFchannel with n rows/columns.

MMFchannel (const int n, Random(nrot), const int k=2)
Create new random MMFchannel with n rows/columns and nrot random k’th order rotations.

MMFchannel (const MMFprocess<BLOCK>& X)
Create a new channel by copying the rotations from X.

METHODS

void applyTo(VECTOR& v)
void applyInverseTo(VECTORE v)
Apply (the transpose of) the rotations in this channel to v.

void applyFromLeftTo(Matrix& M)
void applyFromLeftToT(Matrix& M)
void applyFromRightTo(Matrix& M)
void applyFromRightToT (Matrix& M)
Apply (the transposes of) the rotations in this channel from the left/right to the matrix M.

VARIABLES

The number of rows/columns in this channel.

vector<GivensRotation*> givens
The list of Givens rotations in this channel.

vector<KpointRotation*> kpoint
The list of k—point rotations in this channel.

bool normalized=false

Cvector normalizer
When normalized is true, tow/column ¢ is multiplied by the i’th element of the normalizer vector
before any rotations take place.

35

MMFmatrix<MATRIX>

An MMFmatrix<MATRIX> A, is a BlockedMatrix<MATRIX> with extra functionality. The methods needed to
compute a given stage of MMF are implemented here and in the related class MMFprocess<MATRIX>.

Derived from: BlockedMatrix<MATRIX>
Owned objects: The MMFprocess objects corresponding to each channel.

CONSTRUCTORS

MMFmatrix(const MATRIX M)
Construct a single channel MMFmatrix from a single unblocked matrix M.

MMFmatrix(const MMFmatrix& X, const BlockedRemap& map) B
Create a new MMFmatrix by compressing and reblocking the previous one, X, by map. This is how A,
is constructed from A,.

MMFmatrix(const BlockStructure& structure, const Random& dummy)
Create a random MMFmatrix with row/column block structure structure.

METHODS

void findRotations(const int nrot, const int k=2)

void findRotations(const double frac, const int k=2)
Compute nrot number of MMF rotations in each channel. If k=2, then the rotations will be Givens
rotations. Alternatively, compute a fraction frac of rotations for each channel.

void applyRotations(const bool offdiag=false)
Conjugate A by applying the rotations in each process from the left and the right. When offdiag is
false, the diagonal blocks are spared.

BlockedRemap computeCompressionMap(const int nclusters)
Compute the remapping that separates out the wavelet coordinates and reclusters the rest according
to a randomized greedy procedure.

VARIABLES

int nchannels The number of parts that the rows/columns of A, are clustered into.

vector<MMFprocess<MATRIX>*> MMFprocess
The MMFprocess objects corresponding to each channel.

36

MMFprocess<MATRIX>

Each channel of an MMFmatrix has a corresponding MMFprocess, which is responsible for computing the
actual rotations.

CONSTRUCTORS

MMFprocess(const VirtualTower<MATRIX>& tower, const int chanl)
Initialize the process corresponding to channel number chanl. tower is the corresponding tower of
blocks in the MMFmatrix.

METHODS

void randomGreedyGivens(const int nrot)

void randomGreedyGivens(const double frac)
Use the randomized greedy method to find nrot Givens rotations or the number of rotations that is
frac fraction of the number of rows/columns in this channel.

void randomGreedyKpoint(const int nrot, const int k)

void randomGreedyGivens(const double frac, const int k)
Use the randomized greedy method to find nrot k—point rotations or the number of rotations that is
frac fraction of the number of rows/columns in this channel.

void applyFromLeftTo(MATRIX& M)

void applyFromRightToT (MATRIX& M)
Apply the rotations in this process to M from the left resp. the transpose of the rotations from the right.
These are the methods use to conjugate the off-diagonal blocks of Zp.

PRIVATE METHODS

void doGivens(const int il, const int i2)
Find the optimal rotation angle and perform a single Givens rotation on coordinates i1 and i2.

void doKpoint(const TopKlist I)
Find the optimal k x k rotation matrix and perform a single k-point rotation on the coordinates in I.

removeFromActiveSet (const int r)
Remove row/column r from the active set, modify gram accordingly, and update cumulativeError.

VARIABLES

VirtualTower<MATRIX> tower
The virtual tower comprising the blocks that make up this channel.

int nactive
The number n,q¢ of active rows/columns left in this channel.

37

Remap activemap
A permutation that maps {0,1,...,n,4— 1} to the indices of the presently active rows/columns. This
is used for efficiently finding random active rows/columns.

vector<bool> activeflag
Flags to indicate whether the i’th row/column is active.

Cmatrix* gram
The matrix of inner products between any pair of columns in this channel.

FIELD cumulativeError
The total energy of the off-diagonal parts of the eliminated columns.

vector<FIELD> WaveletFregs
The diagonal entries of the rows/columns of A that are eliminated.

WaveletTransform<VECTOR>

The MMF wavelet transform W of a vector v. The wavelet transform is stored as a sequence of vectors
corresponding to each stage of the factorization, plus a final stage corresponding to the core.

Derived from: Serializable

CONSTRUCTORS

WaveletTransform<VECTOR>(const int nstages)
Create a new Wtransform object with all components of w initialized to nullptr.

VARIABLES

BlockedVector<VECTOR> v
The scaling space part of the wavelet transform.

vector<VECTOR*> w
The vectors of wavelet coeflicients derived from each stage of the MMF.

38

O. Helper classes

GivensRotation

A Givens rotation is a 2 x 2 elementary rotation

Gy = (cos § —sin 9)

sinf cos6

on some pair of indices (i1,42). Being able to apply Givens rotations to vectors/matrices fast is critical, and
strongly dependent on the exact way that the matrix/vector is stored. Therefore, implementing multiplica-
tion by Givens rotations is left to the vector and matrix classes, rather than being defined here.

Derived from: ElementaryRotation, Serializable

CONSTRUCTORS

GivensRotation(int il, int i2, double cos, double sin)
A new Givens rotation on i1 and i2.

GivensRotation(int i1, int i2, double theta)
A new Givens rotation on i1 and i2 with angle 6.

VARIABLES

int i1, i2
The two indices 77 and 75.

double cos, sin
cos 6 and sin 6.

39

KpointRotation

A k x k elementary rotation on some set of indices (41,42, ...,%). As with Givens rotations, being able to
apply such rotations to matrices and vectors very fast is critical, and therefore the implementation of this
operation is relegated to the matrix and vector classes.

Derived from: ElementaryRotation, Serializable

CONSTRUCTORS

KpointRotation(const int k)
A new k—point rotation, where the arrays ix and q allocated but unitialized.

KpointRotation(const int k, Identity())
A new k—point rotation initialized to the identity.

METHODS

CstyleDenseMatrix* matrix() const
Return the k x k orthogonal matrix corresponding to this rotation.

VARIABLES

k

int* ix
The array of indices i1, ..., k.

double* q
The k x k rotation matrix stored as an array in column major format.

40

Log

The logging class.

CONSTRUCTORS

Log()
Start the clock.

METHODS

Log& operator<<(const char* s)
Print the message s to the log together with the current time.

void startClock(const int i=0)
Reset the clock.

41

6. Filetype classes

The purpose of the “filetype” classes is to provide a common interface to loading/saving matrices in a vari-
ety of file formats. The routines for loading/saving from/to files in specific formats are implemented in the
classes derived from the generic API MatrixFile.

/ \

’ DenseMatrlelle ‘ SparseMatrixFile ‘

N /

DenseMatrixFile: :ASCII ‘ DenseMatrlelle Matlab‘ ‘ SparseMatrixFile: :ASCII ‘ ‘SparseMatrixFile: :Matlab

To load a matrix from file, for example, a matrix of type MatrixX<Vectorv> from a sparse Matlab matrix
file named M1.mat, write

SparseMatrixFile::Matlab mfile(M1l.mat); \\ Open the file M1.mat for read
MatrixX<Vectorv> M(file); \\ Construct M from mfile

The file is closed automatically when mfile goes out of scope. To save M in a new Matlab file called M2.mat,
write

SparseMatrixFile::Matlab mfile(M2.mat, M);

42

MatrixFile

MatrixFile is the abstract class that defines the API for all matrix file classes. All MATRIXFILE classes
derived from MatrixFile must implement the following methods.

CONSTRUCTORS

MATRIXFILE(const char* filename)
Open the matrix file called filename for read and determine nrows and ncols.

MATRIXFILE(const char* filename, const MATRIX& M)
Save the matrix M to a new file called filename. MATRIX can be any class derived from Matrix.

READ METHODS

MATRIXFILE& operator>>(FIELD& x)
Read the next matrix element from the file.

MATRIXFILE& operator>>(IndexValueTriple& t)
Read the next (4, j, M, ;) triple into t.

WRITE METHODS

VARIABLES

int nrows The number of rows of the matrix.
int ncols The number of columns.

ifstream ifs The file stream object used for input files.

43

Bibliography

[1] Risi Kondor, Nedelina Teneva, and Vikas K. Garg. Multiresolution matrix factorization. 2014.

[2] Risi Kondor, Nedelina Teneva, and Pramod K. Mudrakarta. Parallel MMF: a multiresolution approach
to matrix computation. http://arziv.org/abs/1507.04396, pages 1-9, 2015.

[3] The GNU Public License, Version 3, http://www.gnu.org/licenses/, 2007.

44

