
Numerical Analysis
Second Edition

L. Ridgway Scott

September 23, 2016

Copyright c© 2015 by Princeton University Press
Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press, 6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW
press.princeton.edu

All Rights Reserved
Library of Congress Control Number: 2010943322

ISBN: 978-0-691-14686-7
British Library Cataloging-in-Publication Data is available

The publisher would like to acknowledge the author of this volume for typesetting this book
using LATEX and Dr. Janet Englund and Peter Scott for providing the cover photograph

Printed on acid-free paper ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Dedication

To the memory of Ed Conway1 who, along with his colleagues at Tulane University, provided
a stable, adaptive, and inspirational starting point for my career.

1Edward Daire Conway, III (1937–1985) was a student of Eberhard Friedrich Ferdinand Hopf at the
University of Indiana. Hopf was a student of Erhard Schmidt and Issai Schur.

iii

Draft September 23, 2016, do not distribute Page iv

Contents

1 Numerical Algorithms 1
1.1 Finding roots . 2

1.1.1 Relative versus absolute error . 4
1.1.2 Scaling Heron’s algorithm . 4

1.2 Analyzing Heron’s algorithm . 4
1.2.1 Local error analysis . 5
1.2.2 Global error analysis . 5

1.3 Where to start . 6
1.3.1 Another start . 6
1.3.2 The best start . 7
1.3.3 Solving the optimization problem . 8
1.3.4 Using the best start . 9

1.4 An unstable algorithm . 9
1.5 General roots: effects of floating-point . 10
1.6 Exercises . 11
1.7 Solutions . 14

2 Nonlinear Equations 17
2.1 Fixed-point iteration . 18

2.1.1 Verifying the Lipschitz condition . 20
2.1.2 Second-order iterations . 21
2.1.3 Higher-order iterations . 21

2.2 Particular methods . 22
2.2.1 Newton’s method . 22
2.2.2 Stability of Newton’s method . 24
2.2.3 Other second-order methods . 24
2.2.4 Secant method . 25

2.3 Complex roots . 27
2.4 Error propagation . 27
2.5 More reading . 28
2.6 Exercises . 28
2.7 Solutions . 31

3 Linear Systems 35
3.1 Gaussian elimination . 36

3.1.1 Elimination algorithm . 36

v

CONTENTS CONTENTS

3.1.2 Backward substitution . 37

3.2 Factorization . 38

3.2.1 Proof of the factorization . 38

3.2.2 Using the factors . 40

3.2.3 Operation estimates . 40

3.2.4 Multiple right-hand sides . 41

3.2.5 Computing the inverse . 42

3.3 Triangular matrices . 42

3.4 Pivoting . 43

3.4.1 When no pivoting is needed . 44

3.4.2 Partial pivoting . 45

3.4.3 Full pivoting and matrix rank . 45

3.4.4 The one-dimensional case . 46

3.4.5 Uniqueness of the factorization . 47

3.5 More reading . 49

3.6 Exercises . 49

3.7 Solutions . 51

4 Direct Solvers 53

4.1 Direct factorization . 53

4.1.1 Doolittle factorization . 54

4.1.2 Memory references . 55

4.1.3 Cholesky factorization and algorithm 57

4.2 Caution about factorization . 58

4.3 Banded matrices . 59

4.3.1 Banded Cholesky . 61

4.3.2 Work estimates for banded algorithms 61

4.4 More reading . 61

4.5 Exercises . 62

4.6 Solutions . 64

Draft September 23, 2016, do not distribute Page vi

CONTENTS CONTENTS

5 Vector Spaces 67
5.1 Normed vector spaces . 68

5.1.1 Examples of norms . 69
5.1.2 Unit balls . 69
5.1.3 Seminorms . 70

5.2 Proving the triangle inequality . 70
5.2.1 The Rogers-Hölder inequality . 71
5.2.2 Minkowski’s inequality . 72

5.3 Relations between norms . 72
5.3.1 Continuity of norms . 73
5.3.2 Norm equivalence . 73

5.4 Inner-product spaces . 74
5.4.1 Inductive orthonormalization . 75
5.4.2 Orthogonal projections . 75
5.4.3 Least squares . 76
5.4.4 The QR decomposition . 77

5.5 More reading . 78
5.6 Exercises . 78
5.7 Solutions . 80

6 Operators 83
6.1 Operators . 84

6.1.1 Operator norms . 84
6.1.2 Operator norms and eigenvalues . 85
6.1.3 Proof of the theorem . 86

6.2 Schur decomposition . 88
6.2.1 Nearly diagonal matrices . 89
6.2.2 The spectral radius is nearly a norm 89
6.2.3 Derivation of the Schur decomposition 90
6.2.4 Schur decomposition and flags . 92
6.2.5 Example of Schur decomposition . 92

6.3 Convergent matrices . 93
6.4 Powers of matrices . 93
6.5 Defective matrix powers . 96
6.6 Exercises . 98
6.7 Solutions . 101

7 Nonlinear Systems 103
7.1 Functional iteration for systems . 104

7.1.1 Limiting behavior of fixed-point iteration 106
7.1.2 Multi-index notation . 106
7.1.3 Higher-order convergence . 108
7.1.4 Particular methods . 109

7.2 Newton’s method . 109
7.2.1 Tensors . 109
7.2.2 Quadratic convergence of Newton’s method 110

Draft September 23, 2016, do not distribute Page vii

CONTENTS CONTENTS

7.2.3 No other methods . 112
7.2.4 Eigen problems . 112
7.2.5 An example . 113

7.3 Limiting behavior of Newton’s method . 113
7.4 Mixing solvers . 115

7.4.1 Approximate linear solves . 116
7.4.2 Approximate Jacobian . 116

7.5 More reading . 116
7.6 Exercises . 117
7.7 Solutions . 119

8 Iterative Methods 123
8.1 Stationary iterative methods . 124

8.1.1 An algorithm . 124
8.1.2 General matrices . 125

8.2 General splittings . 125
8.2.1 Jacobi method . 126
8.2.2 Gauss-Seidel method . 127
8.2.3 Convergence of general splittings . 129

8.3 Necessary conditions for convergence . 131
8.3.1 Generalized diagonal dominance . 131
8.3.2 Estimating the spectral radius . 133
8.3.3 Convergence conditions . 135
8.3.4 Perron-Frobenius theorem . 135

8.4 More reading . 136
8.5 Exercises . 136
8.6 Solutions . 138

9 Conjugate Gradients 141
9.1 Minimization methods . 141

9.1.1 Descent methods . 142
9.1.2 Descent directions . 144
9.1.3 The gradient descent method . 144

9.2 Conjugate Gradient iteration . 145
9.2.1 The basic iteration . 145
9.2.2 Orthogonality relations . 146
9.2.3 Further orthogonalities . 148
9.2.4 New formulas for α and β . 149

9.3 Optimal approximation of CG . 149
9.3.1 Operator calculus . 150
9.3.2 CG error representation . 150
9.3.3 Spectral theory . 151
9.3.4 CG error estimates . 153
9.3.5 Preconditioned Conjugate Gradient iteration 154

9.4 Comparing iterative solvers . 155
9.5 More reading . 156

Draft September 23, 2016, do not distribute Page viii

CONTENTS CONTENTS

9.6 Exercises . 156

9.7 Solutions . 157

Draft September 23, 2016, do not distribute Page ix

CONTENTS CONTENTS

10 Polynomial Interpolation 159

10.1 Local approximation: Taylor’s theorem . 159

10.2 Distributed approximation: interpolation . 160

10.2.1 Existence of interpolant . 160

10.2.2 Error expression . 161

10.2.3 Newton’s divided differences . 162

10.3 Behavior of Lagrange interpolation . 164

10.3.1 Norms in infinite-dimensional spaces 164

10.3.2 Instability of Lagrange interpolation 165

10.3.3 Data-dependence of Lagrange interpolation 167

10.3.4 Runge versus Gauss . 167

10.4 More reading . 170

10.5 Exercises . 170

10.6 Solutions . 173

11 Chebyshev and Hermite Interpolation 177

11.1 Chebyshev interpolation . 178

11.1.1 Error term ω . 178

11.1.2 Chebyshev asymptotics . 180

11.1.3 Application to CG . 180

11.2 Chebyshev basis functions . 181

11.3 Lebesgue function . 182

11.4 Generalized interpolation . 184

11.4.1 Existence of interpolant . 184

11.4.2 Applications . 186

11.4.3 Numerical differentiation . 187

11.5 More reading . 188

11.6 Exercises . 188

11.7 Solutions . 191

12 Approximation Theory 193

12.1 Best approximation by polynomials . 193

12.2 Weierstrass and Bernstein . 199

12.2.1 Bernstein polynomials . 199

12.2.2 Modulus of continuity . 200

12.3 Least squares . 202

12.3.1 Polynomials as inner-product spaces 202

12.3.2 Orthogonal polynomials . 203

12.3.3 Roots of orthogonal polynomials . 204

12.4 Piecewise polynomial approximation . 204

12.5 Adaptive approximation . 206

12.6 More reading . 207

12.7 Exercises . 207

12.8 Solutions . 210

Draft September 23, 2016, do not distribute Page x

CONTENTS CONTENTS

13 Numerical Quadrature 215

13.1 Interpolatory quadrature . 215

13.1.1 Newton-Cotes formulas . 216

13.1.2 Order of exactness . 217

13.1.3 Gaussian quadrature . 218

13.1.4 Hermite quadrature . 219

13.1.5 Composite rules . 220

13.2 Peano kernel theorem . 221

13.2.1 Continuity of Peano kernels . 222

13.2.2 Examples of Peano kernels . 224

13.2.3 Uniqueness of Peano kernels . 224

13.2.4 Composite Peano kernels . 225

13.3 Gregorie-Euler-Maclaurin formulas . 226

13.3.1 More operator calculus . 226

13.3.2 Product formula . 228

13.3.3 Inverse operators . 229

13.3.4 The Euler-Maclaurin formula . 230

13.3.5 Euler’s constant γ . 231

13.3.6 Integrating a Gaussian . 232

13.3.7 Gregorie’s quadrature . 233

13.4 Other quadrature rules . 234

13.4.1 Chebyshev quadrature . 235

13.4.2 Bernstein quadrature . 235

13.5 More reading . 235

13.6 Exercises . 236

13.7 Solutions . 238

14 Eigenvalue Problems 241

14.1 Eigenvalue examples . 241

14.1.1 Mechanical resonance . 241

14.1.2 Quality rankings . 242

14.1.3 Not so sparse eigenvalue problems . 243

14.2 Gershgorin’s theorem . 243

14.2.1 Ovals of Cassini . 244

14.2.2 Eigenvalue continuity . 246

14.3 Solving separately . 248

14.4 How not to eigen . 248

14.5 Reduction to Hessenberg form . 249

14.5.1 Lanczos-Arnoldi algorithm . 250

14.5.2 Optimality of Lanczos-Arnoldi . 251

14.6 More reading . 253

14.7 Exercises . 253

14.8 Solutions . 256

Draft September 23, 2016, do not distribute Page xi

CONTENTS CONTENTS

15 Eigenvalue Algorithms 257

15.1 Power method . 257

15.1.1 Rayleigh quotient . 258

15.1.2 Back to the power method . 259

15.1.3 Eigenvector convergence . 260

15.1.4 Power method convergence . 261

15.1.5 Power method limitations . 263

15.1.6 Defective matrices . 263

15.2 Inverse iteration . 265

15.2.1 The nearly singular system . 266

15.2.2 Rayleigh quotient iteration . 267

15.3 Singular value decomposition . 268

15.4 Comparing factorizations . 269

15.5 More reading . 269

15.6 Exercises . 269

15.7 Solutions . 272

16 Ordinary Differential Equations 273

16.1 Basic theory of ODEs . 273

16.2 Existence and uniqueness of solutions . 275

16.3 Basic discretization methods . 277

16.3.1 Nonuniqueness of the time step . 279

16.3.2 Near uniqueness of the time step . 280

16.4 Convergence of discretization methods . 281

16.4.1 Global error estimates . 282

16.4.2 Interpretation of error estimates . 283

16.4.3 Discretization error example . 284

16.5 More reading . 284

16.6 Exercises . 284

16.7 Solutions . 287

17 Higher-order ODE Discretization Methods 291

17.1 Higher-order discretization . 292

17.1.1 An unstable scheme . 294

17.1.2 Improved Euler . 295

17.2 Convergence conditions . 296

17.2.1 Constant solutions . 296

17.2.2 Consistency . 298

17.2.3 Unbounded discrete solutions . 298

17.2.4 Zero stability . 299

17.2.5 Absolute stability regions . 300

17.3 Backward differentiation formulas . 302

17.4 More reading . 303

17.5 Exercises . 303

17.6 Solutions . 306

Draft September 23, 2016, do not distribute Page xii

CONTENTS CONTENTS

18 Floating Point 309
18.1 Floating-point arithmetic . 309

18.1.1 Summation . 310
18.1.2 Summation application . 313
18.1.3 Better summation algorithms . 315
18.1.4 Solving ODEs . 316

18.2 Errors in solving systems . 317
18.2.1 Condition number . 317
18.2.2 A posteriori estimates and corrections 318
18.2.3 Pivoting . 319

18.3 More reading . 320
18.4 Exercises . 320
18.5 Solutions . 322

19 Notation 325

Index 339

Draft September 23, 2016, do not distribute Page xiii

CONTENTS CONTENTS

Draft September 23, 2016, do not distribute Page xiv

Preface

“...by faith and faith alone, embrace, believing where we cannot prove,”
from In Memoriam by Alfred Lord Tennyson, a memorial to Arthur
Hallum.

Numerical analysis provides the foundations for a major paradigm shift in what we under-
stand as an acceptable “answer” to a scientific or technical question. In classical calculus we
look for answers like

√
sinx, that is, answers composed of combinations of names of functions

that are familiar. This presumes we can evaluate such an expression as needed, and indeed
numerical analysis has enabled the development of pocket calculators and computer software
to make this routine. But numerical analysis has done much more than this. We will see that
far more complex functions, defined, e.g., only implicitly, can be evaluated just as easily and
with the same technology. This makes the search for answers in classical calculus obsolete in
many cases. This new paradigm comes at a cost: developing stable, convergent algorithms to
evaluate functions is often more difficult than more classical analysis of these functions. For
this reason, the subject is still being actively developed. However, it is possible to present
many important ideas at an elementary level, as is done here.

Today there are many good books on numerical analysis at the graduate level, including
general texts [49, 138] as well as more specialized texts. We reference many of the latter
at the ends of chapters where we suggest further reading in particular areas. At a more
introductory level, the recent trend has been to provide texts accessible to a wide audience.
The book by Burden and Faires [29] has been extremely successful. It is a tribute to the
importance of the field of numerical analysis that such books and others [135] are so popular.
However, such books intentionally diminish the role of advanced mathematics in the subject
of numerical analysis. As a result, numerical analysis is frequently presented as an elementary
subject. As a corollary, most students miss exposure to numerical analysis as a mathematical
subject. We hope to provide an alternative.

Several books written some decades ago addressed specifically a mathematical audience,
e.g., [83, 87, 89]. These books remain valuable references, but the subject has changed
substantially in the meantime.

We have intentionally introduced concepts from various parts of mathematics as they
arise naturally. In this sense, this book is an invitation to study more deeply advanced
topics in mathematics. It may require a short detour to understand completely what is being
said regarding operator theory in infinite-dimensional vector spaces or regarding algebraic
concepts like tensors and flags. Numerical analysis provides, in a way that is accessible
to advanced undergraduates, an introduction to many of the advanced concepts of modern
analysis.

We have assumed that the general style of a course using this book will be to prove

xv

CONTENTS CONTENTS

theorems. Indeed, we have attempted to facilitate a “Moore2 method” style of learning by
providing a sequence of steps to be verified as exercises. This has also guided the set of
topics to some degree. We have tried to hit the interesting points, and we have kept the list
of topics covered as short as possible. Completeness is left to graduate level courses using
the texts we mention at the end of many chapters.

The prerequisites for the course are not demanding. We assume a sophisticated under-
standing of real numbers, including compactness arguments. We also assume some familiarity
with concepts of linear algebra, but we include derivations of most results as a review. We
have attempted to make the book self-contained. Solutions of many of the exercises are
provided.

About the name: the term “numerical” analysis is fairly recent. A classic book [178] on
the topic changed names between editions, adopting the “numerical analysis” title in a later
edition [179]. The origins of the part of mathematics we now call analysis were all numerical,
so for millennia the name “numerical analysis” would have been redundant. But analysis
later developed conceptual (non-numerical) paradigms, and it became useful to specify the
different areas by names.

There are many areas of analysis in addition to numerical, including complex, convex,
functional, harmonic, and real. Some areas, which might have been given such a name, have
their own names (such as probability, instead of random or stochastic analysis). There is not
a line of demarcation between the different areas of analysis. For example, much of harmonic
analysis might be characterized as real or complex analysis, with functional analysis playing
a role in modern theories. The same is true of numerical analysis, and it can be viewed in
part as providing motivation for further study in all areas of analysis.

The subject of numerical analysis has ancient roots, and it has had periods of intense
development followed by long periods of consolidation. In many cases, the new developments
have coincided with the introduction of new forms of computing machines. For example,
many of the basic theorems about computing solutions of ordinary differential equations
were proved soon after desktop adding machines became common at the turn of the 20th
century. The emergence of the digital computer in the mid-20th century spurred interest in
solving partial differential equations and large systems of linear equations, as well as many
other topics. The advent of parallel computers similarly stimulated research on new classes
of algorithms. However, many fundamental questions remain open, and the subject is an
active area of research today. One particular emerging area is algorithms for computing
expressions with the least energy consumption.

All of analysis is about evaluating limits. In this sense, it is about infinite objects, unlike,
say, some parts of algebra or discrete mathematics. Often a key step is to provide uniform
bounds on infinite objects, such as operators on vector spaces. In numerical analysis, the
infinite objects are often sets of algorithms which are themselves finite in every instance.
The objective is often to show that the algorithms are well-behaved uniformly and provide,
in some limit, predictable results.

In numerical analysis there is sometimes a cultural divide between courses that empha-

2Robert Lee Moore (1882–1974) was born in Dallas, Texas, and did undergraduate work at the University
of Texas in Austin where he took courses from L. E. Dickson, who recieved the first Ph. D. in mathematics
from the University of Chicago, in 1896. Moore got his Ph.D. in 1905 at the University of Chicago, studying
with E. H. Moore and Oswald Veblen, and eventually returned to Austin where he continued to teach until
his 87th year.

Draft September 23, 2016, do not distribute Page xvi

CONTENTS CONTENTS

size theory and ones that emphasize computation. Ideally, both should be intertwined, as
numerical analysis could well be called computational analysis because it is the analysis of
computational algorithms involving real numbers. We present many computational algo-
rithms and encourage computational exploration. However, we do not address the subject
of software development (a.k.a., programming). Strictly speaking, programming is not re-
quired to appreciate the material in the book. However, we encourage mathematics students
to develop some experience in this direction, as writing a computer program is quite similar
to proving a theorem. Computer systems are quite adept at finding flaws in one’s reasoning,
and the organization required to make software readable provides a useful model to follow
in making complex mathematical arguments understandable to others.

There are several important groups this text can serve. It is very common today for
people in many fields to study mathematics through the beginning of real analysis, as might
be characterized by the extremely popular “little Rudin” book [146]. Our book is intended to
be at a comparable level of difficulty with little Rudin and can provide valuable reinforcement
of the ideas and techniques covered there by applying them in a new domain. In this way, it
is easily accessible to advanced undergraduates. It provides an option to study more analysis
without raising the level of difficulty as occurs in a graduate course on measure theory.

People who go on to graduate work with a substantial computational component often
need to progress further in analysis, including a study of measure theory and the Lebesgue
integral. This is often done in a course at the “big Rudin” [147] level. Although the direct
progression from little to big Rudin is a natural one, this book provides a way to interpolate
between these levels while at the same time introducing ideas not found in [146] or [147] (or
comparable texts [111, 125]). Thus the book is also appropriate as a course for graduate
students interested in computational mathematics but with a background in analysis only
at the level of [146].

We have included quotes at the beginning of each chapter and frequent footnotes giving
historical information. These are intended to be entertaining and perhaps provocative, but
no attempt has been made to be historically complete. However, we give references to several
works on the history of mathematics that we recommend for a more complete picture. We
indicate several connections among various mathematicians to give a sense of the personal
interactions of the era. We use the terms “student” and “advisor” to describe general
mentoring relationships which were sometimes different from what the terms might connote
today. Although this may not be historically accurate in some cases, it would be tedious to
use more precise terms to describe the relationships in each case in the various periods. We
have used the MacTutor History of Mathematics archive extensively as an initial source of
information but have also endeavored to refer to archival literature whenever possible.

In practice, numerical computation remains as much an art as it is a science. We focus
on the part of the subject that is a science. A continuing challenge of current research is to
transform numerical art into numerical analysis, as well as extending the power and reach of
the art of numerical computation. Recent decades have witnessed a dramatic improvement
in our understanding of many topics in numerical computation, and there is reason to expect
that this trend will continue. Techniques that are supported only by heuristics tend to lose
favor over time to ones that are understood rigorously. One of the great joys of the subject
is when a heuristic idea succumbs to a rigorous analysis that reveals its secrets and extends
its influence. It is hoped that this book will attract some new participants in this process.

Draft September 23, 2016, do not distribute Page xvii

CONTENTS CONTENTS

Acknowledgments

I have gotten suggestions from many people regarding topics in this book, and my memory
is not to be trusted to remember all of them. However, above all, Todd Dupont provided the
most input regarding the book, including draft material, suggestions for additional topics,
exercises, and overall conceptual advice. He regularly attended the fall 2009 class at the
University of Chicago in which the book was given a trial run. I also thank all the students
from that class for their influence on the final version.

Randy Bank, Carl de Boor and Nick Trefethen suggested novel approaches to particular
topics. Although I cannot claim that I did exactly what they intended, their suggestions did
influence what was presented in a substantial way.

Draft September 23, 2016, do not distribute Page xviii

CONTENTS CONTENTS

Draft September 23, 2016, do not distribute Page 2

Chapter 1

Numerical Algorithms

The word “algorithm” derives from the name of the Persian mathemati-
cian (Abu Ja’far Muhammad ibn Musa) Al-Khwarizmi who lived from
about 790 CE to about 840 CE. He wrote a book, Hisab al-jabr w’al-
muqabala, that also named the subject “algebra.”

Numerical analysis is the subject which studies algorithms for computing expressions
defined with real numbers. The square-root

√
y is an example of such an expression; we

evaluate this today on a calculator or in a computer program as if it were as simple as y2. It
is numerical analysis that has made this possible, and we will study how this is done. But
in doing so, we will see that the same approach applies broadly to include functions that
cannot be named, and it even changes the nature of fundamental questions in mathematics,
such as the impossibility of finding expressions for roots of order higher than 4.

There are two different phases to address in numerical analysis:

• the development of algorithms and

• the analysis of algorithms.

These are in principle independent activities, but in reality the development of an algorithm
is often guided by the analysis of the algorithm, or of a simpler algorithm that computes the
same thing or something similar.

There are three characteristics of algorithms using real numbers that are in conflict to
some extent:

• the accuracy (or consistency) of the algorithm,

• the stability of the algorithm, and

• the effects of finite-precision arithmetic (a.k.a. round-off error).

The first of these just means that the algorithm approximates the desired quantity to any
required accuracy under suitable restrictions. The second means that the behavior of the
algorithm is continuous with respect to the parameters of the algorithm. The third topic
is still not well understood at the most basic level, in the sense that there is not a well-
established mathematical model for finite-precision arithmetic. Instead, we are forced to use
crude upper bounds for the behavior of finite-precision arithmetic that often lead to overly
pessimistic predictions about its effects in actual computations.

1

1.1. FINDING ROOTS CHAPTER 1. NUMERICAL ALGORITHMS

We will see that in trying to improve the accuracy or efficiency of a stable algorithm, one
is often led to consider algorithms that turn out to be unstable and therefore of minimal (if
any) value. These various aspects of numerical analysis are often intertwined, as ultimately
we want an algorithm that we can analyze rigorously to ensure it is effective when using
computer arithmetic.

The efficiency of an algorithm is a more complicated concept but is often the bottom line
in choosing one algorithm over another. It can be related to all of the above characteristics,
as well as to the complexity of the algorithm in terms of computational work or memory
references required in its implementation.

Another central theme in numerical analysis is adaptivity. This means that the compu-
tational algorithm adapts itself to the data of the problem being solved as a way to improve
efficiency and/or stability. Some adaptive algorithms are quite remarkable in their ability to
elicit information automatically about a problem that is required for more efficient solution.

We begin with a problem from antiquity to illustrate each of these components of numer-
ical analysis in an elementary context. We will not always disentangle the different issues,
but we hope that the differing components will be evident.

1.1 Finding roots

People have been computing roots for millennia. Evidence exists [66] that the Babylonians,
who used base-60 arithmetic, were able to approximate

√
2 ≈ 1 +

24

60
+

51

602
+

10

603
(1.1)

nearly 4000 years ago. By the time of Heron1 a method to compute square-roots was estab-
lished [27] that we recognize now as the Newton-Raphson-Simpson method (see section 2.2.1)
and takes the form of a repeated iteration

x← 1
2
(x+ y/x), (1.2)

where the backwards arrow ← means assignment in algorithms. That is, once the computa-
tion of the expression on the right-hand side of the arrow has been completed, a new value
is assigned to the variable x. Once that assignment is completed, the computation on the
right-hand side can be redone with the new x.

The algorithm (1.2) is an example of what is known as fixed-point iteration, in which one
hopes to find a fixed point, that is, an x where the iteration quits changing. A fixed point is
thus a point x where

x = 1
2
(x+ y/x). (1.3)

More precisely, x is a fixed point x = f(x) of the function

f(x) = 1
2
(x+ y/x), (1.4)

defined, say, for x 6= 0. If we rearrange terms in (1.3), we find x = y/x, or x2 = y. Thus a
fixed point as defined in (1.3) is a solution of x2 = y, so that x = ±√y.

1A.k.a. Hero, of Alexandria, who lived in the 1st century CE.

Draft September 23, 2016, do not distribute Page 2

CHAPTER 1. NUMERICAL ALGORITHMS 1.1. FINDING ROOTS

√
2 approximation absolute error

1.50000000000000 8.5786e-02
1.41666666666667 2.4531e-03
1.41421568627451 2.1239e-06
1.41421356237469 1.5947e-12
1.41421356237309 -2.2204e-16

Table 1.1: Results of experiments with the Heron algorithm applied to approximate
√

2 using
the algorithm (1.2) starting with x = 1. The boldface indicates the leading incorrect digit.
Note that the number of correct digits essentially doubles at each step.

To describe actual implementations of these algorithms, we choose the scripting syntax
implemented in the system octave. As a programming language, this has some limitations,
but its use is extremely widespread. In addition to the public domain implementation of
octave, a commercial interpreter (which predates octave) called Matlab is available. How-
ever, all computations presented here were done in octave.

We can implement (1.2) in octave in two steps as follows. First, we define the function
(1.4) via the code

function x=heron(x,y)

x=.5*(x+y/x);

To use this function, you need to start with some initial guess, say, x = 1, which is written
simply as

x=1

(Writing an expression with and without a semicolon at the end controls whether the inter-
preter prints the result or not.) But then you simply iterate:

x=heron(x,y)

until x (or the part you care about) quits changing. The results of doing so are given in
table 1.1.

We can examine the accuracy by a simple code

function x=errheron(x,y)

for i=1:5

x=heron(x,y);

errheron=x-sqrt(y)

end

We show in table 1.1 the results of these computations in the case y = 2. This algorithm
seems to “home in” on the solution. We will see that the accuracy doubles at each step.

Draft September 23, 2016, do not distribute Page 3

1.2. ANALYZING HERON’S ALGORITHMCHAPTER 1. NUMERICAL ALGORITHMS

1.1.1 Relative versus absolute error

We can require the accuracy of an algorithm to be based on the size of the answer. For
example, we might want the approximation x̂ of a root x to be small relative to the size of
x:

x̂

x
= 1 + δ, (1.5)

where δ satisfies some fixed tolerance, e.g., |δ| ≤ ε. Such a requirement is in keeping with
the model we will adopt for floating-point operations (see (1.39) and section 18.1).

We can examine the relative accuracy by the simple code

function x=relerrher(x,y)

for i=1:6

x=heron(x,y);

errheron=(x/sqrt(y))-1

end

We leave as exercise 1.2 comparison of the results produced by the above code relerrher

with the absolute errors presented in table 1.1.

1.1.2 Scaling Heron’s algorithm

Before we analyze how Heron’s algorithm (1.2) works, let us enhance it by a prescaling. To
begin with, we can suppose that the number y whose square root we seek lies in the interval
[1
2
, 2]. If y < 1

2
or y > 2, then we make the transformation

ỹ = 4ky (1.6)

to get ỹ ∈ [1
2
, 2], for some integer k. And of course

√
ỹ = 2k

√
y. By scaling y in this way, we

limit the range of inputs that the algorithm must deal with.
In table 1.1, we showed the absolute error for approximating

√
2, and in exercise 1.2 the

relative errors for approximating
√

2 and
√

1
2

are explored. It turns out that the maximum

errors for the interval [1
2
, 2] occur at the ends of the interval (exercise 1.3). Thus five iterations

of Heron, preceded by the scaling (1.6), are sufficient to compute
√
y to 16 decimal places.

Scaling provides a simple example of adaptivity for algorithms for finding roots. Without
scaling, the global performance (section 1.2.2) would be quite different.

1.2 Analyzing Heron’s algorithm

As the name implies, a major objective of numerical analysis is to analyze the behavior
of algorithms such as Heron’s iteration (1.2). There are two questions one can ask in this
regard. First, we may be interested in the local behavior of the algorithm assuming that
we have a reasonable start near the desired root. We will see that this can be done quite
completely, both in the case of Heron’s iteration and in general for algorithms of this type
(in chapter 2). Second, we may wonder about the global behavior of the algorithm, that is,
how it will respond with arbitrary starting points. With the Heron algorithm we can give a
fairly complete answer, but in general it is more complicated. Our point of view is that the

Draft September 23, 2016, do not distribute Page 4

CHAPTER 1. NUMERICAL ALGORITHMS1.2. ANALYZING HERON’S ALGORITHM

global behavior is really a different subject, e.g., a study in dynamical systems. We will see
that techniques like scaling (section 1.1.2) provide a basis to turn the local analysis into a
convergence theory.

1.2.1 Local error analysis

Since Heron’s iteration (1.2) is recursive in nature, it it natural to expect that the errors can
be expressed recursively as well. We can write an algebraic expression for Heron’s iteration
(1.2) linking the error at one iteration to the error at the next. Thus define

xn+1 = 1
2
(xn + y/xn), (1.7)

and let en = xn − x = xn −
√
y. Then by (1.7) and (1.3),

en+1 =xn+1 − x = 1
2
(xn + y/xn)− 1

2
(x+ y/x)

= 1
2
(en + y/xn − y/x) = 1

2

(
en +

y(x− xn)

xxn

)
= 1

2

(
en −

xen
xn

)
= 1

2
en

(
1− x

xn

)
= 1

2

e2
n

xn
.

(1.8)

If we are interested in the relative error,

ên =
en
x

=
xn − x
x

=
xn
x
− 1, (1.9)

then (1.8) becomes

ên+1 = 1
2

xê2
n

xn
= 1

2
(1 + ên)−1 ê2

n. (1.10)

Thus we see that

the error at each step is proportional to
the square of the error at the previous step;

for the relative error, the constant of proportionality tends rapidly to 1
2
. In (2.20), we will

see that this same result can be derived by a general technique.

1.2.2 Global error analysis

In addition, (1.10) implies a limited type of global convergence property, at least for xn >
x =
√
y. In that case, (1.10) gives

|ên+1| = 1
2

ê2
n

|1 + ên|
= 1

2

ê2
n

1 + ên
≤ 1

2
ên. (1.11)

Thus the relative error is reduced by a factor smaller than 1
2

at each iteration, no matter
how large the initial error may be. Unfortunately, this type of global convergence property
does not hold for many algorithms. We can illustrate what can go wrong in the case of the
Heron algorithm when xn < x =

√
y.

Draft September 23, 2016, do not distribute Page 5

1.3. WHERE TO START CHAPTER 1. NUMERICAL ALGORITHMS

Suppose for simplicity that y = 1, so that also x = 1, so that the relative error is
ên = xn − 1, and therefore (1.10) implies that

ên+1 = 1
2

(1− xn)2

xn
. (1.12)

As xn → 0, ên+1 →∞, even though |ên| < 1. Therefore, convergence is not truly global for
the Heron algorithm.

What happens if we start with x0 near zero? We obtain x1 near ∞. From then on, the
iterations satisfy xn >

√
y, so the iteration is ultimately convergent. But the number of

iterations required to reduce the error below a fixed error tolerance can be arbitrarily large
depending on how small x0 is. By the same token, we cannot bound the number of required
iterations for arbitrarily large x0. Fortunately, we will see that it is possible to choose good
starting values for Heron’s method to avoid this potential bad behavior.

1.3 Where to start

With any iterative algorithm, we have to start the iteration somewhere, and this choice
can be an interesting problem in its own right. Just like the initial scaling described in
section 1.1.2, this can affect the performance of the overall algorithm substantially.

For the Heron algorithm, there are various possibilities. The simplest is just to take
x0 = 1, in which case

ê0 =
1

x
− 1 =

1
√
y
− 1. (1.13)

This gives

ê1 = 1
2
xê2

0 = 1
2
x

(
1

x
− 1

)2

= 1
2

(x− 1)2

x
. (1.14)

We can use (1.14) as a formula for ê1 as a function of x (it is by definition a function of
y = x2); then we see that

ê1(x) = ê1(1/x) (1.15)

by comparing the rightmost two terms in (1.14). Note that the maximum of ê1(x) on
[2−1/2, 21/2] occurs at the ends of the interval, and

ê1(
√

2) = 1
2

(
√

2− 1)2

√
2

= 3
4

√
2− 1 ≈ 0.060660 . (1.16)

Thus the simple starting value x0 = 1 is remarkably effective. Nevertheless, let us see if we
can do better.

1.3.1 Another start

Another idea to start the iteration is to make an approximation to the square-root function
given the fact that we always have y ∈ [1

2
, 2] (section 1.1.2). Since this means that y is near

1, we can write y = 1 + t (i.e., t = y − 1), and we have

x =
√
y =
√

1 + t = 1 + 1
2
t+O(t2)

= 1 + 1
2
(y − 1) +O(t2) = 1

2
(y + 1) +O(t2).

(1.17)

Draft September 23, 2016, do not distribute Page 6

CHAPTER 1. NUMERICAL ALGORITHMS 1.3. WHERE TO START

Thus we get the approximation x ≈ 1
2
(y + 1) as a possible starting guess:

x0 = 1
2
(y + 1). (1.18)

But this is the same as x1 if we had started with x0 = 1. Thus we have not really found
anything new.

1.3.2 The best start

Our first attempt (1.18) based on a linear approximation to the square-root did not produce
a new concept since it gives the same result as starting with a constant guess after one
iteration. The approximation (1.18) corresponds to the tangent line of the graph of

√
y at

y = 1, but this may not be the best affine approximation to a function on an interval. So let
us ask the question, What is the best approximation to

√
y on the interval [1

2
, 2] by a linear

polynomial? This problem is a miniature of the questions we will address in chapter 12.
The general linear polynomial is of the form

f(y) = a+ by. (1.19)

If we take x0 = f(y), then the relative error ê0 = ê0(y) is

ê0(y) =
x0 −

√
y

√
y

=
a+ by −√y
√
y

=
a
√
y

+ b
√
y − 1. (1.20)

Let us write eab(y) = ê0(y) to be precise. We seek a and b such that the maximum of |eab(y)|
over y ∈ [1

2
, 2] is minimized.

Fortunately, the functions

eab(y) =
a
√
y

+ b
√
y − 1 (1.21)

have a simple structure. As always, it is helpful to compute the derivative:

e′ab(y) = −1
2
ay−3/2 + 1

2
by−1/2 = 1

2
(−a+ by)y−3/2. (1.22)

Thus e′ab(y) = 0 for y = a/b; further, e′ab(y) > 0 for y > a/b, and e′ab(y) < 0 for y < a/b.
Therefore, eab has a minimum at y = a/b and is strictly increasing as we move away from
that point in either direction. Thus we have proved that

min eab = min eba = eab(a/b) = 2
√
ab− 1. (1.23)

Thus the maximum values of |eab| on [1
2
, 2] will be at the ends of the interval or at y = a/b

if a/b ∈ [1
2
, 2]. Moreover, the best value of eab(a/b) will be negative (exercise 1.10). Thus we

consider the three values

eab(2) =
a√
2

+ b
√

2− 1,

eab(
1
2
) = a

√
2 +

b√
2
− 1,

−eab(a/b) = 1− 2
√
ab.

(1.24)

We have thus shown that

min
a,b

max
{
|eab(x)|

∣∣ x ∈ [1
2
, 2]
}

= min
a,b

max
{
eab(2), eab(

1
2
), 1− 2

√
ab
}
. (1.25)

Note that eab(2) = eba(1/2).

Draft September 23, 2016, do not distribute Page 7

1.3. WHERE TO START CHAPTER 1. NUMERICAL ALGORITHMS

1.3.3 Solving the optimization problem

Introduce the new parameter c = ab, so that a = c/b. Now we think of b and c as the
independent parameters, with a determined from them. Then

eab(2) =
c√
2b

+
√

2b− 1, eab(
1
2
) =

√
2c

b
+

b√
2
− 1. (1.26)

Define

φ(b, c) = max

{
c√
2b

+
√

2b− 1,

√
2c

b
+

b√
2
− 1

}
(1.27)

and ψ(c) = 1− 2
√
c. Thus

min
a,b

max
{
|eab(x)|

∣∣ x ∈ [1
2
, 2]
}

= min
b,c

max {φ(b, c), ψ(c)}

= min
c

max
{

min
b
φ(b, c), ψ(c)

}
,

(1.28)

where the last equality uses exercises 1.20 and 1.21. Then we define

fc(b) = eab(2) =
c√
2b

+
√

2b− 1, gc(b) = eab(
1
2
) =

2c√
2b

+

√
2b

2
− 1. (1.29)

Note that fc(b) = gc(b) when b =
√
c, and fc > gc when b >

√
c, and conversely, fc < gc

when b <
√
c. Thus

φ(b, c) = max {fc(b), gc(b)}
is minimized when the two terms are equal, with b =

√
c, so that

min
a,b

max
{
|eab(x)|

∣∣ x ∈ [1
2
, 2]
}

= min
c

max
{
fc(
√
c), ψ(c)

}
= min

c
max

{
3√
2

√
c− 1, 1− 2

√
c

}
.

(1.30)

The final expression is the maximum of functions linear in
√
c, one increasing and the other

decreasing, so the minimum occurs when they are equal:

3√
2

√
c− 1 = 1− 2

√
c, (1.31)

which is easily solved. Note that b =
√
c implies a =

√
c as well. Thus the optimal values of

a and b are characterized by

a = b =
(

3
4

√
2 + 1

)−1

≈ 0.48528. (1.32)

There is a more geometric approach to solving this optimization problem, which is de-
veloped in a series of exercises. Similar to exercise 1.10, it is possible to show that if a+ by
is the best linear approximation to

√
y in terms of relative error on [1

2
, 2], then

eab(
1
2
) = eab(2) = −eab(a/b), (1.33)

cf. exercises 1.11 and 1.12. This is done just by adding a linear function to the error function,
which is equivalent to adjusting the parameters a and b. Therefore, the optimal values of
a and b must be the same: a = b (exercise 1.13), and the optimum a can be identified
(exercise 1.14). Note that (1.33) already provides an equation for the optimal value of a.

Draft September 23, 2016, do not distribute Page 8

CHAPTER 1. NUMERICAL ALGORITHMS 1.4. AN UNSTABLE ALGORITHM

1.3.4 Using the best start

Recall that the simple idea of starting the Heron algorithm with x0 = 1 yielded an error

|ê1| ≤ γ = 3
4

√
2− 1, (1.34)

and that this was equivalent to choosing a = 1
2

in the current scheme. Note that the optimal
a = 1/(γ + 2), only slightly less than 1

2
, and the resulting minimum value of the maximum

of |eaa| is

1− 2a = 1− 2

γ + 2
=

γ

γ + 2
. (1.35)

Thus the optimal value of a reduces the previous error of γ (for a = 1
2
) by nearly a factor of

1
2
, despite the fact that the change in a is quite small. The benefit of using the better initial

guess is of course squared at each iteration, so the reduced error is nearly smaller by a factor
of 2−2k after k iterations of Heron. We leave as exercise 1.15 the investigation of the effect
of using this optimal starting place in the Heron algorithm.

1.4 An unstable algorithm

Heron’s algorithm has one drawback in that it requires division. One can imagine that a
simpler algorithm might be possible such as

x← x+ x2 − y. (1.36)

Before experimenting with this algorithm, we note that a fixed point

x = x+ x2 − y (1.37)

does have the property that x2 = y, as desired. Thus we can assert the accuracy of the
algorithm (1.36), in the sense that any fixed point will solve the desired problem. However,
it is easy to see that the algorithm is not stable, in the sense that if we start with an initial
guess with any sort of error, the algorithm fails. Table 1.2 shows the results of applying (1.36)
starting with x0 = 1.5. What we see is a rapid movement away from the solution, followed by
a catastrophic blowup (which eventually causes failure in a fixed-precision arithmetic system,
or causes the computer to run out of memory in a variable-precision system). The error is
again being squared, as with the Heron algorithm, but since the error is getting bigger rather
than smaller, the algorithm is useless. In section 2.1 we will see how to diagnose instability
(or rather how to guarantee stability) for iterations like (1.36).

Although the iteration (1.36) is unstable, variants of it are not. For example, consider
the iteration [151]

x← x+ β(y − x2).

Then this is stable provided 0 < βx < 1, as will become clear in the next chapter. This
means that there is an open interval of stability around the root x =

√
y provided that

0 < β < 1/
√
y.

Draft September 23, 2016, do not distribute Page 9

1.5. GENERAL ROOTS: EFFECTS OF FLOATING-POINTCHAPTER 1. NUMERICAL ALGORITHMS

n 0 1 2 3 4 5
xn 1.5 1.75 2.81 8.72 82.8 6937.9
n 6 7 8 9 10 11
xn 5×107 2×1015 5×1030 3×1061 8×10122 7×10245

Table 1.2: Unstable behavior of the iteration (1.36) for computing
√

2.

1.5 General roots: effects of floating-point

So far, we have seen no adverse effects related to finite-precision arithmetic. This is common
for (stable) iterative methods like the Heron algorithm. But now we consider a more complex
problem in which rounding plays a dominant role.

Suppose we want to compute the roots of a general quadratic equation x2 + 2bx+ c = 0,
where b < 0, and we chose the algorithm

x← −b+
√
b2 − c. (1.38)

Note that we have assumed that we can compute the square-root function as part of this
algorithm, say, by Heron’s method.

Unfortunately, the simple algorithm in (1.38) fails if we have c = ε2b2 (it returns x = 0)
as soon as ε2 = c/b2 is small enough that the floating-point representation of 1− ε2 is 1. For
any (fixed) finite representation of real numbers, this will occur for some ε > 0.

We will consider floating-point arithmetic in more detail in section 18.1, but the simple
model we adopt says that the result of computing a binary operator ⊕ such as +, −, /, or
∗ has the property that

f`(a⊕ b) = (a⊕ b)(1 + δ), (1.39)

where |δ| ≤ ε, where ε > 0 is a parameter of the model.2 However, this means that a
collection of operations could lead to catastrophic cancellation, e.g., f`(f`(1 + 1

2
ε)− 1) = 0

and not 1
2
ε.

We can see the behavior in some simple codes. But first, let us simplify the problem
further so that we have just one parameter to deal with. Suppose that the equation to be
solved is of the form

x2 − 2bx+ 1 = 0. (1.40)

That is, we switch b to −b and set c = 1. In this case, the two roots are multiplicative
inverses of each other. Define

x± = b±
√
b2 − 1. (1.41)

Then x− = 1/x+.
There are various possible algorithms. We could use one of the two formulas x± =

b ±
√
b2 − 1 directly. More precisely, let us write x̃± ≈ b ±

√
b2 − 1 to indicate that we

implement this in floating-point. Correspondingly, there is another pair of algorithms that
start by computing x̃∓ and then define, say, x̂+ ≈ 1/x̃−. A similar algorithm could determine
x̂− ≈ 1/x̃+.

2The notation f` is somewhat informal. It would be more precise to write a ⊕̂ b instead of f`(a⊕ b) since
the operator is modified by the effect of rounding.

Draft September 23, 2016, do not distribute Page 10

CHAPTER 1. NUMERICAL ALGORITHMS 1.6. EXERCISES

All four of these algorithms will have different behaviors. We expect that the behaviors
of the algorithms for computing x̃− and x̂− will be dual in some way to those for computing
x̃+ and x̂+, so we consider only the first pair.

First, the function minus implements the x̃− square-root algorithm:

function x=minus(b)

% solving = 1-2bx +x^2

x=b-sqrt(b^2-1);

To know if it is getting the right answer, we need another function to check the answer:

function error=check(b,x)

error = 1-2*b*x +x^2;

To automate the process, we put the two together:

function error=chekminus(b)

x=minus(b);

error=check(b,x)

For example, when b = 106, we find the error is −7.6 × 10−6. As b increases further, the
error increases, ultimately leading to complete nonsense. For this reason, we consider an
alternative algorithm suitable for large b.

The algorithm for x̂− is given by

function x=plusinv(b)

% solving = 1-2bx +x^2

y=b+sqrt(b^2-1);

x=1/y;

Similarly, we can check the accuracy of this computation by the code

function error=chekplusinv(b)

x=plusinv(b);

error=check(b,x)

Now when b = 106, we find the error is −2.2 × 10−17. And the bigger b becomes, the more
accurate it becomes.

Here we have seen that algorithms can have data-dependent behavior with regard to the
effects of finite-precision arithmetic. We will see that there are many algorithms in numerical
analysis with this property, but suitable analysis will establish conditions on the data that
guarantee success.

1.6 Exercises

Exercise 1.1 How accurate is the approximation (1.1) if it is expressed as a decimal ap-
proximation (how many digits are correct)?

Exercise 1.2 Run the code relerrher starting with x = 1 and y = 2 to approximate
√

2.
Compare the results with table 1.1. Also run the code with x = 1 and y = 1

2
and compare the

results with the previous case. Explain what you find.

Draft September 23, 2016, do not distribute Page 11

1.6. EXERCISES CHAPTER 1. NUMERICAL ALGORITHMS

Exercise 1.3 Show that the maximum relative error in Heron’s algorithm for approximating√
y for y ∈ [1/M,M], for a fixed number of iterations and starting with x0 = 1, occurs at

the ends of the interval: y = 1/M and y = M . (Hint: consider (1.10) and (1.14) and show
that the function

φ(x) = 1
2
(1 + x)−1x2 (1.42)

plays a role in each. Show that φ is increasing on the interval [0,∞[.)

Exercise 1.4 It is sometimes easier to demonstrate the relative accuracy of an approxima-
tion x̂ to x by showing that

|x− x̂| ≤ ε′|x̂| (1.43)

instead of verifying (1.5) directly. Show that if (1.43) holds, then (1.5) holds with ε =
ε′/(1− ε′).

Exercise 1.5 There is a simple generalization to Heron’s algorithm for finding kth roots as
follows:

x← 1

k
((k − 1)x+ y/xk−1). (1.44)

Show that, if this converges, it converges to a solution of xk = y. Examine the speed of
convergence both computationally and by estimating the error algebraically.

Exercise 1.6 Show that the error in Heron’s algorithm for approximating
√
y satisfies

xn −
√
y

xn +
√
y

=

(
x0 −

√
y

x0 +
√
y

)2n

(1.45)

for n ≥ 1. Note that the denominator on the left-hand side of (1.45) converges rapidly to
2
√
y.

Exercise 1.7 We have implicitly been assuming that we were attempting to compute a pos-
itive square-root with Heron’s algorithm, and thus we always started with a positive initial
guess. If we give zero as an initial guess, there is immediate failure because of division by
zero. But what happens if we start with a negative initial guess? (Hint: there are usually
two roots to x2 = y, one of which is negative.)

Exercise 1.8 Consider the iteration

x← 2x− yx2 (1.46)

and show that, if it converges, it converges to x = 1/y. Note that the algorithm does not
require a division. Determine the range of starting values x0 for which this will converge.
What sort of scaling (cf. section 1.1.2) would be appropriate for computing 1/y before starting
the iteration?

Exercise 1.9 Consider the iteration

x← 3
2
x− 1

2
yx3 (1.47)

and show that, if this converges, it converges to x = 1/
√
y. Note that this algorithm does not

require a division. The computation of 1/
√
y appears in the Cholesky algorithm in (4.12).

Draft September 23, 2016, do not distribute Page 12

CHAPTER 1. NUMERICAL ALGORITHMS 1.6. EXERCISES

Exercise 1.10 Suppose that a+by is the best linear approximation to
√
y in terms of relative

error on [1
2
, 2]. Prove that the error expression eab has to be negative at its minimum. (Hint:

if not, you can always decrease a to make eab(2) and eab(
1
2
) smaller without increasing the

maximum value of |eab|.)

Exercise 1.11 Suppose that a+by is the best linear approximation to
√
y in terms of relative

error on [1
2
, 2]. Prove that the value eab(a/b) of eab at its minimum satisfies

eab(a/b) = −max{eab(1
2
), eab(2)}.

(Hint: if not, adjust a to decrease the maximum value of |eab|.)

Exercise 1.12 Suppose that a+by is the best linear approximation to
√
y in terms of relative

error on [1
2
, 2]. Prove that

eab(
1
2
) = eab(2) = −eab(a/b).

(Hint: if not, adjust a and b to decrease the maximum value of |eab|.)

Exercise 1.13 Suppose that a+ by is any linear approximation to
√
y satisfying

eab(
1
2
) = eab(2).

Prove that a = b. (Hint: just use the formula (1.24).)

Exercise 1.14 Suppose that a+ay is the best linear approximation to
√
y in terms of relative

error on [1
2
, 2]. Prove that the error expression satisfies

eaa(1) = −eaa(2), (1.48)

and then solve for a. (Hint: simplify the error terms using a = b to get something like
(1.30).)

Exercise 1.15 Consider the effect of the best starting value of a in (1.32) on the Heron
algorithm. How many iterations are required to get 16 digits of accuracy? And to obtain 32
digits of accuracy?

Exercise 1.16 Change the function minus for computing x̃− and the function plusinv for
computing x̂− to functions for computing x̃+ (call that function plus) and x̂+ (call that
function minusinv). Use the check function to see where they work well and where they fail.
Compare that with the corresponding behavior for minus and plusinv.

Exercise 1.17 The iteration (1.36) can be implemented via the function

function y =sosimpl(x,a)

y=x+x^2-a;

Use this to verify that sosimpl(1,1) is indeed 1, but if we start with

x=1.000000000001

and then repeatedly apply x=sosimpl(x,1), the result ultimately diverges.

Draft September 23, 2016, do not distribute Page 13

1.7. SOLUTIONS CHAPTER 1. NUMERICAL ALGORITHMS

Exercise 1.18 Suppose that we start the Heron algorithm with x0 = 1. Then the error after
one step is e1 = 1

2
(1 + y)−√y. Define φ(y) = 1

2
(1 + y)−√y. Show that φ has a minimum

at y = 1 and evaluate it at y = 0, 1
2
, 1, 2 and make a plot. Prove that φ(y)→∞ as y →∞,

and in particular that

lim
y→∞

φ(y)

y
=

1

2
.

Exercise 1.19 Let y > 0. Prove that there is a unique ỹ satisfying 1
2
< ỹ ≤ 2 such that

ỹ = 4ky for some integer k.

Exercise 1.20 Let f ∈ C0(R) be bounded below, and let C ∈ R. Prove that the min and
max commute:

min
b

max {f(b), C} = max
{

min
b
f(b), C

}
. (1.49)

Exercise 1.21 Suppose that g ∈ C0(R2) has a minimum at a finite point in R2. Prove that

min
b,c

g(b, c) = min
c
f(c), (1.50)

where f(c) = minb g(b, c).

1.7 Solutions

Solution of Exercise 1.3. The function φ(x) = 1
2
(1 + x)−1x2 is increasing on the interval

[0,∞[since

φ′(x) = 1
2

2x(1 + x)− x2

(1 + x)2
= 1

2

2x+ x2

(1 + x)2
> 0 (1.51)

for x > 0. The expression (1.10) says that

ên+1 = φ(ên), (1.52)

and (1.14) says that
ê1 = φ(x− 1). (1.53)

Thus
ê2 = φ(φ(x− 1)). (1.54)

By induction, define
φ[n+1](t) = φ(φ[n](t)), (1.55)

where φ[1](t) = φ(t) for all t. Then, by induction,

ên = φ[n](x− 1) (1.56)

for all n ≥ 1. Since the composition of increasing functions is increasing, each φ[n] is in-
creasing, by induction. Thus ên is maximized when x is maximized, at least for x > 1. Note
that

φ(x− 1) = φ((1/x)− 1), (1.57)

Draft September 23, 2016, do not distribute Page 14

CHAPTER 1. NUMERICAL ALGORITHMS 1.7. SOLUTIONS

so we may also write
ên = φ[n]((1/x)− 1). (1.58)

Thus the error is symmetric via the relation

ên(x) = ên(1/x). (1.59)

Thus the maximal error on an interval [1/M,M] occurs simultaneously at 1/M and M .

Solution of Exercise 1.6. Define dn = xn + x. Then (1.45) in exercise 1.6 is equivalent to
the statement that

en
dn

=

(
e0

d0

)2n

. (1.60)

Thus we compute

dn+1 =xn+1 + x = 1
2
(xn + y/xn) + 1

2
(x+ y/x) = 1

2
(dn + y/xn + y/x)

= 1
2

(
dn +

y(x+ xn)

xxn

)
= 1

2

(
dn +

ydn
xxn

)
= 1

2

(
dn +

xdn
xn

)
= 1

2
dn

(
1 +

x

xn

)
= 1

2
dn

(
xn + x

xn

)
= 1

2

d2
n

xn
.

(1.61)

Recall that (1.8) says that en+1 = 1
2
e2
n/xn, so dividing by (1.61) yields

en+1

dn+1

=

(
en
dn

)2

(1.62)

for any n ≥ 0. A simple induction on n yields (1.60), as required.

Draft September 23, 2016, do not distribute Page 15

1.7. SOLUTIONS CHAPTER 1. NUMERICAL ALGORITHMS

Draft September 23, 2016, do not distribute Page 16

Chapter 2

Nonlinear Equations

“A method algebraically equivalent to Newton’s method was known to
the 12th century algebraist Sharaf al-Din al-Tusi ... and the 15th century
Arabic mathematician Al-Kashi used a form of it in solving xp−N = 0
to find roots of N” [182].

Kepler’s discovery that the orbits of the planets are elliptical introduced a mathematical
challenge via his equation

x− E sinx = τ, (2.1)

which defines a function φ(τ) = x. Here E =
√

1− b2/a2 is the eccentricity of the elliptical
orbit, where a and b are the major and minor axis lengths of the ellipse and τ is proportional
to time. See figure 2.1 regarding the notation [154]. Much effort has been expended in trying
to find a simple representation of this function φ, but we will see that it can be viewed as
just like the square-root function from the numerical point of view. Newton1 proposed an
iterative solution to Kepler’s equation [182]:

xn+1 = xn +
τ − xn + E sinxn

1− E cosxn
. (2.2)

We will see that this iteration can be viewed as a special case of a general iterative technique
now known as Newton’s method.

We will also see that the method introduced in (1.2) as Heron’s method, namely,

xn+1 = 1
2

(
xn +

y

xn

)
, (2.3)

can be viewed as Newton’s method for computing
√
y. Newton’s method provides a general

paradigm for solving nonlinear equations iteratively and changes qualitatively the notion of
“solution” for a problem. Thus we see that Kepler’s equation (2.1) is itself the solution, just
as if it had turned out that the function φ(τ) = x was a familiar function like square root or
logarithm. If we need a particular value of x for a given τ , then we know there is a machine
available to produce it, just as in computing

√
y on a calculator.

First, we develop a general framework for iterative solution methods, and then we show
how this leads to Newton’s method and other iterative techniques. We begin with one
equation in one variable and later extend to systems in chapter 7.

1 Isaac Newton (1643–1727) was one of the greatest and best known scientists of all time, to the point of
being a central figure in popular literature [156].

17

2.1. FIXED-POINT ITERATION CHAPTER 2. NONLINEAR EQUATIONS

K

xS

P

Figure 2.1: The notation for Kepler’s equation. The sun is at S (one of the foci of the
elliptical orbit), the planet is at P , and the point K lies on the indicated circle that encloses
the ellipse of the orbit; the horizontal coordinates of P and K are the same, by definition.
The angle x is between the principal axis of the ellipse and the point K.

2.1 Fixed-point iteration

This goes by many names, including functional iteration, but we prefer the term fixed-point
iteration because it seeks to find a fixed point

α = g(α) (2.4)

for a continuous function g. Fixed-point iteration

xn+1 = g(xn) (2.5)

has the important property that, if it converges, it converges to a fixed point (2.4) (assuming
only that g is continuous). This result is so simple (see exercise 2.1) that we hesitate to call
it a theorem. But it is really the key fact about fixed-point iteration.

We now see that Heron’s algorithm (2.3) may be written in this notation with

g(x) = 1
2

(
x+

y

x

)
. (2.6)

Similarly, the method (2.2) proposed by Newton to solve Kepler’s equation (2.1) can be
written as

g(x) = x+
τ − x+ E sinx

1− E cosx
. (2.7)

The choice of g is not at all unique. One could as well approximate the solution of Kepler’s
equation (2.1) via

g(x) = τ + E sinx. (2.8)

In table 2.1, the methods (2.8) and (2.7) are compared. We find that Newton’s method
converges much faster, comparable to the way that Heron’s method does, in that the number
of correct digits doubles at each step.

Draft September 23, 2016, do not distribute Page 18

CHAPTER 2. NONLINEAR EQUATIONS 2.1. FIXED-POINT ITERATION

n xn from (2.8) xn from (2.2)
0 1.00 1.00
1 1.084147098480790 1.088953263837373
2 1.088390486229308 1.088597758269552
3 1.088588138978555 1.088597752397894
4 1.088597306592452 1.088597752397894
5 1.088597731724630 1.088597752397894
6 1.088597751439216 1.088597752397894
7 1.088597752353437 1.088597752397894
8 1.088597752395832 1.088597752397894
9 1.088597752397798 1.088597752397894

Table 2.1: Computations of solutions to Kepler’s equation (2.1) for E = 0.1 and τ = 1 via
Newton’s method (2.2) (third column) and by the fixed-point iteration (2.8). The boldface
indicates the leading incorrect digit. Note that the number of correct digits essentially
doubles at each step for Newton’s method but increases only by about 1 at each step of the
fixed-point iteration (2.8).

The rest of the story about fixed-point iteration is then to figure out when and how fast
it converges. For example, if g is Lipschitz2-continuous with constant λ < 1, that is,

|g(x)− g(y)| ≤ λ|x− y|, (2.9)

then convergence will happen if we start close enough to α. This is easily proved by defining,
as we did for Heron’s method, en = xn − α and estimating

|en+1| = |g(xn)− g(α)| ≤ λ|en|, (2.10)

where the equality results from subtracting (2.4) from (2.5). Thus, by induction,

|en| ≤ λn|e0| (2.11)

for all n ≥ 1. Thus we have proved the following.

Theorem 2.1 Suppose that α = g(α) and that the Lipschitz estimate (2.9) holds with λ < 1
for all x, y ∈ [α−A,α+A] for some A > 0. Suppose that |x0−α| ≤ A. Then the fixed-point
iteration defined in (2.5) converges according to (2.11).

Proof. The only small point to be sure about is that all the iterates stay in the interval
[α− A,α + A], but this follows from the estimate (2.11) once we know that |e0| ≤ A, as we
have assumed. QED

2Rudolf Otto Sigismund Lipschitz (1832–1903) had only one student, but that was Felix Klein.

Draft September 23, 2016, do not distribute Page 19

2.1. FIXED-POINT ITERATION CHAPTER 2. NONLINEAR EQUATIONS

2.1.1 Verifying the Lipschitz condition

A Lipschitz-continuous function need not be C1, but when a function is C1, its derivative
gives a good estimate of the Lipschitz constant. We formalize this simple result to highlight
the idea.

Lemma 2.2 Suppose g ∈ C1 in an interval around an arbitrary point α. Then for any
ε > 0, there is an A > 0 such that g satisfies (2.9) in the interval [α − A,α + A] with
λ ≤ |g′(α)|+ ε.

Proof. By the continuity of g′, we can pick A > 0 such that |g′(t) − g′(α)| < ε for all
t ∈ [α− A,α + A]. Therefore,

|g′(t)| ≤ |g′(α)|+ |g′(t)− g′(α)| < |g′(α)|+ ε (2.12)

for all t ∈ [α− A,α + A]. Let x, y ∈ [α− A,α + A], with x 6= y. Then∣∣∣∣g(x)− g(y)

x− y

∣∣∣∣ =

∣∣∣∣ 1

x− y

∫ x

y

g′(t) dt

∣∣∣∣
≤ max

{
|g′(t)|

∣∣ t ∈ [α− A,α + A]
}

≤ |g′(α)|+ ε,

(2.13)

by using (2.12). QED

As a result, we conclude that the condition |g′(α)| < 1 is sufficient to guarantee con-
vergence of fixed-point iteration, as long as we start close enough to the root α = g(α)
(cf. exercise 2.2).

On the other hand, the Lipschitz constant λ in (2.9) also gives an upper bound for the
derivative:

|g′(α)| ≤ λ (2.14)

(cf. exercise 2.3). Thus if |g′(α)| > 1, fixed-point iteration will likely not converge since the
Lipschitz constant for g will be greater than 1 in any such interval. If we recall the iteration
function g(x) = x+x2−y in (1.36), we see that g′(

√
y) = 1 + 2

√
y > 1. Thus the divergence

of that algorithm is not surprising.
It is not very useful to develop a general theory of divergence for fixed-point iteration,

but we can clarify this by example. It is instructive to consider the simple case

g(x) := α + λ(x− α), (2.15)

where for simplicity we take λ > 0. Then for all n we have

|xn − α| = |g(xn−1)− α| = λ|xn−1 − α|, (2.16)

and by induction
|xn − α| = λn|x0 − α|, (2.17)

where x0 is our starting value. If λ < 1, this converges, but if λ > 1, this diverges.
The affine example (2.15) not only gives an example of divergence when |g′(α)| > 1 but

also suggests the asymptotic behavior of fixed-point iteration. When 0 < |g′(α)| < 1, the
asymptotic behavior of fixed-point iteration is (cf. exercise 2.4) given by

|xn − α| ≈ C|g′(α)|n (2.18)

as n→∞, where C is a constant that depends on g and the initial guess.

Draft September 23, 2016, do not distribute Page 20

CHAPTER 2. NONLINEAR EQUATIONS 2.1. FIXED-POINT ITERATION

2.1.2 Second-order iterations

What happens if g′(α) = 0? By Taylor’s theorem,

g(x)− α = 1
2
(x− α)2g′′(ξ) (2.19)

for some ξ between x and α, and thus the error is squared at each iteration:

en = 1
2
(en−1)2g′′(ξn), (2.20)

where ξn → α if the iteration converges. Of course, squaring the error is not a good thing if
it is too large initially (with regard to the size of g′′).

We can now see why Heron’s method converges so rapidly. Recall that g(x) = 1
2
(x+y/x),

so that g′(x) = 1
2
(1− y/x2) = 0 when x2 = y. Moreover, g′′(x) = y/x3, so we could derive a

result analogous to (1.8) from (2.20).

2.1.3 Higher-order iterations

It is possible to have even higher-order iterations. If g(α) = α and g′(α) = g′′(α) = 0, then
Taylor’s theorem implies that

g(x)− α = O((x− α)3). (2.21)

In principle, any order of convergence could be obtained [8]. However, while there is a
qualitative change from geometric convergence to quadratic convergence, all higher-order
methods behave essentially the same. For example, given a second-order method, we can
always create one that is fourth-order just by taking two steps and calling them one. That
is, we define

xn+1 = g(g(xn)). (2.22)

We could view this as introducing a “half-step”

xn+1/2 = g(xn) and xn+1 = g(xn+1/2). (2.23)

Applying (2.20) twice, we see that xn+1−α = C(xn−α)4. We can also verify this by defining
G(x) = g(g(x)) and evaluating derivatives of G:

G′(x) = g′(g(x))g′(x)

G′′(x) = g′′(g(x))g′(x)2 + g′(g(x))g′′(x)

G′′′(x) = g′′′(g(x))g′(x)3 + 3g′′(g(x))g′(x)g′′(x) + g′(g(x))g′′′(x).

(2.24)

Using the facts that g(α) = α and g′(α) = 0, we see that G′(α) = G′′(α) = G′′′(α) = 0. Thus,
if ε is the initial error, then the sequence of errors in a quadratic method (suitably scaled) is
ε, ε2, ε4, ε8, ε16, . . . , whereas for a fourth-order method the sequence of errors (suitably scaled)
is ε, ε4, ε16, That is, the sequence of errors for the fourth-order method is just a simple
subsequence (omit every other term) of the sequence of errors for the quadratic method.

What is not so clear at this point is that it is possible to have fractional orders of
convergence. In section 2.2.4 we will introduce a method with this property to illustrate how
this is possible.

Draft September 23, 2016, do not distribute Page 21

2.2. PARTICULAR METHODS CHAPTER 2. NONLINEAR EQUATIONS

x x xn+1 n

Figure 2.2: The geometric, or chord, method for approximating the solution of nonlinear
equations. The slope of the dashed line is s.

2.2 Particular methods

Now we consider solving a general nonlinear equation of the form

f(α) = 0. (2.25)

Several methods use a geometric technique, known as the chord method, designed to point
to a good place to look for the root:

xn+1 = xn −
f(xn)

s
, (2.26)

where s is the slope of a line drawn from the point (xn, f(xn)) to the next iterate xn+1, as
depicted in figure 2.2. This line is intended to intersect the x-axis at, or near, the root of f .
This is based on the idea that the linear function ` with slope s which is equal to f(xn) at
xn vanishes at xn+1 (so `(x) = s(xn+1 − x)).

The simplest fixed-point iteration might be to choose g(x) = x − f(x). The geometric
method can be viewed as a damped version of this, where we take instead g(x) = x−f(x)/s.
You can think of s as an adjustment parameter to help with convergence of the standard
fixed-point iteration. The convergence of the geometric method is thus determined by the
value of

g′(α) = 1− f ′(α)/s. (2.27)

Ideally, we would simply pick s = f ′(α) if we knew how to compute it. We now consider
various ways to approximate this value of s. These can all be considered different adaptive
techniques for approximating s ≈ f ′(α).

2.2.1 Newton’s method

The method in question was a joint effort of many people, including Newton and his contem-
porary Joseph Raphson3 [33, 162]. In addition, Simpson4 was the first (in 1740) to introduce
it for systems of equations [102, 182]. Although Newton presented solutions most commonly

3According to the mathematical historian Florian Cajori [33], the approximate dates for the life of Joseph
Raphson are 1648–1715, but surprisingly little is known about his personal life [162].

4Thomas Simpson (1710–1761); see the quote on page 103.

Draft September 23, 2016, do not distribute Page 22

CHAPTER 2. NONLINEAR EQUATIONS 2.2. PARTICULAR METHODS

for polynomial equations, he did suggest the method in (2.2). Newton’s method for poly-
nomials is different from what we describe here, but perhaps it should just be viewed as
an additional method, slightly different from the one suggested by Raphson. Both because
Newton is better known and because the full name is a bit long, we tend to abbreviate it
by dropping Raphson’s name, but for now let us retain it. We also add Simpson’s name as
suggested in [182].

The Newton-Raphson-Simpson method chooses the slope adaptively at each stage:

s = f ′(xn). (2.28)

The geometric method can be viewed as a type of difference approximation to this since we
choose

s =
0− f(xn)

xn+1 − xn
, (2.29)

and we are making the approximation f(xn+1) ≈ 0 in defining the difference quotient.

The Newton-Raphson-Simpson method is sufficiently important that we should write out
the iteration in detail:

xn+1 = xn −
f(xn)

f ′(xn)
. (2.30)

This is fixed-point iteration with the iteration function g = N f defined by

g(x) = N f(x) = x− f(x)

f ′(x)
. (2.31)

We can think of N as mapping the set of functions

V (I) =
{
f ∈ Ck+1(I)

∣∣ f ′(x) 6= 0 ∀x ∈ I
}

(2.32)

to Ck(I) for a given interval I and any integer k ≥ 0. More generally, we can think of
Newton’s method as mapping problems of the form “find a root of f(x) = 0” to algorithms
using fixed-point iteration with g = N f . We will not try to formalize such a space of problems
or the space of such algorithms, but it is easy to see that Newton’s method operates at a
high level to solve a very general set of problems.

If xn → α, then f ′(xn) → f ′(α), and so (2.27) should imply that the method is second-
order convergent. Again, the second-order convergence of Newton’s method is sufficiently
important that it requires an independent computation:

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2

=
f(x)f ′′(x)

f ′(x)2
.

(2.33)

We conclude that f(α) = 0 implies g′(α) = 0, provided that f ′(α) 6= 0. Thus Newton’s
method is second-order convergent provided f ′(α) 6= 0 at the root α of f(α) = 0.

Draft September 23, 2016, do not distribute Page 23

2.2. PARTICULAR METHODS CHAPTER 2. NONLINEAR EQUATIONS

To estimate the convergence rate, we simply need to calculate g′′:

g′′(x) =
d

dx

(
f(x)f ′′(x)

f ′(x)2

)
=
f ′(x)3f ′′(x) + f(x)f ′(x)2f (3)(x)− 2f(x)f ′(x)f ′′(x)2

f ′(x)4

=
f ′′(x)

f ′(x)
+

f(x)

f ′(x)3

(
f ′(x)f (3)(x)− 2f ′′(x)2

)
.

(2.34)

Assuming f ′(α) 6= 0, this simplifies for x = α:

g′′(α) =
f ′′(α)

f ′(α)
. (2.35)

From (2.20), we expect that Newton’s method converges asymptotically like

en+1 ≈ 1
2

f ′′(α)

f ′(α)
e2
n, (2.36)

where we recall that en = xn − α.

We can see that Heron’s method is the same as Newton’s method if we take f(x) = x2−y.
We have

g(x) = x− f(x)

f ′(x)
= x− x2 − y

2x
= 1

2
x− y

2x
. (2.37)

Recall that g′(x) = 1
2
(1− y/x2), so that g′′(x) = y/x3 = 1/

√
y when x =

√
y. Thus we can

assert that Heron’s method is precisely second-order.

2.2.2 Stability of Newton’s method

The mapping N f(x) = x− f(x)
f ′(x)

specified in (2.31) is not well-defined when f ′(x) = 0. When

this occurs at a root of f (f(x) = 0) it destroys the second-order convergence of Newton’s
method (see exercise 2.5). But it can cause a more serious defect if it occurs away from
a root of f . For example, consider f(x) = x − cosx (cf. exercise 2.6). The root where
x = cosx does not have f ′(x) = 0, but f ′(x) = 1 + sin x = 0 for an infinite number of values.
Just by drawing the graph corresponding to figure 2.2, we see that if we start near one of
these roots of f ′(x) = 0, then the next step of Newton’s method can be arbitrarily large
in magnitude (both negative and positive values are possible). Contrast this behavior with
that of fixed-point iteration (cf. exercise 2.6).

2.2.3 Other second-order methods

The Steffensen iteration uses an adaptive difference:

s =
f(xn + f(xn))− f(xn)

f(xn)
(2.38)

Draft September 23, 2016, do not distribute Page 24

CHAPTER 2. NONLINEAR EQUATIONS 2.2. PARTICULAR METHODS

in which the usual ∆x = f(xn) (which will go to zero: very clever). The iteration thus takes
the form

xn+1 = xn −
f(xn)2

f(xn + f(xn))− f(xn)
. (2.39)

We leave as exercise 2.10 verification that the iteration (2.39) is second-order convergent.
Steffensen’s method is of the same order as Newton’s method, but it has the advantage

that it does not require evaluation of the derivative. If the derivative of f is hard to evaluate,
this can be an advantage. On the other hand, it does require two function evaluations each
iteration, which could make it comparable to Newton’s method, depending on whether it
is easier or harder to evaluate f ′ versus f . Unfortunately, Steffensen’s method does not
generalize to higher dimensions, whereas Newton’s method does (section 7.1.4).

2.2.4 Secant method

The secant method approximates the slope by a difference method:

s =
f(xn)− f(xn−1)

xn − xn−1

. (2.40)

The error behavior is neither first- nor second-order but rather something in between. Let
us derive an expression for the sequence of errors.

First, consider the method in the usual fixed-point form:

xn+1 = xn −
(xn − xn−1) f(xn)

f(xn)− f(xn−1)
. (2.41)

Subtracting α from both sides and inserting α− α in the numerator on the right-hand side
and expanding, we find

en+1 = en −
(en − en−1) f(xn)

f(xn)− f(xn−1)

=
−enf(xn−1) + en−1f(xn)

f(xn)− f(xn−1)

=
xn − xn−1

f(xn)− f(xn−1)

−enf(xn−1) + en−1f(xn)

xn − xn−1

=
xn − xn−1

f(xn)− f(xn−1)

en (f(α)− f(xn−1)) + en−1 (f(xn)− f(α))

xn − xn−1

=
xn − xn−1

f(xn)− f(xn−1)

enen−1

xn − xn−1

(
f(α)− f(xn−1)

en−1

− f(α)− f(xn)

en

)
.

(2.42)

In going from the third line to the fourth line, the term enf(α)−en−1f(α) is added in, which
does not at first appear to be zero. But you need to remember that f(α) = 0.

By Taylor’s Theorem, we can estimate the expression (exercise 2.11)

f(xn)− f(xn−1)

xn − xn−1

≈ f ′(α). (2.43)

Draft September 23, 2016, do not distribute Page 25

2.2. PARTICULAR METHODS CHAPTER 2. NONLINEAR EQUATIONS

In section 10.2.3, we will formally define this approximation as the first divided difference
f [xn−1, xn], and we will also identify the expression

1

xn − xn−1

(
f(α)− f(xn−1)

en−1

− f(α)− f(xn)

en

)
=

1

xn − xn−1

(
−f(α)− f(xn−1)

α− xn−1

+
f(α)− f(xn)

α− xn

) (2.44)

as the second divided difference f [α, xn−1, xn] ≈ 1
2
f ′′(α) (cf. (10.27)).

Rather than get involved in all the details, let us just use these approximations to see
what is going on. Thus we find

en+1 ≈ 1
2

f ′′(α)

f ′(α)
enen−1. (2.45)

Thus the error is quadratic in the previous errors, but it is not exactly the square of the
previous error. Instead, it is a more complicated combination.

Let M be an upper bound for 1
2
f ′′/f ′ in an interval containing all the iterates. Then,

analogous to (2.45), one can prove (see exercise 2.13) that

|en+1| ≤M |en| |en−1|. (2.46)

To understand how the error is behaving, define a scaled error by εn = M |en|. Then (2.46)
means that

εn+1 ≤ εnεn−1 (2.47)

for all n. If δ = max{ε0, ε1}, then (2.47) means that ε2 ≤ δ2, ε3 ≤ δ3, ε4 ≤ δ5, and so forth.
In general, εn ≤ δfn , where fn is the Fibonacci sequence defined by

fn+1 = fn + fn−1, (2.48)

with f0 = f1 = 1. Quadratic convergence would mean that εn ≤ δ2n , but the Fibonacci
sequence grows more slowly than 2n. However, it is possible to determine the asymptotic
growth exactly. In fact, we can write (exercise 2.14)

fn−1 =
1√
5

(
rn+ − rn−

)
, r± =

1±
√

5

2
≈

{
1.6180 (+)

−0.6180 (−).
(2.49)

Since rn− → 0 as n → ∞, fn ≈ Crn+. Thus the errors for the secant method go to zero like
(exercise 2.15)

en+1 ≈ Cer+n . (2.50)

One iteration of the secant method requires only one function evaluation, so it can be
more efficient than second-order methods. Two iterations of the secant method often require
work comparable to one iteration of the Newton method, and thus a method in which one
iteration is two iterations of the secant method has a faster convergence rate since 2r+ > 2.

Draft September 23, 2016, do not distribute Page 26

CHAPTER 2. NONLINEAR EQUATIONS 2.3. COMPLEX ROOTS

2.3 Complex roots

Let us consider the situation when there are complex roots of equations. For example, what
happens when we apply Heron’s algorithm with y < 0? Let us write y = −t (t > 0) to clarify
things, so that

xn+1 = 1
2
(xn − t/xn). (2.51)

Unfortunately, for real values of x0, the sequence generated by (2.51) does not converge to
anything. On the other hand, if we take x0 = iρ, where i =

√
−1 and ρ is real, then

x1 = 1
2
(x0 − t/x0) = 1

2
(iρ− t/(iρ)) = 1

2
i(ρ+ t/ρ) (2.52)

since 1/i = −i. By induction, if xn = iρn, where ρn is real, then xn+1 = iρn+1, where ρn+1

is also real. More precisely,

xn+1 = 1
2
(xn − t/xn) = 1

2
(iρn − t/(iρn)) = 1

2
i(ρn + t/ρn), (2.53)

so that

ρn+1 = 1
2
(ρn + t/ρn). (2.54)

We see that (2.54) is just the Heron iteration for approximating ρ =
√
t. Thus convergence

is assured as long as we start with a nonzero value for ρ (cf. exercise 1.7).
The fact that Heron’s method does not converge to an imaginary root given a real starting

value is not spurious. Indeed, it is easy to see that Heron’s method for a real root also does
not converge if we start with a pure imaginary starting value. The set of values for which an
iterative method converges is a valid study in dynamics, but here we are mostly interested
in the local behavior, that is, convergence given a suitable starting guess. It is not hard to
see that reasonable methods converge when starting within some open neighborhood of the
root.

For a general complex y and a general starting guess x0, it is not hard to see how Heron’s
algorithm will behave. Write zn = xn/

√
y. Then

zn+1 = xn+1/
√
y =

1

2
√
y

(xn + y/xn) = 1
2
(zn + 1/zn). (2.55)

Thus to study the behavior of Heron’s method for complex roots, it suffices to study its
behavior in approximating the square-root of one with a complex initial guess (exercise 2.16).

2.4 Error propagation

Suppose that the function g is not computed exactly. What can happen to the algorithm?
Again, the affine function in (2.15) provides a good guide. Let us suppose that our computed
function ĝ satisfies

ĝ(x) = g(x) + δ(x) = α + λ(x− α) + δ(x) (2.56)

for some error function δ(x). If, for example, we have δ(x) = δ > 0 for all x, then ĝ(α̂) = α̂
implies that

α̂ = ĝ(α̂) = α + λ(α̂− α) + δ = α(1− λ) + λα̂ + δ, (2.57)

Draft September 23, 2016, do not distribute Page 27

2.5. MORE READING CHAPTER 2. NONLINEAR EQUATIONS

so that

α̂ = α +
δ

1− λ
. (2.58)

Thus the accuracy can degrade if λ is very close to one, but for a second-order method this is
not an issue. A general theory can be found in [89] (see Theorem 3 on page 92 and equation
(18) there), and (2.58) shows that the results there can be sharp.

The only problem with functional iteration in floating-point is that the function may
not really be continuous in floating-point. Therefore it may be impossible to achieve true
convergence in floating-point, in the sense that f`(x) = ĝ(f`(x)), where by ĝ here we mean
the computer implementation of the true function g in floating-point. Thus iterations should
be terminated when the differences between successive iterates is on the order of the floating-
point accuracy.

The effect of this kind of error on Newton’s method is not so severe. Suppose that what
we really compute is f̂ = f + δ. Then Newton’s method converges to a root f̂(α̂) = 0, and
doing a Taylor expansion of f around α, we find that

α− α̂ ≈ δ

f ′(α)
. (2.59)

2.5 More reading

The concept of stability in numerical analysis can be explored further in [76]. Techniques
for iteratively computing functions have been essential for providing software (and firmware)
to compute square-roots, reciprocals, and other basic mathematical operations. For further
reading, see the books [37, 63, 81, 116]. The book [89] relates Steffensen’s method to a general
acceleration process due to Aitken5 to accelerate convergence of sequences. The method of
false position, or regula falsi, is a slight modification of the secant method in which xν−1 is
replaced by xk, where k is the last value where f(xk) has a sign opposite f(xν) [54]. For
other generalizations of the secant method, see [22, 105].

2.6 Exercises

Exercise 2.1 Suppose that g is a continuous function. Prove that, if fixed-point iteration
(2.5) converges to some α, then α is a fixed point, i.e., it satisfies (2.4).

Exercise 2.2 Suppose that g is a C1 function such that α = g(α) and with the property that
|g′(α)| < 1. Prove that fixed-point iteration (2.5) converges if x0 is sufficiently close to α.
(Hint: note by lemma 2.2 that g is Lipschitz-continuous with a constant λ < 1 in an interval
[α− A,α + A] for some A > 0.)

5Alexander Craig Aitken (1895–1967) was born in New Zealand and studied at the University of Edin-
burgh, where his thesis was considered so impressive that he was both appointed to a faculty position there
and elected a fellow of the Royal Society of Edinburgh, in 1925, before being awarded a D.Sc. degree in 1926.
He was elected to the Royal Society of London in 1936 for his work on statistics, algebra, and numerical
analysis. Aitken was reputedly one of the best mental calculators known [62, 88]. He was an accomplished
writer, being elected to the Royal Society of Literature in 1964 in response to the publication of his war
memoirs [4].

Draft September 23, 2016, do not distribute Page 28

CHAPTER 2. NONLINEAR EQUATIONS 2.6. EXERCISES

Exercise 2.3 Suppose that g is a C1 function such that the Lipschitz estimate (2.9) holds
an interval [α − A,α + A] for some A > 0. Prove that |g′(α)| ≤ λ. (Hint: consider the
difference quotients used to define g′(α).)

Exercise 2.4 Suppose that g is a C2 function such that α = g(α) and with the property that
0 < |g′(α)| < 1. Prove that fixed-point iteration (2.5) converges asymptotically according to
(2.18), that is,

lim
n→∞

|xn − α|
|g′(α)|n

= C, (2.60)

where C is a constant depending only on g and the initial guess x0.

Exercise 2.5 Consider Newton’s method for solving f(α) = 0 in the case that f ′(α) = 0.
Show that second-order convergence is lost. In particular, if p is the smallest positive integer
such that f (p)(α) 6= 0, show that the convergence is geometric with rate 1 − 1/p. (Hint:
expand both f and f ′ in Taylor series around α, which both start with the terms involving
f (p)(α) as the first nonzero term.)

Exercise 2.6 Consider fixed-point iteration to compute the solution of

cosα = α,

using g(x) = cos x. Prove that this converges for any starting guess. Compute a few iterations
to see what the approximate value of α is.

Exercise 2.7 A function f is said to be Hölder-continuous of exponent α > 0 provided that

|f(x)− f(y)| ≤ λ|x− y|α (2.61)

for all x and y in some interval. Show that the result (2.60) still holds as long as g′ is
Hölder-continuous of exponent α > 0.

Exercise 2.8 Consider fixed-point iteration x← y/x for computing

x =
√
y.

Explain its behavior. Why does it not contradict the result in exercise 2.2? (Hint: define
g(x) = y/x and verify that a fixed point x = g(x) must satisfy x2 = y. Perform a few
iterations of x← y/x and describe what you see. Evaluate g′ at the fixed point.)

Exercise 2.9 Prove that the iteration (2.2) is Newton’s method as defined in (2.30) for
approximating the solution of Kepler’s equation (2.1).

Exercise 2.10 Prove that Steffensen’s iteration (2.39) is second-order convergent provided
that f ′(α) 6= 0 at the root f(α) = 0 and f ∈ C2 near the root. (Hint: write Steffensen’s
iteration as a fixed-point iteration xν+1 = g(xν) and show that g′(α) = 0 at the fixed point
α = g(α)).

Exercise 2.11 Verify the approximation (2.43). (Hint: write two Taylor expansions around
α, one for f(xn) and one for f(xn−1), and subtract them.)

Draft September 23, 2016, do not distribute Page 29

2.6. EXERCISES CHAPTER 2. NONLINEAR EQUATIONS

Exercise 2.12 Investigate the fixed point(s) of the function

g(x) =
1

e−x − 1
+

1

ex − 1
+ 1. (2.62)

What is the value of g′ at the fixed point(s)? (Hint: find a common denominator and simplify;
see the solution to exercise 13.17 for an application of this important function.)

Exercise 2.13 Prove that (2.46) holds.

Exercise 2.14 Prove that the Fibonacci numbers satisfy (2.49). (Hint: see section 17.2.4;
relate (2.48) with (17.7).)

Exercise 2.15 Prove that the error in the secant method behaves as predicted in (2.50).
(Hint: first prove (2.45).)

Exercise 2.16 Investigate the behavior of the iteration (2.55) for various starting values of
z0. For what values of z0 does the iteration converge? For what values of z0 does the iteration
not converge?

Exercise 2.17 Develop algorithms to solve x5− x+ b = 0 for arbitrary b ∈ R (cf. (14.35)).

Exercise 2.18 The expression
f(x) =

√
1 + x− 1

arises in many computations. Unfortunately, for x small, round-off makes the obvious algo-
rithm inaccurate; note that f(x) ≈ 1

2
x for x small. Develop an algorithm to compute f that

is accurate for |x| ≤ 1
2
. (Hint: write t =

√
1 + x− 1 and observe that (1 + t)2 − 1− x = 0.

Try Newton’s method starting with a good initial guess for t = f(x).)

Exercise 2.19 Consider the function

f(x) =
1

x

(√
x2 + 1− |x− 1|

)
. (2.63)

Develop an algorithm to compute f(x) with uniform accuracy for all 0 < x < ∞. You may
make reasonable assumptions about the accuracy of computing

√
y but be explicit about them.

(Hint: show that f(1/x) = xf(x) and that f(x) ≈ 1 + 1
2
x+O(x3) for x small.)

Exercise 2.20 Consider fixed-point iteration xn+1 = g(xn) for finding a fixed point α =
g(α). Suppose that the initial starting point x0 > α and that g′(x) > 0 for α < x < x0.
Prove that xn > α for all n ≥ 0. (Hint: write

xn+1 − α = g(xn)− g(α) =

∫ xn

α

g′(t) dt

and use induction.)

Exercise 2.21 In many applications in which roots f(x) = 0 are sought, the cost of com-
puting f (and f ′) is very large. You can simulate this via a loop

Draft September 23, 2016, do not distribute Page 30

CHAPTER 2. NONLINEAR EQUATIONS 2.7. SOLUTIONS

function y = f(x,n)

for i=1:n

t = exp(x);

y = log(t);

end

y=y*y-2;

This computes the function f(x) = x2 − 2 but can take arbitrarily long to do so. Use an
example like this to compare the efficiency of the Steffensen and secant methods for various
values of n.

Exercise 2.22 We have seen that the critical factor in the success of fixed point iteration
xn+1 = g(xn) is that the derivative of g be less than 1 in an interval containing the root.
Consider g(x) = 1

2
(x+y/x) from Heron’s algorithm. Show that there is an interval I = [a, b]

where |g′(x)| ≤ 1
2

for all x ∈ I, with a <
√
y < b. Also show that xn ∈ I for all n for any

x0 > 0.

2.7 Solutions

Solution of Exercise 2.4. We have

xn+1 − α = g(xn)− g(α) = g′(ξn)(xn − α) (2.64)

for some ξn between xn and α. By induction, we thus find that

xn+1 − α =

(
n∏
i=0

g′(ξi)

)
(x0 − α). (2.65)

Define ri = |g′(ξi)/g′(α)|. Then

|xn+1 − α|
|g′(α)|n

=

(
n∏
i=0

ri

)
|x0 − α|. (2.66)

By (2.11), we know that |ξn − α| ≤ λn|e0|. Therefore,

|g′(ξn)− g′(α)| = |g′′(ξ̂n)(ξn − α)| ≤ |g′′(ξ̂n)|λn|e0|. (2.67)

for some ξ̂n between ξn and α, and therefore between xn and α. Therefore, |rn − 1| ≤ Ĉλn,
where Ĉ is chosen to be larger than |e0g

′′(ξ̂n)/g′(α)| for all n. Since rn → 1 as n → ∞, we
can be assured that rn > 0 for n sufficiently large. If rn = 0 for some value of n, then we
have xn+i = α for all i ≥ 1, so we can take the constant Ĉ in (2.60) to be zero. If all rn > 0,
then we can take the logarithm of the product in (2.66) to get

log

(
n∏
i=0

ri

)
=

n∑
i=0

log ri. (2.68)

Draft September 23, 2016, do not distribute Page 31

2.7. SOLUTIONS CHAPTER 2. NONLINEAR EQUATIONS

Thus it suffices to prove that the sum on the right-hand side of (2.68) converges. Since we
have an estimate on ri − 1, we write ri = 1 + εi, where |εi| ≤ Ĉλi. Note that log(1 + x) ≤ x
for all x > 0. To get such a bound for x < 0, set t = −x and write

| log(1− t)| = − log(1− t) =

∫ 1

1−t

dx

x
≤ t

1− t
. (2.69)

Thus | log(1 + x)| ≤ 2|x| for |x| ≤ 1
2
. Therefore, | log ri| ≤ 2|1 − ri| ≤ Ĉλi for i sufficiently

large, and thus the sum on the right-hand side of (2.68) converges to some value γ. Define
C = eγ|x0 − α|.

Solution of Exercise 2.6. Define g(x) = cosx. Then a solution to x = g(x) is what we
are seeking, and we can apply fixed-point iteration xn+1 = g(xn). This can be computed in
octave by simply repeating the command x=cos(x), having started with, say, x = 1. After
about 40 iterations, it converges to α = 0.73909. We have g′(α) = − sinα ≈ −0.67362. Thus
it is clear that fixed-point iteration is locally convergent.

The set of values xn generated by fixed-point iteration always lie in [−1, 1], the range
of g(·) = cos ·. But we cannot easily assert global convergence because the values of g′

also extend over [−1, 1]. However, g maps [−1, 0] to [β, 1], where β = cos(−1) ≈ 0.54030.
Similarly, g maps [0, 1] to [β, 1], but with the order reversed. Thus, regardless of the starting
value x0, x1 ∈ [β, 1]. Moreover, this argument shows further that all subsequent xn ∈ [β, 1]
as well. The maximum value of |g′(x)| = sinx on the interval [β, 1] occurs at x = 1, since
sin is strictly increasing on [β, 1], and sin 1 = 0.84147. Thus we conclude that fixed-point
iteration converges at least as fast as 0.84147n.

Solution of Exercise 2.18. We recall that

t = f(x) =
√

1 + x− 1. (2.70)

We seek an algorithm that outputs t̂ with the property that

|t− t̂| =
∣∣∣√1 + x− 1− t̂

∣∣∣ ≤ 1
2
ε|t|, (2.71)

where ε > 0 is a prescribed accuracy that we require to be sufficiently small. To begin with,
we establish some inequalities of use later.

Adding 1 to both sides of (2.70) and squaring, we find that

(t+ 1)2 = 1 + x,

and thus

x = (t+ 1)2 − 1 = 2t+ t2 = t(2 + t). (2.72)

Therefore,
x

f(x)
=
x

t
= 2 + t = 1 +

√
1 + x (2.73)

is a strictly increasing function of x. In particular,

|x/t| = |x/f(x)| ≤ 1 +
√

3/2 < 2.3 (2.74)

Draft September 23, 2016, do not distribute Page 32

CHAPTER 2. NONLINEAR EQUATIONS 2.7. SOLUTIONS

for |x| ≤ 1
2
. Similarly, f(x)/x is a strictly decreasing function of x. We thus have

|t| = |f(x)| ≤ 1

1 +
√

1/2
|x| < 0.6|x| (2.75)

for |x| ≤ 1
2
. Therefore,

|t| ≤ 0.3 (2.76)

for |x| ≤ 1
2
. Now let us define t̂. Taylor’s theorem shows that∣∣∣√1 + x− 1− 1

2
x+ 1

8
x2
∣∣∣ ≤ 0.1

∣∣x3
∣∣ (2.77)

for x ∈ [−0.1, 0.1]. This means that for |x| ≤
√
ε and ε ≤ 1/100, we can simply define

t̂ = 1
2
x− 1

8
x2. (2.78)

Then (2.77) implies that ∣∣∣√1 + x− 1− t̂
∣∣∣ ≤ 0.1|x|ε ≤ 1

4
|t|ε, (2.79)

by (2.74). This proves (2.71) when |x| ≤
√
ε.

Thus we can turn our attention to the case where |x| >
√
ε. In view of (2.72), the function

φ(τ) = (1 + τ)2 − 1− x = 2τ + τ 2 − x = 0

when τ = t. Thus t = f(x) is the solution to φ(t) = 0, and we can consider using Newton’s
method to find t. Differentiating, we have φ′(τ) = 2 + 2τ . Thus Newton’s method is

tν+1 = tν −
2tν + t2ν − x

2 + 2tν
=

t2ν + x

2 + 2tν
=: g(tν). (2.80)

Differentiating again, we find that

g′(τ) =
2τ + τ 2 − x
2(1 + τ)2

=
φ(τ)

2(1 + τ)2
=

1

2
− x+ 1

2(1 + τ)2
. (2.81)

Therefore, φ(t) = 0 implies g′(t) = 0, and differentiating yet again, we have

g(2)(τ) = −(x+ 1)(1 + τ)−3. (2.82)

Now let us consider using t0 = f`
√
f`(1 + x)− 1 as a starting guess. More precisely, we

define a = f`(1 +x), b = f`
√
a, and t0 = f`(b− 1). We assume an estimate like (2.71) holds

for all floating-point operations, namely, we assume that a = (1 +x)(1 + δ1), b =
√
a(1 + δ2),

and t0 = (b− 1)(1 + δ3), where |δi| ≤ ε. For simplicity, we write 1 + δ1 = (1 + δ̂1)2; that is,

δ̂1 =
√

1 + δ1 − 1 = f(δ) ≈ 1
2
δ1.

In particular, |δ̂1| ≤ 0.6δ1 as long as ε ≤ 1
2
, by (2.76).

Draft September 23, 2016, do not distribute Page 33

2.7. SOLUTIONS CHAPTER 2. NONLINEAR EQUATIONS

Therefore,
√
a =
√

1 + x(1 + δ̂1) and

b =
√

1 + x(1 + δ̂1)(1 + δ2) =
√

1 + x
(

1 + δ̂1 + δ2 + δ̂1δ2

)
. (2.83)

Since t =
√

1 + x− 1, we find

b− 1− t =
√

1 + x
(
δ̂1 + δ2 + δ̂1δ2

)
. (2.84)

Recall that t0 = (b− 1)(1 + δ3), so that t0 − (b− 1) = (b− 1)δ3, and thus

t0 − t = t0 − (b− 1) + (b− 1)− t

= (b− 1)δ3 +
√

1 + x
(
δ̂1 + δ2 + δ̂1δ2

)
= tδ3 +

√
1 + x

(
δ̂1 + δ2 + δ̂1δ2

)
(1 + δ3)

= tδ3 + (t+ 1)
(
δ̂1 + δ2 + δ̂1δ2

)
(1 + δ3).

(2.85)

In particular, (2.85) shows why t0 cannot be used as a uniform approximation to t since the
second term is multiplied by t + 1 and not t. However, if ε ≤ 10−2 (as we assumed above),
then (2.85) implies that

|t0 − t| ≤ 2.41ε. (2.86)

If we define t1 by taking one Newton step (2.80), then (2.19) and (2.82) imply that

|t1 − t| ≤ 3ε2(x+ 1)(1 + ξ)−3 = 3ε2(t+ 1)2(1 + ξ)−3, (2.87)

where ξ lies between t0 and t. By (2.75), t ≥ −0.3, and certainly t0 > −0.31. Thus
1 + ξ ≥ 0.69, and applying (2.86) shows that

1 + t

1 + ξ
= 1 +

t− ξ
1 + ξ

≤ 1 +
2.41ε

1 + ξ
≤ 1 +

2.41ε

0.69
≤ 1 + 3.5ε. (2.88)

Therefore,
(1 + t)2

(1 + ξ)3
≤ (1 + 3.5ε)2 1

1 + ξ
≤ 1.08

0.69
< 1.57 . (2.89)

Applying this in (2.87) shows that (recall |x| >
√
ε)

|t1 − t| ≤ 4.72ε2 ≤ 4.72ε3/2|x| ≤ 11ε3/2|t|, (2.90)

by (2.73). This proves (2.71) provided ε ≤ 1/484, as we now require.
Note that for |x| ≈

√
ε, (2.86) implies that t0 is accurate to about half of the digits

required, but only half. One Newton step then provides the other half of the required digits.
A similar statement can be made about (2.78). The term 1

2
x provides a substantial fraction

of the required digits, and the correction term −1
8
x2 provides the rest.

Draft September 23, 2016, do not distribute Page 34

Chapter 3

Linear Systems

“The Nine Chapters on the Mathematical Art has played a central role
in Oriental mathematics somewhat similar to Euclid’s Elements of Ge-
ometry in the West. However, the Nine Chapters has always been more
involved in the methods for finding an algorithm to solve a problem, so
that its influence has been both pedagogical and practical. Instead of
theorems ... the Nine Chapters provides algorithmic Rules.” [95]

Most interesting problems involve more than one variable, so we now move to systems of
equations. Before we turn to nonlinear systems, we look in detail at algorithms for solving
linear systems for two reasons. First, the linear case is a prerequisite to the nonlinear case;
we will reduce the solution of nonlinear problems to an iteration involving the solution of
linear systems of equations. Second, this allows us to introduce ideas from linear algebra
that we need for subsequent developments.

This chapter formalizes the familiar method used to solve systems of equations by elim-
ination. The basic elimination method is associated with the name of Gauss1 [7], although
the method was in use well before he lived. The fangcheng methods were known in China
hundreds of years before the birth of Gauss [95]. The method is now found in the middle-
school curriculum, so we review it quickly with a view to establishing notation that will be
useful to derive its fundamental properties.

Gaussian elimination can be applied to equations involving entities in any field F. Our
focus here will be limited to the fields of real (R) and complex (C) numbers. We might
further limit our scope just to real numbers, but later we will want to consider methods for
finding eigenvalues and eigenvectors of matrices. Matrices with real entries can have complex
eigenvalues and eigenvectors, so we are forced to consider complex numbers in working with
them.

Linear systems of n equations in n unknowns arise in many applications. Problems of
size n ≈ 105 occur [58] even when the matrices are dense (i.e, have no substantial amount
of entries known to be zero). We will see that with n = 105, the amount of computation
required to solve such a system is near a petaflop (1015 floating-point operations). A typical
(single) processor today can perform roughly one gigaflops (109 floating-point operations per
second). Thus problems of this size often require parallel computation [149].

1Johann Carl Friedrich Gauss (1777–1855) was one of the greatest scientists of all time and is celebrated
both in scientific and popular media [96].

35

3.1. GAUSSIAN ELIMINATION CHAPTER 3. LINEAR SYSTEMS

3.1 Gaussian elimination

A system of n linear equations in n unknowns can be written as

a11x1 + a12x2 + · · ·+ a1nxn = f1

a21x1 + a22x2 + · · ·+ a2nxn = f2

...
...

an1x1 + an2x2 + · · ·+ annxn = fn.

(3.1)

Here all entities aij, fi, and xi are in some field F, which we may assume for simplicity is either
R or C. The principle of elimination is to subtract suitable multiples of the first equation
from the remaining equations in such a way as to eliminate x1 from the later equations.
More precisely, we subtract

ai1
a11

(a11x1 + a12x2 + · · ·+ a1nxn = f1) (3.2)

from the ith equation for each i = 2, . . . , n. This converts the original tableau of expressions
to

a11x1 + a12x2 + · · ·+ a1nxn = f1

â22x2 + · · ·+ â2nxn = f̂2

...
...

ân2x2 + · · ·+ ânnxn = f̂n,

(3.3)

where the hatted coefficients result from the appropriate subtractions.
The key point is that the original system of n equations in n unknowns is converted to

one with only n − 1 equations in n − 1 unknowns. Continuing in this way, we eventually
arrive at a simple equation for xn, and then this value can be used in the previous equation
involving xn and xn−1 to solve for xn−1, and so on. Let us now write down all this as concise
algorithms.

3.1.1 Elimination algorithm

First, we can express the elimination algorithm as

ak+1
ij = akij −mika

k
kj ∀i = k + 1, . . . , n, j = k + 1, . . . , n,

fk+1
i = fki −mikf

k
k ∀i = k + 1, . . . , n,

(3.4)

where the multipliers mik are defined by

mik =
akik
akkk

∀i = k + 1, . . . , n, k = 1, . . . , n. (3.5)

Here a1
ij = aij and f 1

ij = fij. Note that we have defined akij only for i ≥ k and j ≥ k. More

precisely, we have defined Â[k] to be this (n + 1 − k) × (n + 1 − k) matrix. If we want to
complete the n× n system, we set akij = ak−1

ij for other values of i and j and then set

ak+1
ik = 0 for i > k. (3.6)

Draft September 23, 2016, do not distribute Page 36

CHAPTER 3. LINEAR SYSTEMS 3.1. GAUSSIAN ELIMINATION

The tableau (3.3) displays the case involving the terms a2
ij, which define Â[2] and A[2]. We

have glossed over the possibility that akkk = 0, which can certainly happen, but let us suppose
for the moment that akkk does not vanish.

We can formalize the algorithm of elimination by saying that the input is an n×n matrix,
A, and the output is an (n − 1) × (n − 1) matrix, Â, together with a column vector m of
length n− 1. We iteratively apply this algorithm to Â until n = 1.

After applying (3.4) for k = 1, . . . , n− 1, we have a triangular system of equations

a1
11x1 + a1

12x2 + · · ·+ a1
1nxn = f 1

1

a2
22x2 + · · ·+ a2

2nxn = f 2
2

...
...

annnxn = fnn .

(3.7)

This can be proved rigorously by observing that the elimination algorithm is applied induc-
tively to the matrices Â[k] for k = 1, 2, . . . , n− 1, which are of size (n+ 1− k)× (n+ 1− k),
with Â[1] = A. The induction step is the combination of (3.4) and (3.5). This will be covered
in more detail in section 3.2.1.

It is helpful to use matrix notation at this point. The original set of equations (3.1) can
be written in matrix-vector form as AX = F , where A is the matrix with entries (aij), X is
the vector with entries (xj), and F is the vector with entries (fi). Define the matrix U via

uij = aiij ∀i = 1, . . . , n and j = i, . . . , n (3.8)

(and zero elsewhere). Then (3.7) becomes UX = G, where G is the vector with entries (f ii).
By construction, U is an upper-triangular matrix.

Definition 3.1 A matrix B = (bij) is upper-triangular (respectively, lower-triangular) if
bij = 0 for all j > i (respectively, i > j).

3.1.2 Backward substitution

The key reason for reducing AX = F to the triangular form UX = G is that triangular
systems are easier to solve. In particular, upper-triangular systems can be solved by the
backsubstitution algorithm, which we write in equational form as

xn = gn/unn

xn−i =
(
gn−i −

n∑
j=n−i+1

un−i,jxj

)/
un−i,n−i ∀i = 1, . . . , n− 1.

(3.9)

A similar algorithm can be used to solve lower-triangular systems (exercise 3.1), which is
called forward substitution.

Two corollaries of the algorithm (3.9) are as follows.

Corollary 3.2 A triangular matrix is singular if and only if one of its diagonal entries is
zero.

Draft September 23, 2016, do not distribute Page 37

3.2. FACTORIZATION CHAPTER 3. LINEAR SYSTEMS

Proof. If none of the diagonal entries of U is zero, then (3.9) provides a way to determine a
solution X for an arbitrary right-hand side G. Thus U is invertible. The converse is left as
exercise 3.2. QED

Corollary 3.3 The diagonal entries of a triangular matrix are its eigenvalues.

Proof. The eigenvalues of T are the values λ such that T − λI is singular. But T − λI is
also triangular and so is singular only if λ is equal to one of the diagonal entries of T . QED

Corollary 3.4 The determinant of a triangular matrix is equal to the product of the diagonal
entries of the triangular matrix.

Proof. It is a result of linear algebra that the product of eigenvalues of a matrix is equal to
the determinant, so the result follows from corollary 3.4. But this result from linear algebra
need not be invoked. Instead, the fact that detU =

∏n
i=1 uii may be derived by a direct

proof using the fact that U is upper-triangular (exercise 3.3). QED

We will explore triangular matrices in more detail in section 3.3.

3.2 Factorization

Let us form the lower-triangular matrix L via

L =

1 0 · · · 0 0
m21 1 · · · 0 0

...
mn1 mn2 · · · mn,n−1 1

 , (3.10)

where the multipliers mik are defined in (3.5).

Theorem 3.5 The matrices L and U defined via the elimination process form a multiplica-
tive factorization of A = LU .

3.2.1 Proof of the factorization

Theorem 3.5 can be proved by multiplying the factors (exercise 3.4), but we prefer to give
a more modern treatment that also can be used to generate code automatically [172]. This
approach also has the added benefit that it can be easily modified to identify a permutation
matrix that corresponds to pivoting (section 3.4 and exercise 3.5).

We will prove this by induction on n. The case n = 1 being trivial and not very instruc-
tive, we consider the case n = 2; in this case, the statement is that

A =

(
a11 a12

a21 a22

)
=

(
1 0

a21/a11 1

)(
a11 a12

0 a22 − a12a21/a11

)
, (3.11)

which is easily verified by multiplying the factors on the right-hand side. The induction step
is very similar to this as well.

Draft September 23, 2016, do not distribute Page 38

CHAPTER 3. LINEAR SYSTEMS 3.2. FACTORIZATION

Suppose that A is an n× n matrix that we write in the form

A =

(
a11 a1

T

a1 B

)
, (3.12)

where a1 and a1 are (column) vectors of length n − 1, with (a1)j = a1j and (a1)j = aj1,
and B is an (n − 1) × (n − 1) matrix; we assume a11 6= 0. Then the first step of Gaussian
elimination may be interpreted as forming the factorization

A =

(
1 0

a−1
11 a

1 In−1

)(
a11 a1

T

0 B − a−1
11 a

1 a1
T

)
, (3.13)

where In−1 denotes the (n−1)×(n−1) identity matrix and (a1)j = aj1. That is, we first prove
that the product of matrices on the right-hand side of (3.13) equals A (exercise 3.8). This
takes some care in interpretation since the matrices have been represented in block form, but
it is elementary to verify that matrix multiplication follows these block rules (exercise 3.7).
Then by inspection we see that the second factor is the matrix we have identified in the
elimination process as A[2]:

A[2] =

(
a11 a1

T

0 B − a−1
11 a

1 a1
T

)
=

(
a11 a1

T

0 Â[2]

)
. (3.14)

By induction, we can now assume that Â[2] = L[2]U [2], with L[2] defined in terms of the
corresponding multipliers and U [2] defined by the elimination process. Using the notation
of (3.11), we can write the computation of the multipliers expressed as a lower-triangular
matrix M as in (3.10) via a matrix function M defined by

M =M(A) =

(
1 0

a−1
11 a

1 M(Â[2])

)
. (3.15)

Similarly, the upper-triangular matrix U can be defined by

U = U(A) =

(
a11 a1

T

0 U(Â[2])

)
. (3.16)

Thus we want to show that A =M(A)U(A). Using the induction hypothesis,

A =

(
1 0

a−1
11 a

1 In−1

)(
a11 a1

T

0 M(Â[2])U(Â[2])

)
=

(
1 0

a−1
11 a

1 In−1

)(
1 0

0 M(Â[2])

)(
a11 a1

T

0 U(Â[2])

)
=

(
1 0

a−1
11 a

1 M(Â[2])

)(
a11 a1

T

0 U(Â[2])

)
=M(A)U(A),

(3.17)

where the second and third equalities are left as exercise 3.9. QED

The inductive nature of the proof also corresponds to a recursive definition of the algo-
rithm. The representation (3.12) provides the base case, and (3.13) provides the reduction

Draft September 23, 2016, do not distribute Page 39

3.2. FACTORIZATION CHAPTER 3. LINEAR SYSTEMS

to a smaller problem. We leave as an exercise the development of a factorization in this way
(exercise 3.10).

The above argument directly establishes the existence of an LU factorization by induc-
tion. The argument is complicated by the fact that we also want to identify the entities
generated in the elimination process as the ingredients in the factorization. If one were will-
ing to forget about the elimination process, the factorization could be derived more easily.
We will see that the factors are the proper focus and indeed that there are other algorithms
for determining factors that are more efficient than the elimination process (section 4.1.1).
The introduction of Gaussian elimination is mainly done to connect the concept of the fac-
torization with the approach that one uses by hand to solve small systems of linear equations.

3.2.2 Using the factors

There are several uses for the factorization of a matrix as a product of triangular matrices.
For one thing, we can derive a simple formula for the determinant:

detA = detL detU =
n∏
i=1

uii. (3.18)

Here we have used corollary 3.4 together with the fact from linear algebra that the deter-
minant of a product of matrices is the product of the determinants of the two matrices
separately.

The factorization can also provide an alternate way to solve equations. The original
equation AX = F can now be written as L(UX) = F , so if we write G = UX, then G
must solve the lower-triangular system LG = F . Moreover, lower-triangular systems can be
solved by an algorithm similar to (3.9) (see exercise 3.1).

Suppose that we had already performed elimination and had kept a copy of the multipli-
ers. Then we can solve for X in two steps:

first solve LG = F ;

then solve UX = G.
(3.19)

3.2.3 Operation estimates

One reason that the algorithm (3.19) is of interest is that it allows us to split the overall task
of solving linear systems into parts that have different operation estimates. Such estimates
give upper bounds on the number of floating-point operations and memory references, which
in turn can be used to model the performance of an algorithm. For this reason, such estimates
are often called work estimates.

Operation estimates are done by counting the number of basic steps in an algorithm. Let
us write the first line of (3.4) in a more algorithmic form as

For k = 1, . . . , n− 1,

For i = k + 1, . . . , n and j = k + 1, . . . , n,

aij ← aij −mik ∗ akj.
(3.20)

Here the leftward-facing arrow ← means assignment. That is, the expression on the right
side of ← is computed and then deposited in the memory location allocated for aij. Note
that we are assuming that all the values akij are stored in the same location.

Draft September 23, 2016, do not distribute Page 40

CHAPTER 3. LINEAR SYSTEMS 3.2. FACTORIZATION

In the algorithm (3.20) for updating aij, there is one subtraction and one multiplication.
In addition, three items have to be read from memory, and one written to memory at the
end. We will discuss memory models in more detail in section 4.1.2. For now we simply
focus on floating-point operations.

The innermost loop in (3.20) involves repeating the aij computation (n− k)2 times since
it is done for i = k + 1, . . . , n and j = k + 1, . . . , n; this involves n − k values of i and j,
independently. Since this is done (in the outer loop) n − 1 times for different values of k,
the total number of multiplications (and subtractions) is

n−1∑
k=1

(n− k)2 =
n−1∑
j=1

j2 = 1
3
n3 − 1

2
n2 + 1

6
n (3.21)

(see exercise 3.11).
The backsubstitution algorithm (3.9) can be analyzed similarly. For each i, there are i

product terms uijxj in the summation, and computing the sum requires at least i− 1 addi-
tions. If we include the subtraction in the count of additions (it is a reasonable assumption
that the costs of additions and subtractions are roughly the same), then we find a total of
i multiplications and additions in each case. Thus the total amount of multiplications and
additions is

n−1∑
i=1

i = 1
2
n(n− 1) = 1

2
n2 − 1

2
n. (3.22)

In addition, there are n divisions.
The main conclusion from this exercise is that the amount of work required to factor an

n × n matrix is O(n3), whereas the amount of work required to perform backsubstitution
is only O(n2). We leave as exercise 3.14 the estimation of the work involved in computing
the multipliers (3.14). It is worth noting that in both the elimination and backsubstitution
algorithms, multiplications come paired with additions. This fact has been exploited in some
hardware systems which can perform a linked multiply-add pair faster than the sum of times
required to do each operation separately. For these reasons, it is sometimes useful to think
of the multiply-add pair as a single type of operation.

3.2.4 Multiple right-hand sides

Note that if we defined aki,n+1 = fki , then the two equations in (3.4) could be written as one.
Moreover, multiple right-hand sides fi,j could be treated similarly by writing aki,n+j = fki,j, in
which case (3.4) becomes

ak+1
ij = akij −mika

k
kj ∀i = k + 1, . . . , n; j = k + 1, . . . , n+m; (3.23)

where m is the number of right-hand sides. Thus the elimination process can be used to
reduce multiple systems to triangular form. However, using the algorithm (3.19), this can
be presented more simply.

Let us write the multiple right-hand sides in vector form as F (j) and suppose that we
want to solve AX(j) = F (j) for j = 1, . . . ,m. We take advantage of the factorization A = LU
to factorize only once and solve multiple times via

first solve LG(j) = F (j),

then solve UX(j) = G(j),
(3.24)

Draft September 23, 2016, do not distribute Page 41

3.3. TRIANGULAR MATRICES CHAPTER 3. LINEAR SYSTEMS

for j = 1, . . . ,m. See exercise 3.15 for an analysis of the operation counts.

3.2.5 Computing the inverse

One example with multiple right-hand sides arises in computation of the inverse of a matrix.
The columns X(j) of the inverse of A satisfy AX(j) = E(j), where the E(j)’s are the standard
basis vectors for Rn: e

(j)
i = δij, where δij denotes the Kronecker δ. Applying the algorithm

(3.24), we see that the inverse can be computed in (5/6)n3 +O(n2) operations, i.e., multiply-
add pairs (exercise 3.15).

Thus, asymptotically, the amount of work required to compute the inverse of a matrix
is less than twice the work needed just to solve a single system of equations. However,
computing the inverse is not a good general approach to solving equations. For example,
the number of multiply-add pairs required to multiply the inverse times the right-hand side
is n2, whereas the backsubstitution algorithm requires about half this much work. With
banded matrices (section 4.3), the comparison can become much more dramatic.

3.3 Triangular matrices

The sets U and L of upper-triangular matrices and lower-triangular matrices, respectively,
have a ring2 structure, as follows. For the time being, let T stand for one of these sets, i.e.,
either U or L. Then we can add any two matrices in T componentwise, i.e, (T 1 + T 2)ij =
T 1
ij + T 2

ij. The fact that the sum is still triangular is obvious. What is somewhat surprising
is that the product of two triangular matrices is also triangular.

Suppose that A and B are upper-triangular matrices of the form

A =

a1 a12 a13 · · · a1n

0 a2 a23 · · · a2n
...

...
...

...
...

0 0 0 · · · an

 , B =

b1 b12 b13 · · · b1n

0 b2 b23 · · · b2n
...

...
...

...
...

0 0 0 · · · bn

 . (3.25)

Then (exercise 3.16) the product AB is (a) also an upper-triangular matrix with the property
(b) that

AB =

a1b1 c12 c13 · · · c1n

0 a2b2 c23 · · · c2n
...

...
...

...
...

0 0 0 · · · anbn

 (3.26)

for some coefficients cij. That is,

the diagonal entries of the product are the products of the diagonal entries.

A similar formula holds for lower-triangular matrices.

2A ring is a set in which addition and multiplication are defined.

Draft September 23, 2016, do not distribute Page 42

CHAPTER 3. LINEAR SYSTEMS 3.4. PIVOTING

It is natural to guess that, if none of the diagonal entries of a matrix A is zero, then

A−1 =

a1 a12 a13 · · · a1n

0 a2 a23 · · · a2n
...

...
...

...
...

0 0 0 · · · an

−1

=

a−1

1 b12 b13 · · · b1n

0 a−1
2 b23 · · · b2n

...
...

...
...

...
0 0 0 · · · a−1

n

 ; (3.27)

that is, A−1 is also upper-triangular.

Lemma 3.6 Suppose that A is an upper-triangular (respectively, a lower-triangular) ma-
trix with nonzero diagonal entries. Then A is invertible, and A−1 is also upper-triangular
(respectively, a lower-triangular) and (3.27) holds.

Proof. The invertibility of a triangular matrix is determined by having nonzero diago-
nal entries in view of corollary 3.2. Thus all we need to show is that the inverse has the
corresponding triangular structure. This is easily seen by examining the backsubstitution
algorithm applied to the equations AX(k) = E(k) for the columns of the inverse (cf. sec-
tion 3.2.5). Since the diagonal entries of A are nonzero, the algorithm will produce solutions

to AX = F for all F . Since e
(k)
j = 0 for j > k, we have x

(k)
j = 0 for j > k. Thus the kth

column of A−1 is zero for j > k, and A−1 is upper-triangular; that is, A−1 must be of the
form

A−1 =

b1 b12 b13 · · · b1n

0 b2 b23 · · · b2n
...

...
...

...
...

0 0 0 · · · bn

 . (3.28)

Using the product formula (3.26) completes the proof since A−1A = I. QED

3.4 Pivoting

By pivoting, we mean reordering of the unknowns in the system (3.1). The numbering
scheme for the equations and unknowns does not affect the solutions, but it can affect the
outcome of the elimination algorithm. In particular, it may happen at a certain stage that
akkk = 0, at which point the elimination algorithm breaks down since the multipliers (3.5)
become undefined. At such a point, we can choose among the remaining rows and columns
(numbered i and j, respectively, such that i, j ≥ k) to find some value of i and j such
that aki,j 6= 0. We can either imagine moving the required row and column into the right
position or just keep track of a new numbering scheme. The row and/or column exchanges in

pivoting can be applied to the original matrix, which we denote by Â, in which case Gaussian
elimination with pivoting is just the original elimination algorithm applied to Â (with no
pivoting).

The imagined movement of rows and columns can be thought of as pivoting them around
an imaginary midpoint. For example, if we do only row pivoting, we swap row k with row
i, pivoting around the row position 1

2
(i + k) (which might be in between two rows if this is

not an integer). If we do only row or column pivoting (but not both) then it is called partial
pivoting. Doing both is called full pivoting.

Draft September 23, 2016, do not distribute Page 43

3.4. PIVOTING CHAPTER 3. LINEAR SYSTEMS

Pivoting is an adaptive algorithm that attempts to keep elimination going when it might
otherwise fail. More generally, it can improve the quality of the solution process by mini-
mizing the size of the multipliers mik in (3.5). We will say more about this in section 18.2.3.

Mathematically, we can express pivoting using permutation matrices. An n× n elemen-
tary permutation matrix is of the form

Pjl =

δjl j 6= i, k

δil j = k

δkl j = i

, (3.29)

for all l = 1, . . . , n. Note that P has the i and k rows swapped, and for any n× n matrix A,
the matrix PA is the same as A except that the i and k rows are swapped (exercise 3.6). We
can interpret the row pivoting algorithm in terms of factorization by reviewing section 3.2.1.
In particular, we see that (3.13) becomes

PA = L1

(
a11 a1

T

0 Â2

)
, (3.30)

and by iterating (induction) we conclude that for some permuation matrix P̂ , we have
P̂A = LU (exercise 3.5). Similarly, if we use column pivoting, we find AP̂ = LU . Full
pivoting corresponds to P̂AQ̂ = LU , where Q̂ is another permutation matrix.

3.4.1 When no pivoting is needed

We now address the issue of what governs whether Gaussian elimination fails by having
akkk = 0 for some k ≥ 1. Define Ak to be the k × k upper-left minor of A, that is,

Ak =

a11 · · · a1k
...

...
...

ak1 · · · akk

 . (3.31)

It is easy to see that (Ak)
k = (Ak)k, that is, doing Gaussian elimination on the k× k upper-

left minor of A yields the same result as the k× k upper-left minor of the result of Gaussian
elimination on A. We can refer to (Ak)

k = (Ak)k simply as Akk. If Gaussian elimination
has proceeded to step k without producing a zero value akkk, then we know that Ak must be
invertible.

Suppose that k is the first index where akkk = 0. We have a factorization Ak = LkUk,
where Uk = Akk, since Gaussian elimination has proceeded successfully until this point. But
the upper-triangular matrix Akk is singular since there is a zero on the diagonal. Therefore,
Ak is singular for either of two reasons: (1) since Akk is obtained from Ak by elementary row
operations, or (2) picking X 6= 0 such that UkX = AkkX = 0 and noting that we must have
AkX = LkUkX = 0. We can determine X by setting xk = 1 and then using backsubstitution
to solve UkX = 0. Thus we have proved the following result.

Lemma 3.7 Gaussian elimination using no pivoting proceeds with nonzero pivotal elements
to produce nonsingular factors A = LU if and only if each k × k upper-left minor Ak is
nonsingular for k = 1, . . . , n.

One corollary of lemma 3.7 is that Gaussian elimination always succeeds without pivoting
for a positive definite matrix (exercise 3.17).

Draft September 23, 2016, do not distribute Page 44

CHAPTER 3. LINEAR SYSTEMS 3.4. PIVOTING

3.4.2 Partial pivoting

The following result shows that partial pivoting is sufficient to solve any invertible system.

Theorem 3.8 Gaussian elimination with partial pivoting (either row or column) proceeds

with nonzero pivotal elements to produce nonsingular factors Ã = LU if and only if A is
nonsingular.

Theorem 3.8 refers to two algorithms involving partial pivoting: one in which row pivoting
is done and the other in which column pivoting is done. It does not refer to some mixture
of the two. The only issue in question is whether or not there are nonzero pivotal elements
available.

Proof. If Gaussian elimination succeeds, then A is invertible because it is a permutation of
LU , both of which are invertible, so we need to address only the converse.

If we perform column pivoting and find at the kth stage that there are no nonzero pivotal
elements available in the kth row, then it means that the entire kth row of Ak is zero, and
hence A must have been singular to start with. Similarly, if we perform row pivoting and fail
at the kth stage to find a nonzero pivotal element, then the kth column of Ak is zero on and
below the diagonal. We can write the upper part of the kth column as a linear combination
of the first k − 1 columns by solving a (k − 1) × (k − 1) triangular system using the upper
(k− 1)× (k− 1) block of Ak, which we can assume is nonsingular by induction. Thus again
A must be singular. QED

3.4.3 Full pivoting and matrix rank

Since partial pivoting succeeds for any nonsingular matrix, we might wonder about the
role of full pivoting. We will see that there are two applications, one algebraic, which we
explore here, and the other analytic in nature, which we discuss in section 18.2.3. So let
us assume that full pivoting is done, and at some point Gaussian elimination fails to find
a nonzero pivotal element. If there is no element aki,j 6= 0, then this means that an entire
(n− k+ 1)× (n− k+ 1) subblock of Ak is zero. In particular, it means that Akx = 0 for all
x such that xj = 0 for j ≥ k. Since we have performed only row operations on A to define
Ak, this means that the kernel of A is (at least) (n− k + 1)-dimensional.

Lemma 3.9 Suppose that Gaussian elimination with full pivoting succeeds (no divisions
by zero) until the k-th step. Then the null space of A has dimension n − k + 1, and the
co-dimension of the range of A has the same dimension. Thus the rank of A is n− k + 1.

Proof. Without loss of generality, we can assume that all of the pivots have been applied
before Gaussian elimination begins. Thus we have

A =

(
L U
M O

)
(3.32)

where O is an (n− k + 1)× (n− k + 1) matrix of all zeros.
Since Gaussian elimination has succeded to this point, there are solutions Ax = f if and

only if fkj = 0 for j ≥ k. QED

Draft September 23, 2016, do not distribute Page 45

3.4. PIVOTING CHAPTER 3. LINEAR SYSTEMS

Although we will not make substantial use of these facts, we see that Gaussian elimination
allows us to find the rank of a matrix and to determine whether f satisfies the compatibility
conditions required to have a solution. Compare this with research on computing the rank
of a general tensor (e.g., SIAM News, Volume 37, Number 9, November 2004).

We will see later that there are other benefits to full pivoting (cf. section 18.2.3) in
addition to the fact that it allows solution of rank-deficient systems (in exact arithmetic).
Thus one might wonder why full pivoting is not the default approach. One reason is the
increased work, since it requires a comparison of (n − k)2 floating-point numbers, for k =
1, . . . , n−1, and this essentially doubles the work. Partial pivoting reduces the extra work to
comparing only n−k floating-point numbers for each k, and this extra work is asymptotically
hidden for large n.

3.4.4 The one-dimensional case

Let us work out some of the details in the simple case when the dimension of the null space
of A is 1. Thus there is a solution x 6= 0 to Ax = 0, and all solutions y of Ay = 0 satisfy
y = αx for some scalar α.

Lemma 3.10 Suppose that the dimension of the null space of A is 1. Then the codimension
of the range of A is also 1, and there is a vector g such that there is a solution y to

Ay = f if and only if g?f = 0. (3.33)

Proof. We can characterize g as a solution to A?g = 0, as follows. For each y ∈ Fn, let
fy = Ay. Then

0 = g?fy = g?Ay = y?(A?g) ∀y ∈ Fn (3.34)

if and only if A?g = 0. Thus we need to see how to compute a null solution, something of
interest in its own right.

If we do full pivoting, then Gaussian elimination proceeds to the end, with the only
oddity being that unn = 0. But the matrix factor L is computed without incident; note that
there is nothing to compute in the nth column of L (the only nonzero entry is lnn = 1). Of
course, A = LU implies that A? = U?L?, although now it is the upper-triangular factor (L?)
that is 1 on the diagonal. Transposing the algorithm (3.19), we first solve U?w = 0 and then
L?g = w. Since L? is always invertible, there is no obstruction to obtaining g from w. So
the constraint in (3.33) has to involve w. The null space of U? is easy to characterize: it is
generated by the vector En = (0, 0, · · · , 0, 1)T. Thus g can be computed via

L?g = En. (3.35)

Note that g is unique only up to a scalar multiple. QED

In a similar way, we can compute a generator x for the null space of A. Thus we seek x
such that L(Ux) = 0, and since L is invertible, we must have Ux = 0. We can take xn = 1
since we have unn = 0. Then the second line in (3.9) can be used to generate the remaining
values of xi, i = n− 1, . . . , 1; cf. exercise 3.19.

It is also easy to see that there is only one null vector in this case. Suppose y is another
null vector, Ay = 0, and let w = y−ynx. Then Aw = 0 since w is a linear combination of null
vectors, and wn = 0. Thus we can compute wn−k via backsubstitution, for k = 1, . . . , n− 1,
to find w = 0. Thus the null space of A is one-dimensional.

Draft September 23, 2016, do not distribute Page 46

CHAPTER 3. LINEAR SYSTEMS 3.4. PIVOTING

3.4.5 Uniqueness of the factorization

Suppose we assume that the row and/or column exchanges have been incorporated into A,
so that Gaussian elimination with no pivoting factors A = LU . We now ask whether such a
factorization is unique. Of course, different row and/or column exchanges will give in general
a different factorization, but we assume that these exchanges are fixed for this discussion.

If L̃ and Ũ are two other triangular factors of A = L̃Ũ with the property that the diagonal
elements of L̃ are also all 1’s, then we claim that L = L̃ and U = Ũ . To see this, write
LU = L̃Ũ and multiply on the right by Ũ−1 and on the left by L−1. We find UŨ−1 = L−1L̃.
But UŨ−1 is upper-triangular and L−1L̃ is lower-triangular (cf. section 3.3). To be equal,

they both must be diagonal. Since both L and L̃ have only 1’s on the diagonal, this must
also hold for L−1L̃; cf. (3.26) and (3.27). Thus UŨ−1 = L−1L̃ = I.

The proof of uniqueness assumes that one of the upper-triangular factors, U or Ũ , is
nonsingular in the posited factorizations A = LU and A = L̃Ũ . Uniqueness requires some
sort of condition on the upper-triangular factor because if U = 0 then 0 = LU for any L.
Thus what we have proved is the following.

Lemma 3.11 Suppose that A = LU , where the lower triangular factor L has only 1’s on
the diagonal and the upper triangular factor U is invertible. Then the factors are unique.

As discussed in section 3.4.3, it does make sense to have a factorization A = LU in which
unn = 0, and Gaussian elimination will compute such factors. We now examine whether
such a factorization is unique.

So suppose that A = LU = L̃Ũ where we assume that both L and L̃ are all ones on the
diagonal and

U =

(
Û w
0T 0

)
and Ũ =

(
V x
0T α

)
,

with Û invertible. Note that we assume only that Ũ is upper triangular; V need not be
invertible. Since L is invertible, we have

U = L−1L̃Ũ . (3.36)

Now we multiply (3.36) on the right by the matrix(
Û−1 0
0T 0

)
to get (

In−1 0
0T 0

)
= L−1L̃Ũ

(
Û−1 0
0T 0

)
= L−1L̃

(
V Û−1 0

0T 0

)
.

Multiplying on the left by
(
L−1L̃

)−1

= L̃−1L we get

L̃−1L

(
In−1 0
0T 0

)
=

(
V Û−1 0

0T 0

)
. (3.37)

Draft September 23, 2016, do not distribute Page 47

3.4. PIVOTING CHAPTER 3. LINEAR SYSTEMS

The matrix on the left-hand side of (3.37) is lower triangular and the matrix on the right-
hand side of (3.37) is upper triangular. Therefore they are both diagonal. The diagonal of

L̃−1L is all ones, so we conclude that

L̃−1L

(
In−1 0
0T 0

)
=

(
In−1 0
0T 0

)
. (3.38)

In particular, we have V = Û .
Let us write the lower triangular matrix L̃−1L as

L̃−1L =

(
M 0
aT 1

)
,

where M is a lower triangular square matrix of dimension n− 1 with ones on the diagonal.
Then

L̃−1L

(
In−1 0
0T 0

)
=

(
M 0
aT 0

)
. (3.39)

From (3.38), we have M = In−1 and a = 0, and thus L = L̃. By (3.36) we have U = Ũ . Thus
the factorization is also unique in this case, and we get the following extension of lemma 3.11.

Theorem 3.12 Suppose that A = LU and the null space of A (and U) is at most one
dimensional. Then the factors are unique.

As soon as the null space of A is more than one-dimensional, the picture changes com-
pletely. Suppose that A = LU and

L =

(
L̂ 0
wT M

)
and U =

(
Û v
0T Z2

)
, (3.40)

where Z2 is the 2× 2 zero matrix and

M =

(
1 0
a 1

)
. (3.41)

If the rank of A is less than n − 1, Gaussian elimination (with full pivoting performed in
advance) will create such a factorization. Multiplying L and U we find

A = LU =

(
L̂Û L̂v

wTÛ wTv

)
. (3.42)

Thus A does not depend on the value a in the definition of M . It can be arbitrary. Thus
the factorization is not unique in this case.

There are other possible factorizations with different diagonal assignments. We see that
A = LDU gives a description of the general case, where both L and U have 1’s on the
diagonal and D is a diagonal matrix. More precisely, if A = LÛ is the factorization provided
by Gaussian elimination, define D to be the diagonal matrix whose entries are the diagonal
elements of Û . Then set U = D−1Û , yielding A = LDU . By (3.26), U has 1’s on the
diagonal.

A corollary of the uniqueness of the factorization is that if A is symmetric, then A =
LDLT .

Draft September 23, 2016, do not distribute Page 48

CHAPTER 3. LINEAR SYSTEMS 3.5. MORE READING

3.5 More reading

There are excellent texts on numerical linear algebra, e.g., by Demmel [47] and by Trefethen
and Bao [167]. The monograph by van de Geijn and Quintana-Ort́ı [172] develops the
approach given in section 3.2.1. Parallel linear algebra is covered to a limited extent in [149],
and references to further work can be found there.

3.6 Exercises

Exercise 3.1 Derive an algorithm for forward solution for lower-triangular systems LY =
F . (Hint: the transpose of a lower-triangular matrix is upper-triangular.)

Exercise 3.2 Show directly that a triangular matrix with a 0 diagonal entry must be singu-
lar. (Hint: suppose the ith diagonal entry of an lower-triangular matrix is 0. Show that the
vector that is 1 in the ith position and 0 for indices less than i can be extended such that it
is mapped to 0 by multiplication by the triangular matrix.)

Exercise 3.3 Prove that the product of the diagonal entries of a triangular matrix is equal
to its determinant. (Hint: show that the determinant of a triangular matrix can be computed
by a simple recursion.)

Exercise 3.4 Prove theorem 3.5 by multiplying the expressions for the factors L and U in
terms of the individual coefficients.

Exercise 3.5 Prove that if A is invertible, then there is a permutation matrix P such that
PA can be factored as PA = LU . (Hint: modify the proof of theorem 3.5 by introducing an
elementary permutation matrix at each step. Define P (1) to be a permutation matrix such
that P (1)A can be written in the form (3.12) with a11 6= 0. Then use (3.13) and apply, by
induction, the result to the submatrix B−a−1

11 a
1a1

T. Show that P (1)A is invertible if and only
if B − a−1

11 a
1a1

T is invertible. First, prove that (3.13) is correct, by multiplying it out, and
then compare the second factor with A(2). Note that det(P (1)A) = a11 det(B − a−1

11 a
1a1

T).)

Exercise 3.6 Suppose P is the elementary permutation matrix in (3.29). Prove that (PA)im =
Akm and (PA)km = Aim for all m = 1, . . . , n, whereas (PA)lm = Alm for l 6= i, k, for all
m = 1, . . . , n.

Exercise 3.7 Suppose that α and β are complex scalars, ã and b̃ are complex column vectors
of length n − 1, a? and b? are complex row vectors of length n − 1, and A and B are
(n−1)× (n−1) complex matrices. Prove that the block matrix multiplication formula holds:(

α a?

ã A

)(
β b?

b̃ B

)
=

(
αβ + a?b̃ αb? + a?B

βã+ Ab̃ ãb? + AB

)
. (3.43)

Note that a?b̃ is an inner product (resulting in a scalar) and ãb? is an outer product (resulting
in an (n− 1)× (n− 1) matrix).

Exercise 3.8 Prove (3.13) by multiplying out the factors in block form. (Hint: use exer-
cise 3.7.)

Draft September 23, 2016, do not distribute Page 49

3.6. EXERCISES CHAPTER 3. LINEAR SYSTEMS

Exercise 3.9 Prove the last two equalities in (3.17) by multiplying out the factors. (Hint:
use exercise 3.7.)

Exercise 3.10 Using a programming language that supports recursion, develop a code to
perform an LU factorization in which the representation (3.11) provides the base case and
(3.13) provides the reduction to a smaller problem.

Exercise 3.11 Prove that
∑n−1

j=1 j
2 = 1

3
n3 + an2 + bn and determine the constants a and b.

(Hint: summing is like integrating; compare
∑n−1

j=1 j
2 with

∫ n
1
x2 dx.)

Exercise 3.12 Prove that, for p = 0, 1, 2, . . . , 8,

n−1∑
j=0

jp =

p∑
i=0

Bp−i

i+ 1

(
p
i

)
ni+1, (3.44)

where Bi is the ith Bernoulli 3 number, which are given by

[B0, B1, . . .] = [1,−1
2
, 1

6
, 0,− 1

30
, 0, 1

42
, 0,− 1

30
, . . .]. (3.45)

(Hint: see exercise 13.17.)

Exercise 3.13 The definition of matrix-vector multiplication is

(AV)i =
n∑
j=1

aijvj. (3.46)

If B is another matrix, then prove that B(AV) = (BA)V , where the matrix BA is defined
by

(BA)ij =
n∑
k=1

BikAkj. (3.47)

(Hint: just apply (3.46) twice.)

Exercise 3.14 Determine the number of floating-point operations required to determine the
multipliers defined in (3.5) as a function of n.

Exercise 3.15 Consider an n × n matrix A and equations AX i = F i with m right-hand
sides F i. Show that the number of floating-point operations required to solve the m systems
of equations with the same matrix but with m different right-hand sides is 1

3
n3 + 1

2
mn2 to

leading order. Show that the inverse of A can be computed in (5/6)n3 operations to leading
order.

Exercise 3.16 Verify the form (3.26) of the product of triangular matrices.

3Jakob Bernoulli (1654–1705) was the brother of Johann Bernoulli (1667–1748), who was a tutor of
Euler. Johann’s son Daniel Bernoulli (1700–1782) also interacted with Euler, as did his nephew Nicolaus
Bernoulli (1687–1759). The Bernoulli family tree included as well several other mathematicians active in
the 18th century.

Draft September 23, 2016, do not distribute Page 50

CHAPTER 3. LINEAR SYSTEMS 3.7. SOLUTIONS

Exercise 3.17 Suppose that the n×n matrix A is positive definite, that is, there is an α > 0
such that, for all X ∈ Rn,

XTAX ≥ αXTX. (3.48)

Prove that, without pivoting, the pivotal elements akkk are always at least as big as α.

Exercise 3.18 Show that pivoting in Gaussian elimination is not necessary (that is, the
pivots are nonzero) if only the symmetric part 1

2
(A+ AT) of A is positive definite, that is,

XT 1
2
(A+ AT)X ≥ αXTX,

for all X ∈ Rn, with α > 0. In particular, show that the pivotal elements akkk are always at
least as big as α. (Hint: use exercise 3.17.)

Exercise 3.19 Modify the backsubstitution algorithm (3.9) to solve for a nonzero solution
to Ux = 0 in the case where unn = 0 but all other diagonal entries of the upper-triangular
matrix U are nonzero. Take xn = 1.

3.7 Solutions

Solution of Exercise 3.4. We begin by using (3.8) and rewriting (3.4) as

mikukj = mika
k
kj = akij − ak+1

ij ∀i = k + 1, . . . , n; j = k + 1, . . . , n. (3.49)

This is valid for all k as long as i > k and j > k, that is, for k < ν := min{i, j}. Summing
(3.49), we find (for all i, j = 1, . . . , n)

ν−1∑
k=1

mikukj =
ν−1∑
k=1

(
akij − ak+1

ij

)
= a1

ij − aνij (3.50)

because the sum on the right-hand side of (3.50) telescopes. Suppose that i ≤ j, so that
ν = i. Then (3.50) simplifies to

i−1∑
k=1

mikukj = a1
ij − aiij = aij − uij. (3.51)

Since `ii = 1, we can write (3.51) as

i∑
k=1

`ikukj = aij, (3.52)

which verifies the factorization for i ≤ j.
Now suppose that i > j, so that ν = j. Then (3.50) simplifies to

j−1∑
k=1

mikukj = a1
ij − a

j
ij = aij −mija

j
jj = aij −mijujj (3.53)

Draft September 23, 2016, do not distribute Page 51

3.7. SOLUTIONS CHAPTER 3. LINEAR SYSTEMS

in view of the definition of the multipliers (3.5) and U (3.8). Therefore,

j∑
k=1

`ikukj = aij, (3.54)

which verifies the factorization for i > j.

Solution of Exercise 3.11. We have∫ k+1

k

x2 dx = 1
3
((k + 1)3 − k3) = 1

3
(3k2 + 3k + 1) = k2 + k + 1

3
. (3.55)

Summing, we find

1
3
n3 =

∫ n

0

x2 dx =
n−1∑
k=0

(k2 + k + 1
3
). (3.56)

Thus

n−1∑
k=1

k2 =
n−1∑
k=0

k2 = 1
3
n3 −

n−1∑
k=0

(k + 1
3
)

= 1
3
n3 − 1

2
n(n− 1)− 1

3
n = 1

3
n3 − 1

2
n2 + 1

6
n.

(3.57)

Solution of Exercise 3.17. Let 0 6= x ∈ Rk be arbitrary and let

X = (x1, . . . , xk, 0, . . . , 0) ∈ Rn.

Then AX = (Akx, y)T for some y = (yk+1, . . . , yn), and thus XTAX = xTAkx. Therefore, if
A is positive definite, then so is Ak for all k = 1, . . . , n, and in particular, Ak is invertible.

Draft September 23, 2016, do not distribute Page 52

Chapter 4

Direct Solvers

There are two Jordans who appear in numerical analysis. Wilhelm
Jordan (1842–1899) was German and is associated with the variant of
the elimination method known as Gauss-Jordan [7]. Marie Ennemond
Camille Jordan (1838–1922) was French and is associated with the de-
composition leading to the Jordan canonical form, as well as many other
important ideas in mathematics.

We now consider the problem of solving linear systems of equations more extensively.
This chapter is not required for reading subsequent chapters, so it can be skipped without
affecting the flow in later chapters. However, it provides a more algorithmic view of linear
algebra that can be of interest in its own right. In particular, we will see that the Gaussian
elimination algorithm is not optimal on current computers. We will see that there are other
algorithms that can produce the same, or similar, factors that are more efficient. Moreover,
we will see that factorizations, and the algorithms that produce them, can be tailored to
particular properties of the linear system, such as symmetry of the corresponding matrix. In
addition, we will see that these factorization methods preserve common patterns of sparsity,
that is, systematic occurrences of coefficients in the linear system that are known in advance
to be zero.

4.1 Direct factorization

Now that we know that a factorization A = LDU exists (section 3.4.5), it is reasonable to
ask if there is a more direct way to derive the factors. There are several algorithms that are
quite similar but deal with the diagonal in different ways. These schemes are often called
compact factorization schemes; they can be written succinctly, and their memory reference
patterns are more controlled.

One might ask what the benefit of a different algorithm might be. We will see that
the number of floating-point operations is the same, and the memory usage is the also the
same (e.g., can be done using only the storage allocated to A itself). However, the number
of memory references is not the same, and this is what distinguishes compact factorization
schemes from Gaussian elimination. Another advantage of compact schemes is that higher
precision can be used for the intermediary accumulations; see section 18.1.3 for ways to
compute equation (4.4) more accurately.

53

4.1. DIRECT FACTORIZATION CHAPTER 4. DIRECT SOLVERS

4.1.1 Doolittle factorization

Doolittle1 factorization [164] produces the same factors as Gaussian elimination; that is,
A = LU with L always having 1’s on the diagonal. We can derive the algorithm by simply
writing the equation for the product and rearranging:

aij =

min{i,j}∑
k=1

`ikukj, (4.1)

where the summation is limited because we know that L is lower-triangular and U is upper-
triangular. If i ≤ j, then min{i, j} = i, and we can write (4.1) as

uij = aij −
i−1∑
k=1

`ikukj (4.2)

since `ii = 1. If we use this with i = 1, we find u1j = a1j for j = 1, . . . , n, as we expect from
Gaussian elimination. If j ≤ i, then min{i, j} = j, and we can write (4.1) as

`ij = u−1
jj

(
aij −

j−1∑
k=1

`ikukj

)
. (4.3)

If we use this with j = 1, we find `i1 = ai1/u11 for i = 2, . . . , n, as we also expect from
Gaussian elimination. Once we have the `i1’s, we see that we can now use (4.2) for i = 2
since it involves only k = 1 if i = 2 and the u1j’s are already known.

Thus we can alternate between (4.2) and (4.3), computing what we need for the next
step. By reversing the index names in (4.3), we can collect these steps as a single algorithm:
for i = 1, . . . , n,

uij ←aij −
i−1∑
k=1

`ik ukj ∀j = i, . . . , n

`ji ← u−1
ii

(
aji −

i−1∑
k=1

`jk uki

)
∀j = i+ 1, . . . , n.

(4.4)

This computes the first row of U and then the first column of L, then the second row of U
and the second column of L, and so forth. The boxes around terms in a given line indicate
variables that get used multiple times for a given value of i. We will now see how this can
lead to an improvement in performance.

There is some fine print relating to the initialization and finalization of (4.4). For i = 1,
the summation in the first line is empty, so it corresponds to the simple assignment u1j ← a1j

for j = 1, . . . , n. For i = n, there are no valid values of j in the last line, and there is no
work to be done. Thus (4.4) really applies only for i = 2, . . . , n − 1, with slightly different
work to be done for i = 1 and i = n.

1Myrick Hascall Doolittle (1830–1913) was a mathematician in the Computing Division of the U.S. Coast
and Geodetic Survey [24, 61]. Although the basic algorithm [53] was known to Gauss, and Doolittle’s
“contribution seems to have been to design a tableau in which the terms were expeditiously recorded” [157],
his work stands as one of the earliest American algorithms. Doolittle studied briefly with Benjamin Peirce
at Harvard [74].

Draft September 23, 2016, do not distribute Page 54

CHAPTER 4. DIRECT SOLVERS 4.1. DIRECT FACTORIZATION

Memory
cacheC P U

Main

Figure 4.1: A simple model for a computer with a cache. The shaded “pipes” indicate the
memory pathways; the larger and shorter pipe between the CPU and cache is much faster
than the narrower and longer pipe to main memory.

4.1.2 Memory references

To understand the impact of memory references, we need to have some model of memory.
Indeed, if memory access were very fast compared to floating-point operations (as it was
in early digital computers), we could ignore its effect. But modern computer architectures
have very complex memory systems, with multiple levels of memory including different lev-
els of cache as well as more conventional memory components. As computer designs have
progressed, processor speeds have increased exponentially, but the speed of typical memory
operations has not advanced as quickly as the speed of floating-point operations. In current
computers, only carefully chosen memory operations proceed quickly. The trend is toward
even more complex memory systems, with the ratio of the speed of a general memory opera-
tion to that of a floating-point operation increasing in the process. We consider a very simple
model just to give the flavor of the issues and leave detailed analyses of different algorithms
for various memory systems to a text devoted to computer architecture [130].

All computers today utilize the concept of a cache, which we depict in figure 4.1 in a
very simplified model. The cache duplicates a portion of the main memory, and it typically
does so using technology that allows faster access by the central processing unit (CPU)
where floating-point arithmetic (and other operations) take place. If a certain variable is not
available in cache, it is retrieved from main memory (and stored as well in cache) but in a less
timely fashion. Moreover, the previous cache contents are overwritten in the process and are
no longer available. This action is called a cache miss, and it can cost orders of magnitude
more than a cache hit, which is a memory reference to something already in cache. Thus
algorithms that can reuse the data stored in cache can perform much faster than ones that
must repeatedly access main memory.

With this model in mind, let us examine the memory reference pattern of the compact
scheme (4.4) and compare it with the memory reference pattern of Gaussian elimination.
For simplicity, we will count only memory references to main memory, that is, cache misses,
essentially assuming that the cache is infinitely fast by comparison. Furthermore, we will
assume n is such that the cache cannot hold n2 numbers, but it can hold ρn floating-point
numbers, where ρ is a small but fixed integer. We explore in exercise 4.1 the possibility of
having ρ be a factor less than 1.

Let’s do the numbers for memory references for Gaussian elimination first. For k =
1, . . . , n − 1, we have to read a block of memory of size (n− k)× (n− k) corresponding to
the aij’s in (3.20) and then write it back to memory. In our model, at least for the beginning
values of k, this requires two memory references for each i, j and thus a total of

2
n−1∑
k=1

(n− k)2 = 2
n−1∑
m=1

m2 = 2
3
n3 +O(n2) (4.5)

Draft September 23, 2016, do not distribute Page 55

4.1. DIRECT FACTORIZATION CHAPTER 4. DIRECT SOLVERS

(a)

ik

Main Memorycache

kj ij ij
auul

(b)

l

Main Memorycache

jk ji ji
a

kiu l

Figure 4.2: Residence of variables in cache and main memory in the compact scheme in the
computation of line 1 (a) and line 2 (b) of (4.4).

memory references for Gaussian elimination. Since each step requires accessing (n − k)2

items, we assume that all these represent cache misses. In addition, for each k, we need to
read n−k akj’s and mik’s. However, this contribution to the overall memory reference count
is of lower order, contributing only to the O(n2) term, as the akj’s and mik’s can be reused
effectively from cache.

Now let us examine the compact scheme (4.4). Fix i for the moment. We need to read
i− 1 values of `ik, that is,

`i1, `i2, . . . , `i,i−1 [i− 1 cache misses] (4.6)

to compute the first line of (4.4), but these are reused for different values of j, so we may
assume that they are stored in cache and that there is only one cache miss involved in
acquiring each of them for a given i. Note that these variables are inside a box in (4.4),
indicating that we assume they reside in cache; also see figure 4.2(a). For each j (of which
there are n+ 1− i values), we further need to read i− 1 values of ukj, that is,

u1j, u2j, . . . , ui−1,j, ∀j = i, . . . , n [(n+ 1− i)× (i− 1) cache misses] (4.7)

and one value of aij and to write uij to memory. All told, this amounts to i+ 1 cache misses
for each j = i, . . . , n, and adding the cache misses for acquiring `ik at the beginning amounts
to

i− 1 + (n+ 1− i)(i+ 1) (4.8)

cache misses for the first line of (4.4). When i = 1, there is no computation to be done; all
we do is read a1j and write u1j for j = 1, . . . , n, corresponding to 2n cache misses, but this
agrees with (4.8) for the case i = 1. If by design the factors are being stored in the memory
locations for the matrix aij, then these memory references can be avoided. However, we will
not make this assumption for simplicity.

The second line is very similar but with the roles reversed. The variables inside a box in
line 2 of (4.4), indicate that they reside in cache; also see figure 4.2(b). In particular, there
is one more memory reference, to uii, but one less value of j, for a total of

i+ (n− i)(i+ 1) (4.9)

cache misses for the second line of (4.4). Totaling the cache misses in both lines in (4.4) by
adding (4.8) and (4.9), we obtain at most

2i− 1 + (2n− 2i+ 1)(i+ 1) = 2(n− i+ 1)(i+ 1)− 3 (4.10)

Draft September 23, 2016, do not distribute Page 56

CHAPTER 4. DIRECT SOLVERS 4.1. DIRECT FACTORIZATION

cache misses. But recall that the second line is executed only for i < n. Summing the leading
term in (4.10) over all i < n gives (ι = i+ 1)

2
n−1∑
i=1

(n− i+ 1)(i+ 1) = 2
n∑
ι=2

(n− ι+ 2)ι = 2(n+ 2)
n∑
ι=2

ι− 2
n∑
ι=2

ι2

= (n+ 2)(n2 + n− 2)− 2
n∑
ι=2

ι2

= 1
3
n3 +O(n2)

(4.11)

cache misses for the direct factorization method (see exercise 3.11 for the last step).
The factor of 2 reduction in memory references of (4.11) for the compact scheme over the

number (4.5) for Gaussian elimination means a

factor of 2 improvement in overall performance on
contemporary computers.

We have not said how to ensure that the boxed variables remain in cache, only that there
is enough room to hold them. We leave the question of how to program this algorithm to
ensure that this happens to a more advanced reference [130] on software implementation.
The key requirement of the computer system is that the cache be set associative with a
replacement policy such as least recently used (LRU) [130].

4.1.3 Cholesky factorization and algorithm

For simplicity, we restrict attention to linear systems with real entries; for the complex case,
see exercise 4.2. The Cholesky2 algorithm was not published until after Cholesky’s death,
but it was later examined by Turing3 [169] and Wilkinson4 and others [67]. The Cholesky
factorization is of the form A = UTU , where U is upper-triangular. Thus by definition, A
must be symmetric. Cholesky’s algorithm is appropriate only for symmetric, positive definite
matrices, but it is quite important as it applies to such an important subclass of matrices.
The Cholesky algorithm can be written by looping the following expression for j = 1, . . . , n:

uij =
1

uii

(
aij −

i−1∑
k=1

ukiukj

)
, i = 1, . . . , j − 1

ujj =

(
ajj −

j−1∑
k=1

u2
kj

)1/2

.

(4.12)

The first instance (j = 1) of this involves only the second equation: u11 = (a11)1/2.
One use of this algorithm is to determine whether a symmetric matrix is positive definite

or not.

2André-Louis Cholesky (1875–1918) attended classes given by Camille Jordan (see page 53) at École
Polytechnique [23].

3Alan Turing (1912–1954) is known for many things in addition to numerical analysis, including his work
on cryptography and the foundations of computer science, for which he is memorialized by the Turing award.

4James Hardy Wilkinson (1919–1986) worked with Turing and received one of the first Turing awards.

Draft September 23, 2016, do not distribute Page 57

4.2. CAUTION ABOUT FACTORIZATION CHAPTER 4. DIRECT SOLVERS

Theorem 4.1 Suppose that A is an n× n symmetric real matrix. Then the Cholesky algo-
rithm (4.12) determines the factorization A = UTU with the quantities

ajj −
j−1∑
k=1

u2
kj > 0 (4.13)

for all j = 1, . . . , n if and only if A is positive definite.

Proof. First, if the algorithm (4.12) determines U with each ujj a positive real number, then
XTAX = (UX)TUX = 0 if and only if UX = 0. But since U is triangular with nonzero
diagonal entries, UX = 0 if and only if X = 0. Now suppose that A is positive definite. Let
A = LDLT be the factorization provided by Gaussian elimination (cf. exercise 3.17). Then
XTAX = (LX)TDLX > 0 for any nonzero X. Let Y be arbitrary and solve LX = Y .
Then Y TDY > 0 for all nonzero Y . Thus D > 0 and the Cholesky algorithm must correctly
produce this factorization. QED

Cholesky factorization uses the symmetry of A to write A = L̂DL̂T and then takes the
square root of D, defining L = L̂

√
D.

4.2 Caution about factorization

In our study of algorithms for solving linear systems, we have ignored the effects of finite-
precision arithmetic so far. In section 18.2, we will consider this in more detail, including
the potential effect of the accumulation of round-off errors in very large systems. Here we
consider by example something simpler, just related to the limits of representation of real
numbers in finite precision. However, we will see that this places some severe limits on what
can be achieved using the factorization algorithms considered so far. The Hilbert5 matrix

H =

1 1

2
1
3
· · · 1

n

1
2

1
3

1
4
· · · 1

n+1
...

...
... · · · ...

1
n

1
n+1

1
n+2

· · · 1
2n−1

 (4.14)

reveals limitations of even the best algorithms. More precisely,

hij =
1

i+ j − 1
for i, j = 1, . . . , n. (4.15)

The Hilbert matrix is clearly symmetric, and it can be verified (exercise 4.4) that it is positive
definite by exhibiting the Cholesky factor

uij =
√

2i− 1
((j − 1)!)2

(i+ j − 1)!(j − i)!
for j = 1, . . . , n and i = 1, . . . , j, (4.16)

5David Hilbert (1862–1943) was one of the most influential mathematicians of the 20th century, in part
because of a set of 23 problems he posed at an international meeting in 1900, some of which remain unsolved,
especially the sixth.

Draft September 23, 2016, do not distribute Page 58

CHAPTER 4. DIRECT SOLVERS 4.3. BANDED MATRICES

that is, H = UTU . Unfortunately, the diagonal terms

ujj =
√

2j − 1
((j − 1)!)2

(2j − 1)!
=
√

2j − 1
(j − 1)!

j(j + 1) · · · (2j − 1)
(4.17)

decrease exponentially as j increases (exercise 4.5), whereas u1,n = 1/n. For example, u16,16

is less than 1.2× 10−9. Thus the terms

a16,16 =
1

31
and

15∑
k=1

u2
kj (4.18)

in (4.12) must differ by less than 2 × 10−18 (all the terms are positive). Thus 16 digits are
insufficient to resolve the difference. Indeed, the Cholesky algorithm implemented to this
accuracy can indicate that the Hilbert matrix is not positive definite for n as small as 14.
This is not an effect of the accumulation of round-off error (chapter 18) but rather a simple
failure of representation. That is, without a way to represent more digits in the terms, there
is no way to determine whether the condition (4.13), that is,

hjj >

j−1∑
k=1

u2
kj, (4.19)

holds or not. The factorization can be computed using extended precision arithmetic, but
this allows the factorization to continue only for n proportional to the number of digits used
in the representation. This does not make the computation intractable, but an adaptive
approach in which different entries are represented to different levels of accuracy might be
needed to be efficient. Many systems allow computation with rational coefficients, and this
allows exact arithmetic. However, it does not eliminate the possibility of growth of the size
of the representation. The Hilbert matrix (4.14) and its Cholesky factorization (4.17) have
rational entries. We leave as exercise 4.6 the question of how large the denominator can
become in the factors.

4.3 Banded matrices

In many applications, most entries in a matrix are zero. Such a matrix is called sparse. One
structured matrix of this type is called a banded matrix. We will see that the factorizations
of a banded matrix retain the band structure.

Define the bandwidth w of a matrix A to be the smallest integer such that aij = 0
whenever |i− j| ≥ w. A full matrix is a matrix with no significant zero structure and thus
corresponds to w = n for an n× n matrix. A diagonal matrix has bandwidth 1. The main
fact of interest about banded matrices is the following.

Lemma 4.2 Suppose A is an n× n matrix of bandwidth w such that Gaussian elimination
can be performed on A without pivoting to produce the factors A = LU . Then the bandwidth
of both L and U is at most w.

The proof of this fact is obtained by exhibiting algorithms that provide the factorization
and avoid involvement of terms above and below the nonzero band. The banded Cholesky

Draft September 23, 2016, do not distribute Page 59

4.3. BANDED MATRICES CHAPTER 4. DIRECT SOLVERS

algorithm (section 4.3.1) provides one example, and the general case is similar. For now, we
give an example and illustrate the value of working with banded structures.

The matrix A that results from discretizing the second derivative is a tridiagonal (w = 2)
matrix with 2 on the diagonal and −1 above and below the diagonal:

A =

1 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 2

, (4.20)

where a slight modification has been done in the first row.

The LU factors of A take a simple form: U = LT with L given by

L =

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1

 . (4.21)

Thus we see that we can solve linear systems involving the matrix A very effectively by LU
factorization and backsubstitution (exercise 4.10). On the other hand, we can now see a real
disadvantage to working with the inverse of a matrix.

Define a matrix M , where mij = n + 1 − i for j ≤ i and mij = n + 1 − j for j ≥ i. We
can visualize this matrix as

M =

n n− 1 n− 2 n− 3 · · · 3 2 1
n− 1 n− 1 n− 2 n− 3 · · · 3 2 1
n− 2 n− 2 n− 2 n− 3 · · · 3 2 1
n− 3 n− 3 n− 3 n− 3 · · · 3 2 1

...
...

...
...

...
...

...
...

3 3 3 3 · · · 3 2 1
2 2 2 2 · · · 2 2 1
1 1 1 1 · · · 1 1 1

. (4.22)

Then AM = I (exercise 4.11), so A−1 = M . Thus we see that the inverse of a banded matrix
can be full. Solving AX = F for A given by (4.20) requires n2 (multiply and add) operations
using the formula X = MF , whereas computing and using the LU factors (section 3.2.2)
require only O(n) operations (see section 4.3.2).

Pivoting increases the bandwidth, but bounds can clearly be made on how much the
bandwidth increases. We refer the reader to [41] and [69] for more details.

Draft September 23, 2016, do not distribute Page 60

CHAPTER 4. DIRECT SOLVERS 4.4. MORE READING

4.3.1 Banded Cholesky

The Cholesky algorithm can then be written by looping the following expression for j =
1, . . . , n:

uij =
1

uii

aij − i−1∑
k=max{1,i−w}

ukiukj

 , i = max{1, j − w}, . . . , j − 1 ,

ujj =

ajj − j−1∑
k=max{1,j−w}

u2
kj

1/2

.

(4.23)

The Doolittle scheme, Gaussian elimination, and other algorithms can also be written in
banded form (see exercises 4.12 and 4.13).

4.3.2 Work estimates for banded algorithms

It is not hard to guess the leading terms in the work estimates for band factorization algo-
rithms such as Cholesky (4.23). The amount of floating-point operations required to factor
a matrix is cubic in n, and thus it is reasonable to assume that the banded version would
involve either w2n or wn2 work (n3 would mean no gain, and w3 would be impossible because
there are nw nonzero coefficients). Fortunately, the more optimistic w2n is correct, as we
can see specifically in the banded Cholesky algorithm (4.23), as follows.

Consider the work done for each j = 1, . . . , n. Once i > w and j > w, the first line in
(4.23) takes the form

uij =
1

uii

(
aij −

i−1∑
k=i−w

ukiukj

)
, i = j − w, . . . , j − 1, (4.24)

and involves exactly w products in the sum, and there are exactly w values of i for which it is
computed. Thus the total work is 2w2 multiplies and additions and w divisions. The second
line in (4.23) has a similar structure and for j > w involves 2w multiplies and additions and
one square-root. Ignoring the divisions and square-roots, we see that to leading order, the
primary work is 2nw2 multiplies and additions, with the remaining terms of order nw and
smaller.

Let us consider the implications of these results for banded matrices like the one in (4.20),
in which w = 2. We can factor it using the banded Cholesky algorithm (see exercise 4.14)
in an amount of work proportional to nw2, and we can further use banded forward and
backward solution (exercise 4.10) in O(wn) work. Thus the total amount of work needed
to solve Ax = f is at most O(w2n). On the other hand, even if we know explicitly the
formula for A−1 in (4.22), it would take O(n2) work to use it to determine x = A−1f . Thus
if w <<

√
n, it is much more efficient to use the factorization rather than the inverse.

4.4 More reading

In [149], several algorithms for matrix factorization on parallel computers are presented.
This shows the diversity of algorithms available even for such a basic problem.

Draft September 23, 2016, do not distribute Page 61

4.5. EXERCISES CHAPTER 4. DIRECT SOLVERS

4.5 Exercises

Exercise 4.1 Show that direct factorization methods can still be effective for the situation
where the cache cannot hold an entire row of the matrix.

Exercise 4.2 Describe the Cholesky factorization A = U?U for matrices with complex en-
tries, where now we must assume that A is Hermitian: A? = A. How do the equations (4.12)
change in this case? How is the condition (4.13) different?

Exercise 4.3 Implement the Cholesky factorization (4.12) using arithmetic with finite-precision
and apply it to the Hilbert matrix (4.14). For what n does it fail?

Exercise 4.4 Verify computationally that (4.16) defines the Cholesky factorization of the
Hilbert matrix (4.14), that is, H = UTU .

Exercise 4.5 Prove that the diagonal terms of the Cholesky factorization (4.17) of the
Hilbert matrix decay exponentially. (Hint: write (4.17) as

√
2j − 1

j

1

j + 1

2

j + 2
· · · j − 1

2j − 1
(4.25)

and show that all the factors are less than 1
2

for j > 7.)

Exercise 4.6 Both the entries of the Hilbert matrix (4.14) and the entries of its Cholesky
factorization (4.17) are rational numbers (times a square root, in the latter case). Does this
resolve the issue of representing the computation with finite precision? How large can the
denominator of the diagonal entries in the factors become? How many bits are required to
represent them in a binary expansion?

Exercise 4.7 Develop an algorithm, and determine the operation count, for the symmetric
Gaussian elimination method. Compare it to the Cholesky method and to the regular Gaus-
sian elimination method. First, you need to explain the algorithm in detail. (Hint: note the
symmetry in the computation aij − aikakj/akk when A is symmetric. Show that this allows
you to work with only the upper-triangular part of A.)

Exercise 4.8 Count the number of memory references for symmetric Gaussian elimination
(exercise 4.7) and compare it to the Cholesky method and to the regular Gaussian elimination
method.

Exercise 4.9 The Crout 6 factorization A = LU sets the diagonal of U to be all 1’s [39],
instead of having the diagonal of L all 1’s as in Gaussian elimination. Derive an algorithm
analogous to the Doolittle algorithm (4.4) for computing the Crout factorization.

Exercise 4.10 Derive the algorithm for banded forward and backward solution and estimate
the number of arithmetic operations and memory references.

6Prescott Durand Crout (1907–1984) was a professor of mathematics at MIT from 1934 to 1973 and a
member of the Radiation Laboratory staff from 1941 to 1945.

Draft September 23, 2016, do not distribute Page 62

CHAPTER 4. DIRECT SOLVERS 4.5. EXERCISES

Exercise 4.11 Prove that AM = I, where A is defined in (4.20) and M is defined in (4.22).

Exercise 4.12 Derive the algorithm for banded Gaussian elimination and estimate the num-
ber of arithmetic operations and memory references.

Exercise 4.13 Derive the banded version of the Doolittle algorithm for direct factorization
and estimate the number of arithmetic operations and memory references.

Exercise 4.14 Show that the banded matrix matrix A in (4.20) is positive definite. (Hint:
use the factor L.)

Exercise 4.15 Let A be an invertible n× n matrix with an existing factorization A = LU .
Let u and v be nonzero vectors of length n (that is, matrices of size n × 1). The Sherman-
Morrison formula states that

(A− uvT)−1 = A−1 + αA−1uvTA−1, (4.26)

where α = (1 − vTA−1u)−1, provided that r = vTA−1u 6= 1 as we now assume. First, prove
that this formula is correct. Second, show that if r = vTA−1u = 1, then A − uvT is not
invertible. Finally, suppose that B = A−uvT and that r 6= 1. Use the factorization A = LU
to compute the solution to BX = F in only O(n2) work. The matrix B is called a rank-one
update of A since the matrix uvT has rank one. (Hint: write X = B−1F = Y + αWvTY ,
where Y solves AY = F and W solves AW = u. Don’t forget to check the value of r = vTW
before you compute α = (1− r)−1.)

Exercise 4.16 The first and last lines of the matrix A defined in (4.20) depend on the
boundary conditions being employed in the definition of the difference operator. The top line
corresponds to a Neumann, or derivative, boundary condition in which the derivative of the
function value is set to zero; the bottom line corresponds to a Dirichlet7 boundary condition
in which the function value is set to zero. If we change the first line of A to(

2 −1 0 0 · · · 0 0 0
)
, (4.27)

then we get a new matrix B = A − uvT corresponding to having Dirichlet conditions at
both ends. Use the Sherman-Morrison formula (exercise 4.15) to prove that B is invertible.
(Hint: figure out what u and v need to be. To prove r 6= 1, you need to check only the sign
of vTA−1u.) If we change the last line of A to(

0 0 0 0 · · · 0 −1 1
)
, (4.28)

then we get a new matrix B̃ = A−uvT corresponding to having Neumann conditions at both
ends. Show that this matrix is singular and examine what goes wrong with the Sherman-
Morrison formula in this case. (Hint: apply B̃ to the vector of all 1’s.)

7Gustav Peter Lejeune Dirichlet (1805–1859) studied at gymnasium with Georg Ohm (of Ohm’s Law
[133]) and then in Paris during 1823–1825 before returning to Germany, where he obtained a position in
Berlin with help from Humboldt [96]. After the death of Gauss, Dirichlet succeeded him in Göttingen [42].
Dirichlet’s students included Leopold Kronecker (of the δ symbol) and Rudolf Lipschitz (see page 19).

Draft September 23, 2016, do not distribute Page 63

4.6. SOLUTIONS CHAPTER 4. DIRECT SOLVERS

Exercise 4.17 Use the Sherman-Morrison formula (exercise 4.15) and the factor L in
(4.21) to define an algorithm to solve BX = F that avoids factoring B, where B is de-
fined in exercise 4.16. Give the explicit formulas, including those for u and v.

Exercise 4.18 Let A and B be any n× n matrices. Prove that

det

(
A B
0 I

)
= det

(
A 0
B I

)
= detA, (4.29)

where I denotes the n×n identity matrix (cf. the more general case in [152]). (Hint: expand
the determinant around the lower-right corner.)

Exercise 4.19 Let A, B, C, D, K, L, M , and N be any n × n matrices. Prove the block
multiplication formula(

A B
C D

)(
K L
M N

)
=

(
AK +BM AL+BN
CK +DM CL+DN

)
. (4.30)

(Hint: compare (3.43).)

Exercise 4.20 Let A and B be any n×n matrices. Prove that det(AB−λI) = det(BA−λI)
for any λ ∈ C, where I denotes the n× n identity matrix. Thus AB and BA have the same
eigenvalues. (Hint: show that, for λ 6= 0,(

λI − AB A
0 I

)(
I 0
B λI

)
=

(
λI λA
B λI

)
=

(
I 0

(1/λ)B λI −BA

)(
λI λA
0 I

) (4.31)

using exercise 4.19 and then apply exercise 4.18. Use a continuation argument to include
λ = 0.)

4.6 Solutions

Solution of Exercise 4.1. When i = 1 in (4.4), only assignment takes place, so we can
assume that 1 < i ≤ n in step 1. We segment the summation over k using a subdivision
1 < k1 < · · · < kr = i − 1 such that, say, km+1 − km ≤ (ρ/3)n. We write the first line of
computation in (4.4) as

tj ←aij −
k1∑
k=1

`ik ukj ∀j = i, . . . , n

for m = 2, . . . , r − 1, tj ←tj −
km∑

k=km−1

`ik ukj ∀j = i, . . . , n.

uij ←tj −
i−1∑

k=kr−1

`ik ukj ∀j = i, . . . , n.

(4.32)

Draft September 23, 2016, do not distribute Page 64

CHAPTER 4. DIRECT SOLVERS 4.6. SOLUTIONS

Here we introduced temporary variables tj to indicate more clearly how the computation is
blocked. There is no need for extra memory; the tj’s could be stored in the storage locations
for the uij’s. The second line of computation in (4.4) is blocked in an analogous way for
i = 1, . . . , n− 1:

tj ← aji −
k1∑
k=1

`jk uki ∀j = i+ 1, . . . , n.

for m = 2, . . . , r − 1, tj ← tj −
km∑

k=km−1

`jk uki ∀j = i+ 1, . . . , n.

`ji ← u−1
ii

tj − i−1∑
k=kr−1

`jk uki

 ∀j = i+ 1, . . . , n.

(4.33)

Again, we must assume that there is some way to ensure that the variables in boxes are not
removed from cache.

Now let us examine the memory references in (4.32). Fix i for the moment. We read
i− 1 values of `ik in blocks that fit within cache and these are reused for different values of
j, so we assume there is only one cache miss involved in acquiring each of them for a given
i. For each j, we further need to read i − 1 values of ukj and one value of aij, but now we
also have to read uij to memory r − 1 times and write uij to memory r times. This gives

i− 1 + (n− i+ 1)(i− 1 + 2r) (4.34)

cache misses for (4.32). Similarly, (4.33) requires

i+ (n− i)(i− 1 + 2r) (4.35)

cache misses for (4.33), for a total of

2i− 1 + 2(n− i+ 1
2
)(i− 1 + 2r) (4.36)

cache misses. Summing the expression (4.36) over i still yields a total of at most 1
3
n3 +2rn2 +

O(n2) cache misses. Thus as long as r is not too large, the performance will be similar.

Solution of Exercise 4.15. Let C = uvTA−1 and r = vTAu. Then

(A− uvT)(A−1 + αA−1uvTA−1) = I − C + α(C − C2)

= I − C + α(C − u(vTA−1u)vTA−1) = I − C + α(C − rC)

= I − C(1− α(1− r)) = I.

(4.37)

Now suppose that r = 1. Then (A − uvT)(A−1u) = u − ru = 0. Thus A−1u is a null
vector of A − uvT if r = 1. Note that A−1u = 0 if and only if u = 0 since A is assumed to
be invertible. Since A−1u 6= 0 is a null vector of B = A− uvT, B cannot be invertible.

The hint explains most of the algorithm. Use LU factorization to solve for W and
compute the scalar product r = vTW . If r = 1, then stop, noting that B is not invertible in
this case. If r 6= 1, define α = (1 − r)−1 and use LU factorization to solve for Y . Finally,
compute X = Y +αWvTY . Note that WvTY = (vTY)W requires the computation of only a
scalar product vTY and multiplication of this scalar times the vector W . If you computed in
the opposite order, i.e., (WvT)V , forming the matrix WvT and then multiplying this matrix
times the vector V , it would take much more work (and temporary storage).

Draft September 23, 2016, do not distribute Page 65

4.6. SOLUTIONS CHAPTER 4. DIRECT SOLVERS

Draft September 23, 2016, do not distribute Page 66

Chapter 5

Vector Spaces

In defending his thesis in 1913, S. N. Bernstein (see page 199) said,
“Mathematicians for a long time have confined themselves to the finite
or algebraic integration of differential equations, but after the solution
of many interesting problems the equations that can be solved by these
methods have to all intents and purposes been exhausted, and one must
either give up all further progress or abandon the formal point of view
and start on a new analytic path.” [6]

So far, we have dealt with simple functions of a single variable with values that are
also one-dimensional. But we want to consider multidimensional objects, and we need to
establish some basic ideas. The first is a way to measure sizes of things. So far, the absolute
value of a real number was sufficient, or the modulus of a complex number. But in higher
dimensions the issue is more complicated. The concept of a norm on a vector space provides
such a measure.

Suppose we are at point A and need to see something at point B. We imagine this takes
place in a two-dimensional plane, as indicated in figure 5.1. How long it takes us to complete
the task is context-dependent.

If we are in a typical urban center, we have to move along a grid defined by the streets
and sidewalks. The time it takes is proportional to the so-called Manhattan distance, which
we will see corresponds to the norm ‖A−B‖1 (see (5.5)). A typical path is indicated by the
dashed line in figure 5.1, but such a path is not unique.

p=2

B

A

p=1

Figure 5.1: Three ways to see what is at point B when starting at point A. The norm ‖A−
B‖∞ is the maximum of the length of the two solid arrows. The dashed arrow corresponds
to ‖A−B‖1, and the dotted arrow corresponds to ‖A−B‖2.

67

5.1. NORMED VECTOR SPACES CHAPTER 5. VECTOR SPACES

On the other hand, if we are in an empty (flat) field, then we could walk directly and
the time it takes would be proportional to the Euclidean distance ‖A−B‖2 (see (5.5) again,
or (5.4), and the dotted line in figure 5.1). We will see that ‖A − B‖2 ≤ ‖A − B‖1, so the
direct approach is faster when feasible.

Finally, we might not really want to go to B but just see something there. Suppose that
A and B are at the corners of a rectangular forest. It is faster to walk around the forest
until we can get a clear view of B but we may not know which way to go. The two possible
paths are indicated as solid lines in figure 5.1. However, we know that the worst case is the
long side of the rectangle, and this is ‖A − B‖∞ (see (5.6)). We will see that ‖A − B‖∞ is
always smaller than the Euclidean distance ‖A−B‖2, so this strategy is better than walking
through the forest.

All these norms are relevant in certain contexts, and none is more important than the
others intrinsically. Other norms are of interest as well, and we will explore the concept
of norms in general. We have already seen how three of them arise naturally in a context
in which length relations among them were of interest. One key result in the chapter (sec-
tion 5.3.2) is that all norms on a finite-dimensional vector space are equivalent in terms of
estimating “distance” (for any two norms, there is a constant such that, for any vector, the
first norm of the vector is no larger than that constant times the second norm of that vector).

Some norms (and vector spaces) support a geometric interpretation familiar in Euclidean
spaces. Such inner-product spaces generalize Rn and Cn and allow many operations to be
carried out abstractly. One such operation is the Gram-Schmidt orthonormalization process.
We will see in section 12.3 that this can be used to construct orthogonal polynomials, which
have many applications both theoretical and practical. In this chapter, we show how the
Gram-Schmidt process leads to the important QR matrix factorization.

5.1 Normed vector spaces

The main point of the section is to introduce ways to estimate accurately the size of things
which have complicated forms. This is a simple generalization of Euclidean distance, but it
can also apply to rather complicated objects such as operators on vector spaces.

Suppose that V is a (finite-dimensional) vector space such as V = Rn. Then a norm ‖ · ‖
is a mapping from V to nonnegative real numbers such that three properties hold. First, it
is nondegenerate: if v ∈ V satisfies

‖v‖ = 0, (5.1)

then v must be the zero element of the vector space V . Second, it is homogeneous with
respect to scalar multiplication:

‖sv‖ = |s| ‖v‖ (5.2)

for all scalars s and all v ∈ V . Third, and most important, the triangle inequality must hold:

‖v + w‖ ≤ ‖v‖+ ‖w‖ (5.3)

for v, w ∈ V .
We have not yet identified the set F of scalars for our vector spaces. In general for a

vector space, it can be any division ring,1 but for simplicity we will restrict to the case where

1A division ring is the same as a field, but the multiplication is not assumed to be commutative [90]. The
quaternions are an important example.

Draft September 23, 2016, do not distribute Page 68

CHAPTER 5. VECTOR SPACES 5.1. NORMED VECTOR SPACES

F is a field. Moreover, we further restrict to the case where F is the real or complex numbers.
In the latter case, the expression |s| means the complex modulus of s. The reason for this
restriction is that normed linear spaces require F to have a norm itself, together with the
Archimedian property that |st| = |s| |t| for s, t ∈ F. There are essentially only two such
fields: R and C [5]. However, it should be noted that the quaternions provide an example
of a division ring having an Archimedian norm.

5.1.1 Examples of norms

The Euclidean norm ‖ · ‖2 is defined on Rn by

‖x‖2 =

(n∑
i=1

x2
i

)1/2

. (5.4)

More generally, for any p in the interval 1 ≤ p <∞, we define

‖x‖p =

(n∑
i=1

|xi|p
)1/p

(5.5)

for x ∈ Fn, where F = R or C. Whenever our vector space is Fn, it is understood that the
field of scalars is F. That is, the field of scalars for Rn is R, and for Cn is C. We use the
notation Fn to avoid having to repeat things for both Rn and Cn.

It is elementary to establish (5.1) and (5.2) for the p-norms (5.5) (see exercise 5.1). The
triangle inequality is elementary for p = 1 (exercise 5.2). However, the triangle inequality is
far less obvious for other values of p. We postpone the proof until section 5.2.

We want to think of Fn endowed with different norms as different (normed, linear) spaces.
Thus the notation `p is used to denote Fn endowed with the p-norm. More precisely, we
should write this as `p(F) or even `p(F, n).

5.1.2 Unit balls

It is useful to visualize the unit ball for a given norm, that is, the set of vectors of unit size
with respect to the norm. Like sports balls, these sets come in different shapes. In Rn, for
the Euclidean norm, it is the unit sphere; for p = 1, it is a union of (n − 1)-dimensional
simplices. For example, for n = 2, it is a diamond-shaped parallelogram with vertices at
(0,±1) and (±1, 0). The unit balls in R2 are depicted in figure 5.2 for various values of p.

It is clear from figure 5.2 that the unit ball for ‖ · ‖p approaches the square with corners
±(1,±1) as p → ∞. We have not characterized a norm yet with such a unit ball, but it is
not hard to see that this is the unit ball for the max norm

‖x‖∞ =
n

max
i=1
|xi|. (5.6)

For any fixed x ∈ Fn,
‖x‖∞ = lim

p→∞
‖x‖p, (5.7)

which explains the ∞ subscript in the “max” norm. This is a consequence of the following
two inequalities.

Draft September 23, 2016, do not distribute Page 69

5.2. PROVING THE TRIANGLE INEQUALITY CHAPTER 5. VECTOR SPACES

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

–1.5 –1 –0.5 0 0.5 1 1.5

Figure 5.2: Unit “balls” for R2 with the norms ‖ · ‖p for p = 1.01, 1.1, 2, 10, 100.

Since the the set of points on, or inside, the unit ball for the max norm contains all the
points on the unit balls for the finite p-norms, we have

‖x‖∞ ≤ ‖x‖p (5.8)

(see exercise 5.3 for a less visual proof of (5.8)). All p-norms are dominated by the max
norm:

‖x‖p ≤ n1/p‖x‖∞ ∀x ∈ Fn (5.9)

because each term in the sum (5.5) is bounded by ‖x‖∞. The result (5.7) now follows from
exercise 5.4.

5.1.3 Seminorms

The first condition (5.1) on the norm can be relaxed to obtain what is called a seminorm.
By the other two properties, the set

K =
{
v ∈ V

∣∣ ‖v‖ = 0
}

(5.10)

(called the kernel) is a linear subspace of V (exercise 5.5). Thus one can define a norm on
the quotient space V/K in a natural way (exercise 5.6). An example of a seminorm arises
naturally in section 12.5.

5.2 Proving the triangle inequality

The key step in the proof is an inequality that is of interest in its own right; its proof was
published by Rogers in 1888 and in the following year by Hölder2 [118].

2Otto Ludwig Hölder (1859–1937) was a student of Paul Du Bois-Reymond in Germany. Both Du
Bois-Reymond and K. H. A. Schwarz (page 74) were students of Ernst Kummer, in Berlin, together with
Cantor, Christoffel, and Fuchs. Although Hölder’s famous inequality arose from work in analysis, he also
worked extensively in algebra and was the advisor of Emil Artin.

Draft September 23, 2016, do not distribute Page 70

CHAPTER 5. VECTOR SPACES 5.2. PROVING THE TRIANGLE INEQUALITY

5.2.1 The Rogers-Hölder inequality

Suppose that p and q are positive real numbers related by

1

p
+

1

q
= 1, (5.11)

where 1 < p, q <∞. We augment these pairings with the cases p = 1 and q =∞, or p =∞
and q = 1, which correspond to the limiting cases. Then

n∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q ∀x, y ∈ Fn. (5.12)

The case p = 1 and q =∞ (or p =∞ and q = 1) is elementary to verify (see exercise 5.11),
so we focus on the case of finite p and q.

First, we prove (5.12) for all vectors satisfying

‖x‖p = 1 and ‖y‖q = 1, (5.13)

in which case (5.12) is just the statement that
∑n

i=1 |xiyi| ≤ 1. Then the general case follows
by a simple scaling, because of the homogeneity of (5.12) (see exercise 5.12). One inequality
due to Young3 states that

n∑
i=1

|xiyi| ≤
1

p

n∑
i=1

|xi|p +
1

q

n∑
i=1

|yi|q, (5.14)

provided that (5.11) holds. Given (5.14) and our assumption (5.13), (5.12) follows from
Young’s inequality in view of (5.11).

Now let us prove Young’s inequality (5.14). It suffices to prove (5.14) for n = 1, in which
case we drop the subscripts. It also suffices to assume that x and y are nonnegative. It is
clear that 2xy ≤ x2 + y2 because this is just the statement (y − x)2 ≥ 0. The general case
is just a consequence of the convexity of the exponential:

e(1/p)X+(1/q)Y ≤ (1/p)eX + (1/q)eY (5.15)

(exercise 5.13), provided that (5.11) holds. With X = log xp and Y = log yq, we find

xy = e(1/p) log xp+(1/q) log yq ≤ (1/p)xp + (1/q)yq. (5.16)

This completes the proof of Young’s inequality and thus also of (5.12).

3William Henry Young (1863–1942) was the husband of Grace Chisholm Young (1868–1944) and the
father of Laurence Chisholm Young (1905–2000), both also mathematicians. L. C. Young is known for
the concept of Young’s measure, which provides an extended notion of solution for a partial differential
equation, and he was also the father of a mathematician. A different William Henry Young was the father
of the mathematician John Wesley Young (1879–1932), who was the brother-in-law of E. H. Moore.

Draft September 23, 2016, do not distribute Page 71

5.3. RELATIONS BETWEEN NORMS CHAPTER 5. VECTOR SPACES

5.2.2 Minkowski’s inequality

The Minkowski4 inequality is just a name for the triangle inequality for ‖ · ‖p, and it follows
from (5.12), as we now show. For p = 1, Minkowski’s inequality is elementary (exercise 5.2),
so let us assume that p > 1; we write

n∑
i=1

|xi + yi|p =
n∑
i=1

|xi + yi| |xi + yi|p−1

≤
n∑
i=1

(|xi|+ |yi|) |xi + yi|p−1.

(5.17)

Applying (5.12), we find

n∑
i=1

|xi||xi + yi|p−1 ≤‖x‖p
(n∑
i=1

|xi + yi|(p−1)q

)1/q

= ‖x‖p
(n∑
i=1

|xi + yi|p
)1−1/p

= ‖x‖p‖x+ y‖p−1
p ,

(5.18)

where q = (1− 1/p)−1 since

(p− 1)q = (p− 1)

(
1− 1

p

)−1

= (p− 1)

(
p− 1

p

)−1

= p. (5.19)

Applying (5.18) in (5.17), both as is and with the roles of x and y reversed, yields

‖x+ y‖pp ≤ (‖x‖p + ‖y‖p) ‖x+ y‖p−1
p . (5.20)

Dividing by ‖x + y‖p−1
p completes the proof (if by chance ‖x + y‖p = 0, there is nothing to

prove).

5.3 Relations between norms

We saw at the beginning of the chapter that relationships among norms can provide valu-
able information, e.g., regarding optimal strategies for navigation. Here we consider such
relationships for norms in general. In particular, it is elementary that

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ (5.21)

for x ∈ Fn; moreover, these constants are sharp (exercise 5.14). Following this approach, we
can prove the following.

Lemma 5.1 Let N be any norm on Fn. Then there is a constant K <∞ such that N(x) ≤
K‖x‖∞ for all x ∈ Fn.

4Hermann Minkowski (1864–1909) is also known for the concept of four-dimensional space time that
formed the basis for special relativity.

Draft September 23, 2016, do not distribute Page 72

CHAPTER 5. VECTOR SPACES 5.3. RELATIONS BETWEEN NORMS

Proof. Let e1, . . . , en be the standard basis for Fn and write x =
∑n

j=1 xje
j. Applying the

triangle inequality n− 1 times, we find that

N(x) ≤
n∑
j=1

|xj|N(ej) ≤ ‖x‖∞
n∑
j=1

N(ej). (5.22)

Define K =
∑n

j=1N(ej). QED

5.3.1 Continuity of norms

Norms are Lipschitz-continuous in the following sense. By the triangle inequality,

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖+ ‖y‖. (5.23)

Rearranging, we find
‖x‖ − ‖y‖ ≤ ‖x− y‖. (5.24)

Reversing the names of x and y and using the fact that ‖ − x‖ = ‖x‖, we find

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ ≤ K‖x− y‖∞, (5.25)

where the last inequality is a consequence of lemma 5.1. In particular, this provides a way
to prove ordinary continuity of the norm. That is, if x → y, then x − y → 0, and hence
‖x‖ → ‖y‖.

5.3.2 Norm equivalence

Definition 5.2 Two norms N1 and N2 on a vector space V are said to be equivalent if there
are positive constants Ci such that N1(x) ≤ C1N2(x) and N2(x) ≤ C2N1(x) for all x ∈ V .

Theorem 5.3 Any two norms on a finite-dimensional vector space are equivalent.

Proof. It is sufficient to prove this for V = Fn (exercise 5.15). In view of lemma 5.1, it
suffices to prove that there is a constant C <∞ such that

‖x‖∞ ≤ CN(x) ∀x ∈ Fn. (5.26)

This shows that any norm N is equivalent to ‖ · ‖∞, and hence all are equivalent to each
other.

To prove (5.26), let B =
{
x ∈ Fn

∣∣ ‖x‖∞ = 1
}

and define

ν = inf
{
N(x)

∣∣ x ∈ B} . (5.27)

If ν > 0, set C = 1/ν. Then we have proved (5.26) for all x ∈ B. For general x 6= 0, apply
this result to ‖x‖−1

∞ x and use the homogeneity of both norms to prove (5.26) for x 6= 0. It is
obvious for x = 0.

Thus it suffices to show that we cannot have ν = 0. But if ν = 0, then there must be
a point x ∈ B where N(x) = 0 since a continuous function must attain its minimum on a
compact set [146]. Since N is a norm, this implies that x = 0. But this contradicts the fact
that x ∈ B, so we must have ν > 0. QED

The proof that ν > 0 is nonconstructive and relies on the compactness of a closed,
bounded set in Fn [146]. There are similar “compactness arguments” in infinite dimensions,
but a finite dimension (n <∞) is essential in this particular argument.

Draft September 23, 2016, do not distribute Page 73

5.4. INNER-PRODUCT SPACES CHAPTER 5. VECTOR SPACES

5.4 Inner-product spaces

Inner products on a vector space V are conjugate-symmetric, nonnegative, bilinear forms;
i.e., they satisfy the following conditions:

(u, v) = (v, u)

(u, u) > 0 for u 6= 0

(u+ sv, w) = (u,w) + s(v, w)

(5.28)

for all u, v, w ∈ V and any scalar s. In addition, we assume that (u, u) = 0 implies u ≡ 0 for
any u ∈ V . Note that the bilinearity implies that (u, v) = 0 if either u or v is zero. Also,

(u, v + sw) = (v + sw, u) = (v, u) + s(w, u)

= (u, v) + s(u,w).
(5.29)

The canonical example of an inner-product space is Fn, with

(x, y) = y?x =
n∑
i=1

xiyi for x, y ∈ Fn (5.30)

(recall Fn = Rn or Cn). Another example of an inner-product space is any linear subspace V
of Fn. The critical difference between a normed linear space and an inner-product space is the
Cartesian geometry that the latter inherits from the inner product. All (finite-dimensional)
inner-product spaces can be viewed as copies of Fn. For any x and y in V , we can consider
the two-dimensional plane spanned by them, that is, the set{

αx+ βy
∣∣ (α, β) ∈ F2

}
. (5.31)

The representation of this space on a blackboard is a faithful presentation of the geometry of
the space (at least for F = R). When (x, y) = 0, the vectors are perpendicular (orthogonal)
in that plane. This geometric interpretation is valid for all inner-product spaces.

Define a norm associated with the inner product by

‖f‖2 =
√

(f, f). (5.32)

In the case V = Fn, we have already seen that this is indeed a norm, but now we have to
verify that it is in the case of a general inner product. The key step in proving the triangle
inequality for ‖f‖2 in the case of V = Fn was the inequality (5.12) in the case p = q = 2:

|(x, y)| ≤
√

(x, x)
√

(y, y) ∀x, y ∈ V. (5.33)

This inequality is associated with the names of Cauchy,5 Schwarz,6 and sometimes [60]
Bunyakovsky.7 We leave the proof of (5.33) to exercise 5.18. Given (5.33), the triangle

5Augustin Louis Cauchy (1789–1857) was mentored by Lagrange (see page 160) early in life and “led
what has been described as the first revolution of rigor in mathematics” [91].

6Karl Hermann Amandus Schwarz (1843–1921) is also known for his alternating method for approximating
the solutions of partial differential equations [21], among many other things. He was a student of both
Ernst Kummer and Karl Weierstrass.

7Victor Yakovlevich Bunyakovsky (1804–1889) obtained a doctorate from Paris in 1825 after working
with Cauchy.

Draft September 23, 2016, do not distribute Page 74

CHAPTER 5. VECTOR SPACES 5.4. INNER-PRODUCT SPACES

inequality is immediate:

‖x+ y‖2
2 = (x+ y, x+ y) = (x, x) + (x, y) + (x, y) + (y, y)

= (x, x) + 2|(x, y)|+ (y, y)

≤ (x, x) + 2‖x‖2‖y‖2 + (y, y) = (‖x‖2 + ‖y‖2)2.

(5.34)

Having an orthonormal basis set for a vector space V allows a simple correspondence
between V and Fn. These vectors form the axes in a Cartesian representation. We now show
how a set of orthonormal vectors can be generated from an arbitrary linearly independent
set.

5.4.1 Inductive orthonormalization

We construct orthonormal vectors inductively starting from an arbitrary linearly independent
set {v1, . . . , vk} that spans a subspace Vk ⊂ V . That is, we construct a new set {p1, . . . , pk} ⊂
Vk such that

(pi, pj) = δij. (5.35)

More precisely, we will have

pi = tiv
i + wi, (5.36)

where ti 6= 0 and wi ∈ Vi−1 (and Vi−1 denotes the space spanned by {v1, . . . , vi−1}).
Notice that these conditions imply (exercise 5.19) that the pi’s are linearly independent.

Thus the set {p1, . . . , pk} forms a basis for the space generated by {v1, . . . , vk}. These
conditions will be proved by induction. For i = 1, it is trivial: p1 = ‖v1‖−1

2 v1 (and t1 =
‖v1‖−1

2).

5.4.2 Orthogonal projections

Suppose that we have constructed a system satisfying the above for i = 1, . . . , k. Then given
any f ∈ V , define

LSkf =
k∑
i=1

(f, pi)pi. (5.37)

The next result shows how simple the question of best approximation is in this context.

Theorem 5.4 Given any f ∈ V ,

‖f − LSkf‖2 = min
q∈Vk
‖f − q‖2. (5.38)

The key step in the proof of theorem 5.4 is an orthogonality condition that we state
separately.

Lemma 5.5 Given any f ∈ V ,

(f − LSkf, q) = 0 (5.39)

for all q ∈ Vk.

Draft September 23, 2016, do not distribute Page 75

5.4. INNER-PRODUCT SPACES CHAPTER 5. VECTOR SPACES

Proof. To prove the lemma, note that (5.37) implies that

(LSkf, p
j) =

(k∑
i=1

(f, pi)pi , pj
)

=
k∑
i=1

(f, pi)
(
pi, pj

)
=

k∑
i=1

(f, pi)δij = (f, pj),

(5.40)

where we used (5.28) to expand the inner product and the orthonormality (5.35). This
verifies the lemma for q = pj. The general result follows by writing q as a linear combination
of the pj’s and expanding via (5.28). QED

Proof. The proof of theorem 5.4 is rather elementary. Let p ∈ Vk. Then expanding using
the definition (5.32) of the norm and the properties (5.28), we find

‖f − LSkf + p‖2
2 = (f − LSkf + p, f − LSkf + p)

= (f − LSkf, f − LSkf) + (f − LSkf, p) + (p, f − LSkf) + (p, p)

= (f − LSkf, f − LSkf) + (f − LSkf, p) + (f − LSkf, p) + (p, p)

= (f − LSkf, f − LSkf) + (p, p),

(5.41)

using the orthogonality condition in lemma 5.5 in the last step. This says that

‖f − LSkf‖2 < ‖f − LSkf − p‖2 ∀ 0 6= p ∈ Vk. (5.42)

Now let q ∈ Vk and write p = q − LSkf . Then (5.42) implies that

‖f − LSkf‖2 < ‖f − LSkf − p‖2 = ‖f − q‖2 (5.43)

unless q = LSkf . QED

There are some immediate corollaries. Suppose that q ∈ Vk. Then q = LSk q (LSk is a
projection) because we must have ‖q − LSk q‖2 = 0. Moreover,

‖f − LSkf‖2 = 0 (5.44)

if and only if f ∈ Vk.

5.4.3 Least squares

The basic idea of least squares is to find the best approximation in a given subspace Vk of
some larger space V . That is, we start with a set of vectors {v1, . . . , vk} in V that span Vk,
the approximation space. Given an arbitrary vk+1 ∈ V , we construct the closest element of
Vk to vk+1.

In general, we assume that we have v1, . . . , vk+1 that are linearly independent. Thus
vk+1 /∈ Vk. Then we define

pk+1 =
1

‖vk+1 − LSkvk+1‖2

(
vk+1 − LSkvk+1

)
. (5.45)

Draft September 23, 2016, do not distribute Page 76

CHAPTER 5. VECTOR SPACES 5.4. INNER-PRODUCT SPACES

We assume that the vectors {p1, . . . , pk} have already been constructed, so that allows use
to define LSk via (5.37). The coefficient

tk+1 = 1/‖vk+1 − LSkvk+1‖2 (5.46)

is well-defined (and nonzero) because we must have vk+1−LSkvk+1 6= 0 since vk+1 /∈ Vk. The
scaling ensures that (pk+1, pk+1) = 1, and the orthogonality (pk+1, pj) = 0 is a consequence
of lemma 5.5. Note that wk+1 = −tk+1L

S
kv

k+1 in (5.36).
We can write (5.45) algorithmically as

ek+1 = vk+1 −
k∑
j=1

(vk+1, pj)pj = vk+1 −
k∑
j=1

rj,k+1p
j

tk+1 = 1/‖ek+1‖2

pk+1 = tk+1e
k+1,

(5.47)

where
rj,k+1 = (vk+1, pj), j = 1, . . . , k. (5.48)

The algorithm (5.47) is known as the Gram8-Schmidt9 process. By analogy with (5.48), we
define

rk+1,k+1 = (vk+1, pk+1) = (ek+1, pk+1) = ‖ek+1‖2. (5.49)

For completeness, define rj,k+1 = 0 for j > k + 1.

5.4.4 The QR decomposition

In the case where {v1, . . . , vk} ⊂ V = Fn, then we have generated orthonormal vectors
{p1, . . . , pk} ⊂ Fn with the property (5.36). Define a unitary matrix Q whose columns are
the vectors pi:

Q =
[
p1 · · · pk

]
, (5.50)

that is, Qli = (pi)l; and let A be the matrix with jth column vj:

A =
[
v1 · · · vk

]
, (5.51)

that is, alj = (vj)l. We can easily identify the upper-triangular matrix R, defined in (5.48),
(5.49), and following, as the matrix corresponding to the change of basis from the pj’s to the
vj’s:

vj =
k∑
i=1

(vj, pi)pi =
k∑
i=1

rijp
i, (5.52)

which is equivalent to

alj = (vj)l =
k∑
i=1

(pi)lrij =
k∑
i=1

(Q)lirij = (QR)lj. (5.53)

8Jørgen Pedersen Gram (1850–1916) was a Danish mathematician, statistician, and actuary [80].
9Erhard Schmidt (1876–1959) was a student of David Hilbert and, together with Issai Schur, was an

advisor of the Brauer brothers (see page 244).

Draft September 23, 2016, do not distribute Page 77

5.5. MORE READING CHAPTER 5. VECTOR SPACES

Thus we have shown that
A = QR. (5.54)

The equation (5.54) is known as the QR factorization (or decomposition) of A. Note that
we assume only that the columns of A are linearly independent. It need not be that A is
square.

We can connect the QR factorization to the factorizations studied earlier. If you consider

A?A = R?Q?QR = R?R, (5.55)

we recognize thatR is the Cholesky factor ofA?A. The formA?A occurs frequently, especially
as normal equations in statistics [80], and the QR decomposition provides a way to determine
the Cholesky factor without forming the product.

A formula of Aitken10 [3] provides an alternative way to solve Ax = f . We can write
formally that A−1 = (A?A)−1A?. Thus x = (R?R)−1A?f , or equivalently,

(R?R)x = A?f, (5.56)

where A = QR. Solving (5.56) just requires forward and backward solution with the trian-
gular factors R? and R.

5.5 More reading

The convexity argument used to prove Young’s inequality (5.14) is just a glimpse of con-
vex analysis [144]. Convex analysis plays a major role in optimization [17, 19]. The QR
decomposition plays a central role in the computation of eigenvalues and eigenvectors [158].

5.6 Exercises

Exercise 5.1 Prove that p-norms (5.5) satisfy both (5.1) and (5.2).

Exercise 5.2 Prove that the 1-norm, that is, (5.5) for p = 1, satisfies the triangle inequality.
(Hint: use the fact that |a+ b| ≤ |a|+ |b| and apply induction.)

Exercise 5.3 Prove that (5.8) holds for any fixed x. (Hint: pick i such that |xi| = ‖x‖∞
and show that ‖x‖p ≥ |xi| for all p.)

Exercise 5.4 Prove that xa → 1 as a→ 0 for all x > 0.

Exercise 5.5 Show that the kernel K defined in (5.10) is a linear subspace of V provided
that the seminorm satisfies (5.2) and (5.3).

Exercise 5.6 Suppose that K is a linear subspace of V . Show that the quotient space V/K
consisting of equivalence classes of elements of V modulo K is a vector space in a natural
way. Show that a seminorm on V becomes a norm on V/K in a natural way if K is the
kernel of the seminorm defined in (5.10).

10See page 28.

Draft September 23, 2016, do not distribute Page 78

CHAPTER 5. VECTOR SPACES 5.6. EXERCISES

Exercise 5.7 Prove that the p-norms are continuous with respect to p in the sense that

‖x‖q = lim
p→q
‖x‖p (5.57)

for any 1 ≤ q <∞. Note that the case q =∞ is (5.7).

Exercise 5.8 Let a(x, y) be any nonnegative, symmetric bilinear form (i.e., a real-valued
function) defined on a vector space V , that is, a(x, x) ≥ 0 for all x ∈ V , a(x, y) = a(y, x)
for all x, y ∈ V , and

a(x+ sy, w) = a(x,w) + sa(y, w) (5.58)

for all w, x, y ∈ V and scalar s. Prove that

a(x, y) ≤
√
a(x, x)

√
a(y, y) ∀x, y ∈ V (5.59)

holds even if a(·, ·) is degenerate, that is, a(x, x) = 0 for some x 6= 0.

Exercise 5.9 Use (5.59) to prove (5.12) for p = q = 2 in Rn. (Hint: define the bilinear
form

a(x, y) =
n∑
i=1

xiyi, (5.60)

a.k.a. the Euclidean inner product, for all x, y ∈ Rn, and apply exercise 5.8.)

Exercise 5.10 Let a(x, y) be any nonnegative, symmetric bilinear form on a vector space
V (see exercise 5.8). Prove the triangle inequality for ‖x‖ =

√
a(x, x). Note that this may

be only a seminorm. (Hint: expand the expression

‖x+ y‖2 = a(x+ y, x+ y) = a(x, x) + 2a(x, y) + a(y, y) (5.61)

and apply exercise 5.8.)

Exercise 5.11 Prove (5.12) holds for p = 1 and q =∞.

Exercise 5.12 Prove (5.12) for general x and y given that it holds under the condition
(5.13). (Hint: scale x and y to have norm 1.)

Exercise 5.13 Prove that the exponential function is convex, i.e., verify (5.15) provided
that (5.11) holds.

Exercise 5.14 Prove (5.21) and prove that the constants cannot be improved.

Exercise 5.15 Prove theorem 5.3 given that it is known for V = Fn. (Hint: choose a basis
for V and construct an isomorphism of V with Fn, where n is the dimension of V . Show
that a norm on V induces a norm on Fn in a natural way.)

Exercise 5.16 Suppose that x and y are any vectors such that ‖x‖ > ‖y‖. Prove that

‖x− y‖−1 ≤ 1

‖x‖ − ‖y‖
. (5.62)

(Hint: use the triangle inequality: ‖x‖ ≤ ‖x− y‖+ ‖y‖.)

Draft September 23, 2016, do not distribute Page 79

5.7. SOLUTIONS CHAPTER 5. VECTOR SPACES

Exercise 5.17 In the proof of theorem 5.3, prove directly that ν > 0 without resorting to
the fact that a continuous function takes on its minimum on a compact set. (Hint: recall
how that result is proved.)

Exercise 5.18 Prove (5.33). (Hint: show that it suffices to assume that y 6= 0. Define
α = (x, y)/(y, y) and set w = x− αy and expand 0 ≤ (w,w) = (x− αy, x− αy).)

Exercise 5.19 Show that the orthogonal vectors Pi (cf. (5.35)) are linearly independent.

Exercise 5.20 Prove (5.38) by an alternative calculation from the proof given in the text
(hint: let q be arbitrary and consider the quadratic function of t defined by φ(t) := ‖f −
LSnf + tq‖2

2; use (5.39)).

Exercise 5.21 Suppose that P is a (complex) polynomial of degree n. Prove that for any
C > 0, there is an R > 0 such that |P (x)| ≥ C for all |z| ≥ R. Use this to show that the
minimum of |P (z)| occurs for some z satisfying R = |z| <∞.

Exercise 5.22 Suppose that p(x) is a polynomial that vanishes at 0: p(0) = 0. Prove that
we can write p(x) = xq(x) for a polynomial q whose degree is 1 less than the degree of p.

Exercise 5.23 Suppose that P is a (complex) polynomial of degree n and that |P (z)| has a
minimum at some z0 satisfying R = |z0| <∞. Prove that P (z0) = 0. (Hint: if |P (z0)| > 0,
then write P (z) = a(1 + Q(z)), where Q is a polynomial of degree n such that Q(z0) =
0 and a = P (z0) ∈ C. Using exercise 5.22, write Q(z) = reiθ(z − z0)k + q(z), where
r > 0 and q is a polynomial of degree n − 1 such that |q(z)| ≤ C|z − z0|k+1 for z near
z0. Show that |1 + Q(te−i(θ+π)/k + z0)| < 1 for t > 0 sufficiently small by observing that
Q(te−i(θ+π)/k + z0)− q(te−i(θ+π)/k + z0) < 0.)

Exercise 5.24 Suppose that P is a (complex) polynomial of degree n. Prove that there is a
z ∈ C such that P (z) = 0. (Hint: use exercise 5.21 to pick z at the global minimum of |P |
and use exercise 5.23 to do the rest.)

5.7 Solutions

Solution of Exercise 5.8. The proof of (5.59) is begun by expanding the quadratic function
q(t) = a(x+ ty, x+ ty) as a function of t ∈ R:

0 ≤ a(x+ ty, x+ ty) = a(x, x) + t(a(x, y) + a(y, x)) + t2a(y, y)

= a(x, x) + 2ta(x, y) + t2a(y, y) = q(t).
(5.63)

If a(y, y) = 0, then q is linear. Since a (nontrivial) linear function has no minimum, it follows
that a(x, y) = 0 as well, and (5.59) is satisfied trivially. So now suppose that a(y, y) 6= 0.
Since the expression q(t) has to be nonnegative, we can investigate what it means to have
q nonnegative at its minimum. Since q′(t) = 2(a(x, y) + ta(y, y)), the minimum is at t =
−a(x, y)/a(y, y). But

0 ≤ q(−a(x, y)/a(y, y)) = a(x, x)− 2a(x, y)2/a(y, y) + a(x, y)2/a(y, y)

= a(x, x)− a(x, y)2/a(y, y)
(5.64)

Draft September 23, 2016, do not distribute Page 80

CHAPTER 5. VECTOR SPACES 5.7. SOLUTIONS

implies that a(x, y)2 ≤ a(x, x)a(y, y).

Solution of Exercise 5.13. A function f is convex if for 0 < t < 1, we have

f(tX + (1− t)Y) ≤ tf(X) + (1− t)f(Y) (5.65)

for all X and Y . Let M denote the point

M = tX + (1− t)Y = Y + t(X − Y). (5.66)

Then (5.65) is equivalent to

0 ≤ −t (f(M)− f(X)) + (1− t) (f(Y)− f(M)) (5.67)

(which is the statement that the second divided difference, cf. section 10.2.3, of f is positive).
If f is C1, we can write (5.67) as

0 ≤ −t
∫ M

X

f ′(s) ds+ (1− t)
∫ Y

M

f ′(s) ds. (5.68)

Thus we will show that (5.68) holds under suitable conditions on f that we can verify for
f(x) = ex.

One simple criterion for convexity is based on the sign of the second derivative of f . If
f ′′ ≥ 0, then

f ′(x)− f ′(y) =

∫ x

y

f ′′(s) ds ≥ 0, (5.69)

so f ′ is nondecreasing. Applying this to the integrals in (5.68), we find

−t
∫ M

X

f ′(s) ds+ (1− t)
∫ Y

M

f ′(s) ds ≥ −t(M −X)f ′(M)

+ (1− t)(Y −M)f ′(M)

= (−t(M −X) + (1− t)(Y −M)) f ′(M)

= ((Y −M)− t(Y −X)) f ′(M)

= 0,

(5.70)

by (5.66).
When f(x) = ex, we have f = f ′ = f ′′ > 0, so ex is (strictly) convex.

Solution of Exercise 5.17. If ν = 0, there must be a sequence of points xj ∈ B such
that N(xj) < 1/j. Any infinite sequence of points in a bounded set in Rn must have an
accumulation point x∞, and thus there is a subsequence xjk such that limk→∞ xjk = x∞ [146].
In particular, we must have x∞ ∈ B. But we also must have N(x∞) = 0 since N(xjk) < 1/jk
and

N(x∞ − xjk) ≤ K‖x∞ − xjk‖∞ → 0 as k →∞,
by lemma 5.1. Thus x∞ = 0. But this contradicts the fact that x∞ ∈ B, so we must have
ν > 0.

Solution of Exercise 5.18. If y = 0, then (x, y) = 0, and the result is obvious. So we
assume that y 6= 0. Define

s = (x, y)/(y, y) (5.71)

Draft September 23, 2016, do not distribute Page 81

5.7. SOLUTIONS CHAPTER 5. VECTOR SPACES

and w = x− sy. First, observe that

s(y, x) = s(x, y) = |(x, y)|2/(y, y) = s(x, y). (5.72)

Now expand

0 ≤ (w,w) = (x− sy, x− sy)

= (x, x)− s(y, x)− s(x, y) + |s|2(y, y)

= (x, x)− 2
|(x, y)|2

(y, y)
+ |s|2(y, y) [by (5.72)]

= (x, x)− |(x, y)|2

(y, y)
[by (5.71)].

(5.73)

Therefore,
|(x, y)|2 ≤ (x, x)(y, y), (5.74)

as claimed.

Draft September 23, 2016, do not distribute Page 82

Chapter 6

Operators

Issai Schur (1875–1941) studied and worked in Berlin much of his life.
He is known for his matrix decomposition and factorization, as well as
many other results in mathematics. With the rise of Hitler and the ac-
quiescence of colleagues, Schur was forced to resign his various academic
posts. Schur emigrated to Palestine in 1939 [108].

We need to develop some further technology to measure the size of operators on vector
spaces through a naturally associated “operator” norm. This is needed in several areas,
in particular, in the study of iterative methods for approximation of the solution of both
linear and nonlinear systems. However, many of the results are of interest just as abstract
theorems.

One result in this chapter (theorem 6.9) is that we can almost think of the spectral radius
of an operator (the size of the largest eigenvalue of the operator) as a norm. That is, we can
always find a vector norm such that the corresponding operator norm is arbitrarily close to
the spectral radius. This allows us to give a precise condition (theorem 6.12) that governs
the convergence of many iterative processes, the result that can be viewed as the endpoint for
the chapter. But the ingredients of the proof are of interest in their own right. In particular,
we will show a rather surprising result, that any matrix A is similar to a matrix arbitrarily
close to a diagonal matrix with the eigenvalues of A on the diagonal (theorem 6.8). That
is, to any desired accuracy, a matrix may be viewed as diagonalizable. The proof of this
result relies on the Schur decomposition (theorem 6.5) of a matrix. To keep track of all these
results, we provide a roadmap in figure 6.1.

��
HH

��
HH ��

HHtheorem 6.2

‖A‖ ≥ ρ(A)

theorem 6.9

‖A‖ ≈ ρ(A)

theorem 6.12

An → 0 ⇐⇒ ρ(A) < 1

theorem 6.5

Schur decomposition

theorem 6.8

P−1AP ≈ Λ

Figure 6.1: Roadmap of results in chapter 6.

83

6.1. OPERATORS CHAPTER 6. OPERATORS

6.1 Operators

An operator is a mapping from one vector space to another vector space. These can be
defined quite abstractly, as a machine, such as the mapping that takes a function, f , as
input and produces its derivative, f ′, as output. To make this precise, we have to say what
the linear space is. We leave as exercise 6.1 to show that the set Pn of polynomials of degree
n in one variable can be viewed as a vector space; exercise 6.2 addresses the issue of showing
that the derivative operator is well-defined on this space.

There is a special class of vector spaces that we want to distinguish: the linear space of
operators on a vector space. Given any two operators A and B that map V to W , we define
A + B by setting (A + B)v = Av + Bv for all v ∈ V , and we define scalar multiplication
similarly: (sA)v = s(Av) for v ∈ V and scalars s. We denote the vector space of such
operators by O(V,W). We can define norms on such vector spaces, but we will see that
there is a special type of induced norm that reflects the product structure of operators.

6.1.1 Operator norms

There is a natural class of operator norms that come from duality. Given norms ‖ · ‖V and
‖ · ‖W on vector spaces V and W , and an operator A : V → W , define

‖A‖ = ‖A‖V→W = sup
06=v∈V

‖Av‖W
‖v‖V

. (6.1)

Then this forms a norm on the linear space of operators from V to W (see exercise 6.3). We
drop the subscript ‖A‖V→W and write ‖A‖ when there is no confusion about the spaces in
question. However, in some cases, there are multiple spaces in the discussion.

What is significant about the operator norm is that it satisfies multiplicative properties
that other norms do not. First, there is a natural multiplicative property relating the norms
on V and W and the induced operator norm:

‖Av‖W ≤ ‖A‖ ‖v‖V . (6.2)

This is essentially a tautology since the operator norm was defined as an infimum of quotients
of the first and last terms in (6.2). But this has many important applications, including the
second multiplicative property of operator norms. Suppose that B is a linear operator from
a vector space U to V . Then

‖AB‖U→W ≤ ‖A‖V→W‖B‖U→V . (6.3)

The proof requires just two applications of (6.2) and is left as exercise 6.4.
As cumbersome as it is, the subscript notation ‖A‖V→V does not necessarily provide

complete information about the definition of the norm. For example, we will often be
interested in the case V = Rn, but this does not specify which norm on Rn we would be using.
In section 5.1.1, we introduced the short-hand notation `p for the complete specification, such
as (Rn, ‖ ·‖p), to indicate the norm defined in (5.5). Since this special case occurs frequently,
we define

‖A‖p = ‖A‖`p→`p = sup
06=x∈Fn

‖Ax‖p
‖x‖p

(6.4)

Draft September 23, 2016, do not distribute Page 84

CHAPTER 6. OPERATORS 6.1. OPERATORS

for A : Fn → Fn with F = R or C. Note that this is quite different from the p-norm of the
matrix associated with A represented as a vector in Fn2

. To highlight this point, we define
the Frobenius1 norm by

‖A‖F =
(n∑
i,j=1

|aij|2
)1/2

, (6.5)

which is the 2-norm of the matrix associated with A represented as a vector in Fn2
. To avoid

confusion, we will try to avoid using the symbol F for a vector space. In section 6.2.2, we
will use the norm as a subscript, for a general norm, similar to the usage in definition (6.4).

6.1.2 Operator norms and eigenvalues

Suppose A is an operator that maps a vector space V to itself. An eigenvalue for A is a
complex number λ such that Ax = λx for some x 6= 0. The corresponding vector x is called
the eigenvector associated with λ. We refer to λ, x as an eigenpair. There is a relationship
between the eigenvalues of an operator and its norm:

‖Ax‖ = ‖λx‖ = |λ| ‖x‖, (6.6)

which implies that

‖A‖ ≥ ‖Ax‖
‖x‖

= |λ| (6.7)

for any eigenvalue λ (and any norm).

Definition 6.1 Suppose A is an operator that maps a vector space V to itself. The spectral
radius of A, denoted ρ(A), is the maximum modulus of all the eigenvalues:

ρ(A) = max
{
|λ|
∣∣ λ is an eigenvalue of A

}
. (6.8)

In (6.8), we wrote “max” instead of “sup” since the set of eigenvalues is finite (assuming
V is finite-dimensional). Thus there is always an eigenvalue λ such that |λ| = ρ(A). The
inequality (6.7) suggests the following theorem.

Theorem 6.2 Suppose A is an operator that maps a vector space V to itself. For any norm
on V , the associated operator norm on A satisfies

ρ(A) ≤ ‖A‖, (6.9)

where ρ(A) is the spectral radius of A, defined in (6.8).

There is a subtle point in this theorem that we have already ignored. A real matrix A
can have complex eigenvalues and eigenvectors. But the norm in question may be defined
only for real quantities. Thus the expressions (6.6) and (6.7) do not generally make sense
for real norms. Thus a more complicated proof is required, which we give in section 6.1.3.

Since operators can be represented as matrices, one might think that it is sufficient just
to have norms on Euclidean spaces. However, some operator norms cannot be written as a

1Ferdinand Georg Frobenius (1849–1917) was a student of Weierstrass and an advisor of Issai Schur.

Draft September 23, 2016, do not distribute Page 85

6.1. OPERATORS CHAPTER 6. OPERATORS

norm on a Euclidean space consisting of the coefficients of the corresponding matrix. For
example, one can show (exercise 6.6) that for a Hermitian matrix A, the operator norm
associated with the Euclidean norm satisfies

‖A‖2 = ρ(A) = max
{
|λ|
∣∣ λ is an eigenvalue of A

}
. (6.10)

We explain why there cannot be a formula for the eigenvalues of a matrix in section 14.4.
Conversely, there are some norms on matrices that cannot be written as operator norms
(exercises 6.8 and 6.9).

The identity (6.10) provides the guiding motivation for the chapter. Although it does
not hold for general operators, we will see that it almost does provided we are willing to
change to a different norm on Rn. We will see in exercise 8.2 that other operator norms on
matrices can also be identified quantitatively.

Note that operator norms have a special property not true for general norms. Let ε > 0
be arbitrary. If ‖ · ‖V is a norm on V , then so is ‖ · ‖ε a norm on V , where

‖x‖ε = ε‖x‖V ∀x ∈ V. (6.11)

Thus general norms can be scaled arbitrarily, whereas operator norms cannot (since the
spectral radius is independent of the choice of norm).

We will return to the comparison of norms of an operator and its spectral radius in
section 6.2.2, where we will provide a counterpoint to theorem 6.2.

6.1.3 Proof of the theorem

Theorem 6.2 is an immediate consequence of the following.

Lemma 6.3 Suppose A is a real matrix and ‖ · ‖ is any norm. Then there is a nonzero, real
vector X such that ‖AX‖ = ρ(A)‖X‖.

Proof. It suffices to assume that ρ(A) > 0, since we can take X to be a nullvector of A if
ρ(A) = 0.

If there is a real eigenvalue/eigenvector pair λ, X with |λ| = ρ(A), then the result is
evident. So suppose we have a real matrix A with a complex pair of eigenvalues, λ and
λ, where |λ| = ρ(A) (the pair of eigenvalues are complex conjugates). Let X 6= 0 be the
eigenvector corresponding to λ, so that AX = λX. Write X = Y + iW where both Y and W
are real vectors, and also λ = µ+ iν where both µ and ν are real numbers. We can assume
that ν 6= 0 since ν = 0 is the previously considered case.

We have AX = AY + iAW since A is real. Writing out AX = λX we find

AY + iAW = AX = λX = µY − νW + i(νY + µW). (6.12)

Equating real and imaginary parts, we thus find

AY = µY − νW
AW = νY + µW.

(6.13)

Draft September 23, 2016, do not distribute Page 86

CHAPTER 6. OPERATORS 6.1. OPERATORS

This says that A maps the space spanned by Y and W into itself. Call this space V . We will
see that V has to be two-dimensional, which is essential for the proof. We will find Z ∈ V
such that ‖AZ‖ = |λ|‖Z‖.

If Y and W were collinear, that is, W = αY , with α real, then we would have

(1 + iα)AY = A(Y + iαY) = λ(Y + iαY) = (1 + iα)λY, (6.14)

so that (dividing by 1 + iα) AY = λY . But this is not possible because both A and Y are
real. Thus V must be two dimensional.

Any vector in V can be written as c1Y + c2W , and we easily compute from (6.13) that

A(c1Y + c2W) = d1Y + d2W (6.15)

where (
µ ν
−ν µ

)
c = d. (6.16)

Since |λ|2 = µ2 + ν2, the vector |λ|−1(µ, ν) lies on the unit circle. Thus |λ|−1(µ, ν) =
(cos θ, sin θ) for some 0 ≤ θ < 2π, that is, µ+ iν = λ = |λ|eiθ = |λ|(cos θ+ i sin θ). Then the
matrix in (6.16) is a rotation and scaling:(

µ ν
−ν µ

)
=

(
|λ| cos θ |λ| sin θ
−|λ| sin θ |λ| cos θ

)
= |λ|R(−θ), (6.17)

where R(θ) denotes the matrix that rotates a vector by an angle θ.
Define Z(φ) = cos(φ)Y + sin(φ)W . Using (6.17) we have (exercise 6.28)

AZ(φ) = |λ|Z(φ− θ). (6.18)

Define
g(φ) = ‖Z(φ)‖. (6.19)

Then g is 2π-periodic and continuous (exercise 6.29). Define

φ∗ = argminφ∈[0,2π]g(φ) and φ∗ = argmaxφ∈[0,2π]g(φ). (6.20)

Then for any ϑ ∈ [0, 2π] we have

g(φ∗) ≤ g(φ∗ − ϑ) and g(φ∗ − ϑ) ≤ g(φ∗), (6.21)

so that for any ϑ ∈ [0, 2π] we have

g(φ∗ − ϑ)

g(φ∗)
≤ 1 ≤ g(φ∗ − ϑ)

g(φ∗)
. (6.22)

Note that g never vanishes (exercise 6.29). By the intermediate value theorem, for any
ϑ ∈ [0, 2π] there is a φ̂ = φ̂(ϑ) such that g(φ̂(ϑ)− ϑ)) = g(φ̂(ϑ)). Thus (6.18) implies

‖AZ(φ̂(θ))‖ = |λ| ‖Z(φ̂(θ)− θ)‖ = |λ|g(φ̂(θ)− θ)) = |λ|g(φ̂(θ)) = |λ| ‖Z(φ̂(θ))‖. (6.23)

Therefore X = Z(φ̂(θ)) is the desired vector. QED

Draft September 23, 2016, do not distribute Page 87

6.2. SCHUR DECOMPOSITION CHAPTER 6. OPERATORS

6.2 Schur decomposition

To understand norms of operators better, we need to develop some technology. Fortunately,
this technology is interesting in its own right as it provides insight into fundamental proper-
ties of linear operators. The first result that we need is the Schur decomposition, which says
that any matrix is unitarily equivalent to a triangular matrix.

Definition 6.4 A matrix U is unitary if U?U = I.

A unitary matrix corresponds to an operator that does not stretch coordinates in any
direction.

Theorem 6.5 For any square matrix A, there is a unitary matrix U such that T = U−1AU =
U?AU is upper-triangular.

There are several applications of the Schur decomposition, but one of them involves eigen-
values. In view of corollary 3.3, the diagonal entries of a triangular matrix are its eigenvalues.
Since a similarity transformation does not change the eigenvalues (exercise 6.10), the eigen-
values of A are the diagonal entries of the triangular factor T in the Schur decomposition.
For the special case of a Hermitian matrix A, we obtain the following well-known result.

Corollary 6.6 For any Hermitian matrix A, there is a unitary matrix U such that D =
U−1AU = U?AU is diagonal.

The proof of this corollary is a simple application of the Schur decomposition and con-
jugation: T ? = (U?AU)? = U?A?U = U?AU = T . A Hermitian triangular matrix must be
diagonal. Similarly, we can prove the following.

Corollary 6.7 For any matrix A, there is a unitary matrix U such that D = U−1AU =
U?AU is diagonal if and only if A is normal, i.e., A?A = AA?.

The “only if” is clear. The “if” is an interesting result itself: a triangular matrix T is
normal (T ?T = TT ?) iff it is diagonal (exercise 6.12).

It might appear then that the Schur decomposition provides a means to compute eigen-
values. We will see that the converse is true: we use the existence of eigenvectors to establish
the Schur decomposition. We postpone the proof of theorem 6.5 until section 6.2.3.

It is tempting to compare the QR factorization (5.54) with the Schur decomposition (the-
orem 6.5). There is a superficial similarity in that both involve unitary and triangular factors.
But there are significant differences. First, the QR factorization applies more generally in
that A need not be square. But more significantly, the Schur decomposition is a similarity
transformation, whereas the QR factorization is unbalanced. However, most significant is
the fact that we have a constructive algorithm that computes the QR factorization in a finite
number of steps. We will see in section 14.4 why this is not possible in general for the Schur
decomposition.

Draft September 23, 2016, do not distribute Page 88

CHAPTER 6. OPERATORS 6.2. SCHUR DECOMPOSITION

6.2.1 Nearly diagonal matrices

As a step toward the proof of our main theorem on the relationship between the spectral
radius and operator norms, there is an interesting intermediate result, namely, that with a
suitable similarity transformation, any matrix can be transformed so that it is essentially
diagonal.

Theorem 6.8 Suppose A is any square matrix and let ε > 0 be arbitrary. Then there is an
invertible matrix P such that

P−1AP = Λ + C, (6.24)

where Λ is a diagonal matrix (having the eigenvalues of A on the diagonal) and C is a strictly
upper-triangular matrix that satisfies |Cij| ≤ ε for all i, j (and Cij = 0 for i ≥ j).

This theorem says that we can make any matrix look as nearly diagonal as we want (but
we will see that this comes at the expense of making P very large in general). What this
means is that general similarity transformations can be somewhat misleading, unlike the
unitary transformations in the Schur decomposition.

Proof. We begin with the Schur decomposition U?AU = T , where T = Λ +B is an upper-
triangular matrix and B is strictly upper-triangular (that is, B has zero diagonal entries and
Λ is diagonal). Define

µ = max
{
|bkl|

∣∣ k, l = 1, . . . , n
}
.

If µ = 0, then we pick P = U and C = 0 for all ε > 0. So suppose that µ > 0, let
ζ = min{1, ε/µ}, and define D to be the diagonal matrix with Dii = ζ i−1 for i = 1, . . . , n.
Define S = D−1TD = Λ +C, where C = D−1BD. Then C is also strictly upper-triangular,
and (see exercise 6.13)

cij = ζ1−ibijζ
j−1 = ζj−ibij . (6.25)

But since B is strictly upper-triangular, bij 6= 0 only if j ≥ i+1, so cij 6= 0 only for j− i ≥ 1.
By definition, ζk ≤ ζ for all integers k ≥ 1. Thus we have |cij| ≤ ζµ ≤ ε for all i and j.
Define P = UD. Then P−1AP = D−1U?AUD = D−1TD = Λ + C. QED

6.2.2 The spectral radius is nearly a norm

We now consider one of the main results in the chapter, the gist of which is the title of this
section.

Theorem 6.9 Suppose A is any n × n matrix and let δ > 0 be arbitrary. Then there is a
norm N on Cn such that the corresponding operator norm ‖ · ‖N satisfies

ρ(A) ≤ ‖A‖N ≤ ρ(A) + δ, (6.26)

where ρ(A) is the spectral radius.

We emphasize here that that the operator norm is defined by

‖A‖N = sup
x∈Cn, x 6=0

N(Ax)

N(x)
(6.27)

Draft September 23, 2016, do not distribute Page 89

6.2. SCHUR DECOMPOSITION CHAPTER 6. OPERATORS

and depends on δ through the dependence of N on δ. In view of theorem 6.9, we are free to
think of the spectral radius ρ(A) as (essentially) a norm (recall the reverse inequality (6.7)
which holds for all norms).

Proof. The first inequality in (6.26) is theorem 6.2, so we need to prove only the second.
Let ε = δ/n and choose P according to theorem 6.8. Note that

ρ(A) = max
{
|Λii|

∣∣ i = 1, . . . , n
}
. (6.28)

Define N(x) = ‖P−1x‖∞ (see exercise 6.14). Then (making the substitution x = Py)

‖A‖N = sup
x∈Cn, x 6=0

‖P−1Ax‖∞
‖P−1x‖∞

= sup
y∈Cn, y 6=0

‖P−1APy‖∞
‖y‖∞

= sup
y∈Cn, y 6=0

‖(Λ + C)y‖∞
‖y‖∞

≤ sup
y∈Cn, y 6=0

‖Λy‖∞
‖y‖∞

+ sup
y∈Cn, y 6=0

‖Cy‖∞
‖y‖∞

≤ sup
y∈Cn, y 6=0

‖Λy‖∞
‖y‖∞

+ nε = ρ(A) + δ,

(6.29)

where we used exercise 6.15 in the penultimate step and exercise 6.16 in the last. QED

6.2.3 Derivation of the Schur decomposition

The proof of the Schur decomposition is by induction on the matrix dimension. For n = 1,
the theorem is trivial, but this may not be as instructive as the case n = 2, as follows. We
pick an eigenpair for A: Ax = λx, normalized so that x?x = 1. This is the only nontrivial
fact that we use in the proof. The property that every matrix has at least one eigenvector is
worth reviewing; it stems from the fundamental theorem of algebra [36], which says that a
polynomial always has a root (cf. exercise 5.24). In this case, the polynomial in question is
the characteristic polynomial pn(λ) = det(A−λI). The second ingredient in this fact is that
if the determinant of a matrix is zero, then the matrix (A− λI in our case) has a nontrivial
null vector.

Now we let b be the unique vector satisfying b?b = 1 and b?x = 0. More precisely, we
have

(b1, b2) = (x2
?,−x1

?) = (x2,−x1),

where z denotes the complex conjugate of z. Thus U = [x b] is unitary via ordinary matrix
multiplication:

U?U =

(
x?x x?b
b?x b?b

)
=

(
1 0
0 1

)
. (6.30)

Similarly,

U?AU =

(
x?Ax x?Ab
b?Ax b?Ab

)
=

(
x?(λx) x?Ab
b?(λx) b?Ab

)
=

(
λ ζ
0 w

)
= T, (6.31)

where ζ = x?Ab and w = b?Ab are (possibly complex) numbers, and T is obviously upper-
triangular.

Draft September 23, 2016, do not distribute Page 90

CHAPTER 6. OPERATORS 6.2. SCHUR DECOMPOSITION

Note that w is an eigenvalue of A as well, since it a diagonal entry of T . But that
does not mean that b is the corresponding eigenvector. We can write Ab = εx + wb, but ε
need not be zero. In fact, a short calculation shows that Ay = wy for y = αx + βb where
α/β = ε/(w − λ). If w = λ, then β = 0.

Now we consider the general case. So suppose the Schur decomposition is true for n− 1,
and let us show that it holds for n. To begin with, we again pick an eigenpair for A: Ax = λx,
normalized so that x?x = 1. Given the eigenvector x, we construct

U = [x B] (6.32)

by taking x to be the first column of U and filling in with the n×(n−1) matrix B as needed.
We can see that U is unitary if we are willing to change coordinates so that x = [1 0 · · · 0];
in this case, U = I. If we want to see this more concretely, we can study what it means for
U = [x B] to be unitary:

U?U =

(
x?x x?B
B?x B?B

)
=

(
1 x?B
B?x B?B

)
, (6.33)

where we have used a block-matrix multiplication formula (exercise 6.17) similar to (3.43).
Let b1, . . . , bn−1 be an orthonormal basis for the (n− 1)-dimensional space

Y =
{
y ∈ Cn

∣∣ x?y = 0
}
. (6.34)

Such a basis could be generated by the Gram-Schmidt process as described in section 5.4.1.
Then B = [b1, . . . , bn−1] has the required properties.

Now let us see what U does to A. By another block-matrix multiplication formula
(exercise 6.18), we find

U?AU =

(
x?Ax x?AB
B?Ax B?AB

)
=

(
λ x?AB
0 B?AB

)
=

(
λ z?

0 A(n−1)

)
, (6.35)

where z = B?A?x is some (column) vector of length n − 1 and A(n−1) = B?AB is an (n −
1)×(n−1) matrix. We now invoke the induction hypothesis and let Ṽ be an (n−1)×(n−1)

unitary matrix such that Ṽ ?A(n−1)Ṽ = T (n−1) is upper-triangular. Define

V =

(
1 0

0 Ṽ

)
. (6.36)

Then the block-matrix multiplication formula (3.43) implies

V ?U?AUV =V ?

(
λ z?

0 A(n−1)

)
V =

(
λ z?

0 Ṽ ?A(n−1)

)
V

=

(
λ z?Ṽ

0 Ṽ ?A(n−1)Ṽ

)
=

(
λ z?Ṽ
0 T (n−1)

)
.

(6.37)

Thus UV is the required unitary matrix. QED

The Schur decomposition is not an algorithm for determining eigenvalues. Unfortunately,
its derivation is not constructive, in that it requires the provision of an eigenvector by some
unspecified mechanism. Instead, we should think of the Schur decomposition as a way to
catalog the eigenvectors (and eigenvalues) in a useful way.

Draft September 23, 2016, do not distribute Page 91

6.2. SCHUR DECOMPOSITION CHAPTER 6. OPERATORS

6.2.4 Schur decomposition and flags

A flag is a nested sequence of subspaces V k of a vector space V [9]. More precisely, a flag
has the property that

{0} = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V k = V, (6.38)

where the dimensions di = dimV i satisfy di > di−1 for all i ≥ 1. A complete flag is one in
which di = i for all i.

An operator O : V → V supports a flag if O(V j) ⊂ V j for all j = 1, . . . , k. For example,

V i =
{

(x1, . . . , xn) ∈ Rn
∣∣ xj = 0 ∀j > i

}
(6.39)

is a complete flag, and any upper-triangular matrix T supports the flag (6.39) (exercise 6.19).

The Schur decomposition has an abstract representation in terms of flags and operators
as follows.

Theorem 6.10 Any operator on a finite-dimensional vector space V supports a complete
flag.

In other words, for any operator O there exists some complete flag (6.38) that it supports.
Thus the Schur decomposition of an operator has a natural expression independent of any
basis chosen to represent it as a matrix. Other matrix decompositions, such as the LU
factorization (section 3.2), do not enjoy this property.

The proof of theorem 6.10 is left as exercise 6.20.

6.2.5 Example of Schur decomposition

Consider the Schur decomposition of the matrix A = A(x) given by

A =

(
0 x
1 0

)
, (6.40)

for x ≥ 0. Define an orthogonal matrix U = U(x) by

U =

√ x
x+1

√
1

x+1√
1

x+1
−
√

x
x+1

 . (6.41)

Note that U is symmetric and U2 = I. Then

UAU =

(√
x 1− x

0 −
√
x

)
. (6.42)

Observe that both the eigenvalues λ(x) of A(x) and the orthononal matrix U(x) are not
differentiable at x = 0. When x = 1, A is symmetric, consistent with the fact that UAU is
diagonal.

We leave as exercise 6.27 to work out the Schur decomposition of A(x) for x < 0.

Draft September 23, 2016, do not distribute Page 92

CHAPTER 6. OPERATORS 6.3. CONVERGENT MATRICES

6.3 Convergent matrices

There are many situations in which the result of an algorithm can be written as multiplication
of a vector X by a fixed matrix A. Thus repeating the algorithm n times is equivalent (by
induction) to applying the matrix Ak. Frequently, this represents the error in some iterative
process. Thus we are interested in precise conditions when A is a convergent matrix, that is,
Ak → 0 as k →∞. We start with the following simple criterion.

Lemma 6.11 If ‖A‖ < 1 for some operator norm, then ‖Ak‖ → 0 as k →∞.

Proof. By induction, (6.3) implies that ‖Ak‖ ≤ ‖A‖k → 0 as k →∞. QED

Combining lemma 6.11 with theorem 6.9, we get the following precise characterization.

Theorem 6.12 For any matrix A, Ak → 0 as k →∞ if and only if ρ(A) < 1.

Proof. If ρ(A) < 1, choose a norm so that ‖A‖ < 1 by theorem 6.9 and apply lemma 6.11.
Conversely, suppose there is an eigenvalue λ of A such that |λ| ≥ 1. There must be a

vector x 6= 0 such that Ax = λx. Thus Akx = Ak−1Ax = λAk−1x, so by induction we must
have Akx = λkx. But if Ak → 0, we conclude that λkx→ 0. Since |λk| = |λ|k ≥ 1, we have
a contradiction. QED

theorem 6.12 provides the basis for the convergence theory for stationary iterative meth-
ods (section 8.1), for the stability theory of time-stepping schemes for approximating the
solutions to differential equations that will be discussed in section 17.2), as well as for many
other applications.

6.4 Powers of matrices

Theorem 6.12 provides some information about powers of matrices. Here we develop the
theme in a bit more detail. Our objective is to prove the following result.

Theorem 6.13 For any n × n (real or complex) matrix A and any norm ‖ · ‖ (on Rn or
Cn, respectively),

lim
k→∞
‖Ak‖1/k = ρ(A), (6.43)

where ρ(A) is the spectral radius of A and ‖Ak‖ denotes the corresponding operator norm.

This again shows the close connection between the spectral radius and the operator norm.
To begin with, an analog of (6.9) is that

ρ(A) ≤ ‖Ar‖1/r (6.44)

for any norm and any positive integer r. For a complex norm, this is proved in the same way:
ρ(A) = |λ| for some eigenvalue λ, with eigenvector X such that AX = λX. Multiplying
by A, we have A2X = A(λX) = λAX = λ2X. By induction, we have ArX = λrX for any
r. Thus ρ(A)r = |λ|r = ‖ArX‖/‖X‖ ≤ ‖Ar‖, proving (6.44). For a real norm, we need to
utilize the techniques in the proof of lemma 6.3. With Z(φ) as defined there, we see that

Draft September 23, 2016, do not distribute Page 93

6.4. POWERS OF MATRICES CHAPTER 6. OPERATORS

ArZ(φ) = |λ|rZ(φ − rθ), and choosing φ = φ̂(rθ) completes the proof. We now use this to
prove theorem 6.13.

It seems remarkable at first that this would hold for any operator norm, but the fact is
that it is sufficient to prove (6.43) for just one norm. For example, suppose that we know
that

lim
k→∞
‖Ak‖1/k

∞ = ρ(A). (6.45)

Then by the equivalence of norms (lemma 5.1 or theorem 5.3), we have

lim
k→∞
‖Ak‖1/k ≤ lim

k→∞

(
K‖Ak‖∞

)1/k
= lim

k→∞
K1/kρ(A) = ρ(A). (6.46)

Thus the limiting process quashes any constant factor. In view of (6.44), the theorem follows.
Now let us verify (6.45).

The Schur decomposition shows that powers of a matrix tend to a very simple form.
Suppose that T = U?AU is the Schur decomposition, where U is unitary and T is triangular.
We can turn the decomposition around and write A = UTU?. Then A2 = U?TUU?TU =
U?T 2U . By induction,

Ak = U?T kU (6.47)

for any k. Write
T = D +N, (6.48)

where D = diag(T) is the diagonal matrix whose diagonal is the same as that of T . Thus
N = T −D. Since the entries of D are the eigenvalues of T (and hence of A),

‖D‖∞ = ρ(T) = ρ(A) (6.49)

(see exercise 6.16). We need to calculate the norm of T k, and since this is a somewhat
lengthy step, we separate it as the following lemma.

Lemma 6.14 Suppose that T is an upper-triangular n × n matrix and N = T −D, where
D = diag(T). Then for any matrix norm ‖ · ‖ satisfying the multiplicative property (6.3), we
have

‖T k‖ = ‖(D +N)k‖ ≤ kn‖D‖k−n (‖N‖+ ‖D‖)n . (6.50)

Proof. Note that N is nilpotent, that is, Nn = 0. More precisely, observe that N is strictly
upper-triangular, that is, it is 0 on and below the main diagonal. Not all nilpotent matrices
are strictly upper-triangular, but all strictly upper-triangular matrices are nilpotent. To
work with such matrices, let us introduce some notation. We say that an upper-triangular
matrix M has shift index µ if Mij = 0 for i > j − µ. A diagonal matrix has shift index 0,
and the matrix N = T −D has shift index 1.

The product MN of two upper-triangular matrices M and N , with shift indices µ and
ν, respectively, has shift index µ + ν (see exercise 6.23). In particular, since N = T − D
has shift index 1, (Nk)ij = 0 for i > j − k (see exercise 6.24). Thus Nn ≡ 0. If D is a
diagonal matrix, then the shift index of DN and ND is no less than the shift index of N
(see exercise 6.25).

We now want to expand the expression T k = (D+N)k. SinceN andD need not commute,
such an expression can be quite complicated. In particular, (D+N)2 = D2+DN+ND+N2.

Draft September 23, 2016, do not distribute Page 94

CHAPTER 6. OPERATORS 6.4. POWERS OF MATRICES

For (D +N)k, there are 2k such expressions. Fortunately, there is a one-to-one relationship
between each such expressions and the binary representation of some integer j ∈ [0, 2k − 1].
Define

P (j) =
k∏
i=1

DbiN1−bi , (6.51)

where bkbk−1 · · · b1 denotes the binary expansion of j, that is,

j =
k∑
i=1

bi2
i−1. (6.52)

Note that DbiN1−bi is D if bi = 1, and N if bi = 0. Then

(D +N)k =
2k−1∑
j=0

P (j). (6.53)

We can compute the shift index of P (j): it is at least ν(j), the number of N ’s in P (j) and
of zeros in the binary expansion of j. Thus when ν(j) ≥ n, P (j) = 0 (exercise 6.26). Thus

(D +N)k =
∑

0≤j<2k,ν(j)≤n

P (j). (6.54)

Note that
‖P (j)‖ ≤ ‖D‖k−ν(j)‖N‖ν(j). (6.55)

From (6.55), we conclude

‖(D +N)k‖ ≤
∑

0≤j<2k,ν(j)≤n

‖D‖k−ν(j)‖N‖ν(j)

=
n∑
`=0

∑
0≤j<2k,ν(j)=`

‖D‖k−`‖N‖`

=
n∑
`=0

(
k
`

)
‖D‖k−`‖N‖`

(6.56)

because the number of j ∈ [0, 2k − 1] such that ν(j) = ` is

(
k
`

)
. We use the elementary

estimate (
k
`

)
=

(
n
`

)
k!(n− `)!
n!(k − `)!

=

(
n
`

)
(k − `+ 1) · · · k
(n− `+ 1) · · ·n

≤
(
n
`

)
k`. (6.57)

Therefore,

‖(D +N)k‖ ≤ kn‖D‖k−n
n∑
`=0

(
n
`

)
‖D‖n−`‖N‖`

= kn‖D‖k−n (‖D‖+ ‖N‖)n ,
(6.58)

which completes the proof of the lemma. QED

Draft September 23, 2016, do not distribute Page 95

6.5. DEFECTIVE MATRIX POWERS CHAPTER 6. OPERATORS

From (6.47), we have

‖Ak‖∞ = ‖U?T kU‖∞ ≤ ‖U?‖∞‖T k‖∞‖U‖∞ ≤ C‖T k‖∞, (6.59)

where C = ‖U?‖∞‖U‖∞. Therefore, (6.49) and lemma 6.14 imply

‖Ak‖∞ ≤ Ccnk
nρ(A)k−n, (6.60)

where cn = (‖D‖∞ + ‖N‖∞)n. But since both C and cn are positive constants,

lim
k→∞

(Ccnk
n)1/k = 1. (6.61)

Therefore, (6.60) yields

lim
k→∞
‖Ak‖1/k

∞ ≤ lim
k→∞

(Ccnk
n)1/k ρ(A)1−n/k = ρ(A). (6.62)

Combined with (6.44), this proves (6.45) and completes the theorem.

6.5 Defective matrix powers

Although we have seen that the behavior of powers of a matrix M is ultimately determined
by the spectral radius ρ(M), it can take a long time for the asymptotic behavior to take
effect. When M is defective, the behavior is more complex. If

M =

(
λ 1
0 λ

)
, (6.63)

then induction shows that

Mk =

(
λ 1
0 λ

)k
= λk

(
1 k/λ
0 1

)
= ρ(M)k

(
1 k/λ
0 1

)
, (6.64)

for any positive integer k. In particular, if

X0 =

(
0
1

)
, (6.65)

we find the sequence of vectors Xk = MkX0 to be

Xk = λk
(
k/λ

1

)
= kλk

(
1/λ
1/k

)
= φ(k)

(
1/λ
1/k

)
, (6.66)

where φ(x) = xλx = xe(log λ)x. The function φ initially increases rapidly, decaying only
for large x. It reaches a maximum at x = 1/(log(1/λ); if λ = 1 − δ, then log(1/λ) ≈ δ
and x ≈ 1/δ. Thus the initial iterations appear to be going in the wrong direction. In
section 15.1.6, we consider more general examples of this form.

The algebraic defectiveness of M in (6.63) is not the unique cause of delayed convergence.
In figure 6.2, we compare powers of M with λ = 0.99 with powers of the matrix B given by

B =

(
0.98 1

0 0.99

)
, (6.67)

Draft September 23, 2016, do not distribute Page 96

CHAPTER 6. OPERATORS 6.5. DEFECTIVE MATRIX POWERS

Figure 6.2: Comparison of ‖Mk‖2 as a function of k (upper curve), where M is defined in
(6.63) for λ = 0.99, with ‖Bk‖2 as a function of k, where B is defined in (6.67).

and we see a similarly delayed convergence, even though B is diagonalizable. But the diag-
onalization of B = S−1ΛS has a very large S−1:

S ≈
(

1 1
0 0.01

)
, S−1 ≈

(
1 −100
0 100

)
. (6.68)

The computational results depicted in figure 6.2 can be confirmed analytically as follows.
Define

M =

(
λ2 1
0 λ

)
.

We will prove that there is a vector y such that ‖Mky‖ ≥ ckλk for some c > 0, provided
k(1− λ) ≤ 1. By induction,(

λ2 1
0 λ

)k
=

(
λ2k

∑2k−2
j=k−1 λ

j

0 λk

)
= λk−1

(
λk+1

(
1 + λ+ · · ·λk−1

)
0 λ

)
.

The induction step is obvious for all entries except the upper right one, which is as follows:

λ2

(2k−2∑
j=k−1

λj
)

+ λk =

(2k∑
j=k+1

λj
)

+ λk =
2k∑
j=k

λj.

We can simplify the sum via

(1− λ)
2k−2∑
j=k−1

λj = λk−1 − λ2k−1 = λk−1(1− λk).

Therefore (
λ2 1
0 λ

)k
=

(
λ2k λk−1(1−λk)

(1−λ)

0 λk

)
= λk

(
λk 1−λk

λ(1−λ)

0 1

)
. (6.69)

Draft September 23, 2016, do not distribute Page 97

6.6. EXERCISES CHAPTER 6. OPERATORS

If λ = 1− δ, we can further simplify this as follows. We have

λk = (1− δ)k = ek log(1−δ).

But log(1− δ) ≤ −δ, so
λk = (1− δ)k ≤ e−kδ.

Since e−x ≤ 1− x+ 1
2
x2 for x ≥ 0

1− λk ≥ 1− e−kδ = kδ − 1
2
(kδ)2 = kδ(1− 1

2
kδ)

for all k. Thus
1− λk

λ(1− λ)
≥
k(1− 1

2
kδ)

λ
≥ k

2λ

for k ≤ 1/δ. In particular, define

yk =

(
λ2 1
0 λ

)k (
0
1

)
= λk

(
λk 1−λk

λ(1−λ)

0 1

)(
0
1

)
.

Then
yk1 ≥ 1

2
kλk−1 = ckλk,

where c = λ/2, provided k ≤ 1/(1− λ) = 1/δ.

6.6 Exercises

Exercise 6.1 Show that the set Pn of polynomials of degree n in one variable can be viewed
as a vector space of dimension n + 1. (Hint: define (f + g)(x) = f(x) + g(x) for all x and
define (αf)(x) = αf(x) for all x. Use the monomials as a basis to determine the dimension.)

Exercise 6.2 Show that the derivative operator is a well-defined mapping from the set Pn
of polynomials of degree n in one variable to itself (see exercise 6.1). Compute its matrix
representation in the basis given by the monomials.

Exercise 6.3 Prove that the operator norm defined by (6.1) is a norm on the linear space
of operators from V to W .

Exercise 6.4 Prove the product expression (6.3). (Hint: consider (AB)u = A(Bu) and
apply (6.2) twice.)

Exercise 6.5 Prove that ‖U‖2 = 1 for any unitary matrix. (Hint: just compute ‖Ux‖2
2 =

(Ux)?Ux = x?U?Ux = x?x.)

Exercise 6.6 Prove that
‖A‖2 =

√
ρ(A?A) (6.70)

for any matrix A. Use this to verify (6.10) for a Hermitian operator. (Hint: apply corol-
lary 6.6 and compute

‖Ax‖2
2 = (Ax)?Ax = x?A?Ax = x?U?DUx. (6.71)

Apply exercise 6.5, or at least its hint.)

Draft September 23, 2016, do not distribute Page 98

CHAPTER 6. OPERATORS 6.6. EXERCISES

Exercise 6.7 Suppose that A is a Hermitian, positive definite matrix. Show that for the
operator norm associated with the Euclidean norm

‖A−1‖−1
2 = min

{
|λ|
∣∣ λ is an eigenvalue of A

}
. (6.72)

(Hint: if λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.)

Exercise 6.8 Show by example that the norm

‖A‖max := max
{
|Aij|

∣∣ i, j = 1, . . . , n
}

(6.73)

does not satisfy the inequality (6.3).

Exercise 6.9 Prove that the Frobenius norm (6.5) satisfies the property (6.3) regarding the
norm of the product of matrices, even though it is not an operator norm in the sense of
(6.1) for the case where V = W (demonstrate that by example). What happens if we allow
V 6= W? (Hint: use Cauchy (5.33) for the product formula. To prove it is not an operator
norm for V = W , evaluate the Frobenius norm of the identity matrix. For the general case,
see [34, 52].)

Exercise 6.10 Recall that a similarity transformation is of the form B = S−1AS, where S
is assumed to be invertible. Show that A and B have the same eigenvalues.

Exercise 6.11 Suppose that A and B are n × n matrices, and that A is invertible. Prove
that AB and BA are similar matrices. (Hint: we seek an invertible matrix S such that
AB = S−1BAS. What if we choose S = A−1?)

Exercise 6.12 Prove that if an upper-triangular matrix T commutes with its conjugate
transpose (T ?T = TT ?), then it must be diagonal. (Hint: use the block-matrix multiplication
formula (3.43), where

T =

(
α b?

0 S

)
(6.74)

and S is also upper-triangular.)

Exercise 6.13 Suppose that D is a diagonal matrix with diagonal entries d1, . . . , dn. Show
that the matrices MD and DM are just M scaled by the diagonal entries of D via (MD)ij =
Mijdj and (DM)ij = diMij.

Exercise 6.14 Let P be an invertible matrix. Show that N(x) := ‖Px‖ is a norm for any
vector norm ‖ · ‖.

Exercise 6.15 Prove that

‖Cy‖∞ ≤ n‖y‖∞max
{
|Cij|

∣∣ i, j = 1, . . . , n
}

(6.75)

for any n× n matrix C and y ∈ Rn.

Exercise 6.16 Suppose that D is a diagonal n× n matrix. Prove that

‖D‖∞ = max
{
|Dii|

∣∣ i = 1, . . . , n
}
.

Draft September 23, 2016, do not distribute Page 99

6.6. EXERCISES CHAPTER 6. OPERATORS

Exercise 6.17 Verify the block-matrix multiplication formula expressed by the first equality
in (6.33). (Compare exercise 3.7.)

Exercise 6.18 Verify the block-matrix multiplication formula expressed by the first equality
in (6.35). (Compare exercise 3.7.)

Exercise 6.19 Show that (6.39) is a complete flag that supports any upper-triangular ma-
trix.

Exercise 6.20 Prove theorem 6.10. (Hint: first represent the operator as a matrix using a
basis of V and use the Schur decomposition to decompose this matrix. Show that the operator
can be represented as a triangular matrix in some basis, and apply exercise 6.19.)

Exercise 6.21 Suppose that 1/p + 1/q = 1 (q = ∞ if p = 1, and p = ∞ if q = 1). Prove
that for any x ∈ Fn,

‖x‖p = sup
‖y‖q=1

|y?x|, (6.76)

where the supremum is over y ∈ Fn and F is either R or C. (Hint: first use Hölder’s
inequality (5.12). Then for p <∞ and x real, choose

yi = sign(xi)|xi|p−1‖x‖−pp . (6.77)

For p = ∞, note that ‖x‖∞ = |xi| for some i; choose y accordingly. In the complex case,
modify (6.77) appropriately.)

Exercise 6.22 Suppose that 1/p + 1/q = 1 (q = ∞ if p = 1, and p = ∞ if q = 1). Prove
that ‖A‖p = ‖A?‖q. (Hint: use exercise 6.21.)

Exercise 6.23 Suppose that M and N are n×n upper-triangular matrices with shift indices
µ and ν, respectively. Prove that MN has shift index µ+ ν. (Hint: observe that

(MN)ij =

j−ν∑
k=i+µ

NikMkj (6.78)

for all i, j.)

Exercise 6.24 Suppose that N is an n × n matrix such that Nij = 0 for i > j − 1. Prove
that Nk

ij = 0 for i > j − k. (Hint: use induction and exercise 6.23.)

Exercise 6.25 Suppose that N is an n× n matrix such that Nij = 0 for i > j − ν, that is,
the shift index of N is µ. Suppose that D is an n× n diagonal matrix. Prove that DN and
ND have a shift index of at least ν. (Hint: see the hint for exercise 6.23.)

Exercise 6.26 Suppose that the binary expansion of j has at least n zeros, that is, ν(j) ≥ n.
Thus there are at least n factors N in P (j) defined in (6.51). Prove that P (j) = 0. (Hint:
use exercise 6.25 to prove that the shift index of P (j) is at least n.)

Exercise 6.27 Derive the Schur decomposition for the matrix in (6.40) for x < 0.

Exercise 6.28 Use (6.17) to prove (6.18).

Exercise 6.29 Prove that the function g defined in (6.19) is continuous and never vanishes.

Draft September 23, 2016, do not distribute Page 100

CHAPTER 6. OPERATORS 6.7. SOLUTIONS

6.7 Solutions

Solution of Exercise 6.10. First, note that by multiplying B = S−1AS on the left by S,
we get SB = AS. Multiplying this on the right by S−1, we find SBS−1 = A. Thus the
similarity relationship is symmetric. Suppose that AX = λX. Then

λX = AX = SBS−1X.

Multiplying this by S−1 on the left shows that

λS−1X = BS−1X.

Thus S−1X is an eigenvector of B with eigenvalue λ. Therefore, we have proved that all the
eigenvalues of A are eigenvalues of B. Since the similarity relationship is symmetric, all the
eigenvalues of B are thus eigenvalues of A, and so they are the same. QED

Solution of Exercise 6.12. Using the block-matrix multiplication formula (3.43), we find
that

TT ? =

(
α b?

0 S

)(
α 0
b S?

)
=

(
|α|2 + b?b b?S?

Sb SS?

)
(6.79)

and

T ?T =

(
α 0
b S?

)(
α b?

0 S

)
=

(
|α|2 αb?

αb S?S

)
. (6.80)

Thus we see that TT ? = T ?T implies b = 0 (compare the upper-left entries) and SS? = S?S.
Thus the result is easily completed via induction on the size of the matrix T .

Let us assume that T is n× n. If n = 2, then S is just a scalar, and thus b = 0 implies
T is diagonal. Now suppose that the result is known for matrices of size (n− 1)× (n− 1),
for some n ≥ 3. Then the equality of (6.79) and (6.80) implies that SS? = S?S. Since S is
an upper-triangular matrix of size (n− 1)× (n− 1), we conclude that S must be diagonal.
Together with the fact that b = 0 implies that T is diagonal.

Solution of Exercise 6.13. Just compute:

(MD)ij =
n∑
k=1

MikDkj = Mijdj

and

(DM)ij =
n∑
k=1

DikMkj = diMij.

QED

Solution of Exercise 6.14. It is clear that N(sx) = |s|N(x) for any scalar s since P (sx) =
sPx. The triangle inequality is equally easy: P (x+ y) = Px+ Py, so

N(x+ y) = ‖Px+ Py‖ ≤ ‖Px‖+ ‖Py‖ = N(x) +N(y).

Now suppose that N(x) = 0. Then Px = 0, and since P is invertible, we have x = 0. QED

Draft September 23, 2016, do not distribute Page 101

6.7. SOLUTIONS CHAPTER 6. OPERATORS

Draft September 23, 2016, do not distribute Page 102

Chapter 7

Nonlinear Systems

In 1740, Thomas Simpson published “Essays on several curious and use-
ful subjects in speculative and mix’d mathematicks, illustrated by a
variety of examples,” in which he presents Newton’s method essentially
in the form (2.30), together with a generalization to systems of two equa-
tions, and shows that Newton’s method can solve optimization problems
by setting the gradient to zero [182].

We now turn to finding solutions of nonlinear systems of equations. There are many
ways in which nonlinear systems of equations arise. One common one is in the minimization
of a smooth, scalar-valued function φ, as anticipated already by Simpson [182]. Minima are
characterized by the equation ∇φ(x) = 0, so this suggests applying the techniques of this
chapter to the function f(x) = ∇φ(x).

We will take as an example a simple form of a problem in geodesy, the science of de-
termining locations in space from distance data. This has occupied many mathematicians,
including Gauss [20, 96]; it is pursued on a very large scale [101] and is the basis for lo-
cation by global positioning systems (GPS) [159]. In figure 7.1, we depict the problem of
determining the position of a boat near a shoreline based on the distance from the boat to
two markers on shore. The distance might be determined by measuring the time it takes
for sound to travel to the boat. A flash of light could indicate when the sound was emitted.
The mathematical problem can be described in two equations for the distances:

b =
√
x2 + y2 c =

√
(x− a)2 + y2. (7.1)

c

(0, 0) (a, 0)

b

(x, y)

Figure 7.1: Determining position offshore. The unknown point (x, y) is to be determined
from the known distances b and c to points on the shore.

103

7.1. FUNCTIONAL ITERATION FOR SYSTEMSCHAPTER 7. NONLINEAR SYSTEMS

We can turn this into a problem similar to what we studied in chapter 2 by defining the
function

f(x1, x2) =

(
x2

1 + x2
2

(x1 − a)2 + x2
2

)
. (7.2)

Our problem is thus reduced to finding a solution to f(x1, x2) = (b2, c2). Now we consider
such problems in general.

Thus we suppose that we have a function f : Rn → Rn and we want to find points x ∈ Rn

where f(x) = y for some y ∈ Rn. Without loss of generality, we usually assume that y = 0
by simply subtracting y from f to create a new function. Correspondingly, we may also
cast this as a fixed-point problem: g(x) = x. As we have seen in the one-dimensional case
(chapter 2), there may be several different g’s whose fixed points correspond to the solutions
of f(x) = 0. However, the setting of fixed-point iteration is still, as in the one-dimensional
case, the place to start.

7.1 Functional iteration for systems

We just need to interpret the notation: g now maps Rn to itself, and fixed-point iteration
seeks to find a fixed point

ξ = g(ξ), (7.3)

where now ξ ∈ Rn. Fixed-point iteration

xν = g(xν−1) (7.4)

still has the property that, if it converges, it converges to a fixed point (7.3), assuming only
that g is continuous (exercise 7.1).

We emphasize now that g represents n functions g1, . . . , gn that each map Rn to R (we
will limit our discussions to real-valued functions for simplicity). The basic behavior is the
same as in the one-dimensional case, provided we use norms to measure vectors where we
used absolute values before. If g is Lipschitz-continuous with constant λ < 1, that is,

‖g(x)− g(y)‖ ≤ λ‖x− y‖ (7.5)

for some norm ‖ · ‖ on Rn, then convergence will happen for all starting points. More
precisely, if we define eν = xν − ξ, then by induction

‖eν+1‖ = ‖g(xν)− g(ξ)‖ ≤ λ‖eν‖ ≤ λν‖e0‖. (7.6)

In fact, we have used (7.5) with only one x, namely, x = ξ.
The rest of the story is similar to the one-dimensional case, except that we need some

higher-dimensional calculus to figure out when and how fast it will converge. We can discover
the local behavior by using a Taylor expansion:

g(y) = g(x) + Jg(x)(x− y) +Rg(x, y), (7.7)

where the remainder Rg(x, y) satisfies

‖Rg(x, y)‖ ≤ C‖x− y‖2 (7.8)

Draft September 23, 2016, do not distribute Page 104

CHAPTER 7. NONLINEAR SYSTEMS7.1. FUNCTIONAL ITERATION FOR SYSTEMS

and Jg denotes the Jacobian of g, that is, the matrix with entries

(Jg(x))ij =
∂gi
∂xj

(x). (7.9)

We can present this visually as

Jg(x) =

∂g1
∂x1

(x) ∂g1
∂x2

(x) · · · ∂g1
∂xn

(x)

∂g2
∂x1

(x) ∂g2
∂x2

(x) · · · ∂g2
∂xn

(x)
...

...
...

...
∂gn
∂x1

(x) ∂gn
∂x2

(x) · · · ∂gn
∂xn

(x)

 . (7.10)

For example, for f defined in (7.2), then

Jf (x) =

(
2x1 2x2

2(x1 − a) 2x2

)
. (7.11)

We recall that Jg may be thought of as a matrix-valued function, that is, a map Rn → Rn2
.

The expression Jg(x)(x − y) in (7.7) is just a matrix-vector multiplication. Reviewing the
expression (7.6), we have

‖eν+1‖ = ‖g(xν)− g(ξ)‖
= ‖Jg(ξ)eν +Rg(ξ, x

ν)‖
≤‖Jg(ξ)eν‖+ ‖Rg(ξ, x

ν)‖
≤‖Jg(ξ)‖ ‖eν‖+ C‖eν‖2,

(7.12)

where ‖Jg(ξ)‖ is the operator norm of Jg(ξ). Thus we see that the limiting behavior of
fixed-point iteration will be determined by the value of ‖Jg(ξ)‖.

There are several “theorems” that one could present based on the analysis above, but
the following local result is the most important.

Theorem 7.1 Suppose that the spectral radius ρ(Jg(ξ)) < 1 at a fixed point ξ = g(ξ) and
that the Taylor expansion (7.7) holds with the constant C in (7.8) (in some norm) fixed for
all y in a neighborhood of x = ξ. Then fixed-point iteration (7.3) converges provided that x0

is close enough to ξ.

The main point of this result is that there is no reference to any particular norm in the
estimation of the size of Jg(ξ). We leave the proof of this result as exercise 7.2. The trick is
to pick a norm sufficiently close to the spectral radius for the matrix Jg(ξ) using theorem 6.9.
Note that if the Taylor expansion (7.7) holds with the constant C in (7.8) fixed for all y
in a neighborhood of x = ξ, then it holds for any norm by the equivalence of norms on Rn

(section 5.3.2).

We need to justify the Taylor expansion (7.7) with the remainder term in (7.8). But to
do so, we need to develop some notation, which we will do in section 7.1.2.

Draft September 23, 2016, do not distribute Page 105

7.1. FUNCTIONAL ITERATION FOR SYSTEMSCHAPTER 7. NONLINEAR SYSTEMS

7.1.1 Limiting behavior of fixed-point iteration

Fixed-point iteration in higher dimensions can have a more complicated set of behaviors
than in the one-dimensional case. Using the Taylor expansion (7.7), we can write

eν+1 =xν+1 − ξ = g(xν)− g(ξ)

= Jg(ξ)(x
ν − ξ) +Rg(ξ, x

ν)

≈ Jg(ξ)eν +O
(
‖eν‖2

)
≈ Jg(ξ)eν .

(7.13)

Thus the errors evolve iteratively by multiplying the Jacobian matrix Jg(ξ). These vectors are
very similar to those generated by the power method for solving eigenproblems in section 15.1.
Thus we will see that the generic behavior is that eν will tend to an eigenvector of Jg(ξ)
corresponding to an eigenvalue λ, where |λ| = ρ(Jg(ξ)), exactly in line with the statement
of theorem 7.1. However, a simple example shows that other behaviors are possible. Define

g(x) = Ax+ ξ ‖x‖2
2, (7.14)

where A is a matrix such that Aξ = 0. The fixed point of interest is x = 0, and it is easy to
see that Jg(0) = A. Suppose that we take x0 = εξ. Then by induction,

xν = ε2
ν

ξ. (7.15)

Thus we find quadratic convergence in this special case, even though Jg 6= 0.

7.1.2 Multi-index notation

For the time being, we will focus on scalar-valued (real- or complex-valued) functions. We
will apply these ideas later to vector-valued functions. A multi-index, α, is an n-tuple of
nonnegative integers, αi. The length of α is given by

|α| :=
n∑
i=1

αi. (7.16)

For a smooth function φ : Rn → R, the notations

Dαφ,

(
∂

∂x

)α
φ, φ(α), ∂αxφ, and φ,α1α2···αn (7.17)

are used interchangeably to denote the partial derivative(
∂

∂x1

)α1

· · ·
(
∂

∂xn

)αn
φ. (7.18)

Given a vector x = (x1, . . . , xn) ∈ Rn, we define

xα := xα1
1 · xα2

2 · · ·xαnn . (7.19)

Note that if x is replaced formally by the symbol ∂
∂x

:=
(
∂
∂x1
, . . . , ∂

∂xn

)
, then this definition

of xα is consistent with the previous definition of
(
∂
∂x

)α
. The order of this derivative is given

by |α|.

Draft September 23, 2016, do not distribute Page 106

CHAPTER 7. NONLINEAR SYSTEMS7.1. FUNCTIONAL ITERATION FOR SYSTEMS

For the moment, let us focus on scalar-valued functions, e.g., u : Rn → R. The Taylor
polynomial of order m expanded at y is given by

Tmy u(x) =
∑
|α|<m

1

α!
Dαu(y)(x− y)α, (7.20)

where

α! =
n∏
i=1

αi!. (7.21)

For ϕ ∈ Cm
(
[0, 1]

)
, we have (exercise 7.4)

ϕ(1) =
m−1∑
k=0

1

k!
ϕ(k)(0) +

∫ 1

0

1

(m− 1)!
sm−1ϕ(m)(1− s) ds. (7.22)

Let u be a Cm function on Rn. For x ∈ Rn and y ∈ Rn, define

ϕ(s) = u
(
y + s(x− y)

)
. (7.23)

Then, by using the chain rule, we obtain

1

k!
ϕ(k)(s) =

∑
|α|=k

1

α!
Dαu

(
y + s(x− y)

)
(x− y)α. (7.24)

We will prove (7.24) shortly. Combining (7.22) and (7.24), we obtain

u(x) =
∑
|α|<m

1

α!
Dαu(y)(x− y)α

+
∑
|α|=m

(x− y)α
∫ 1

0

m

α!
sm−1Dαu

(
x+ s(y − x)

)
ds

= Tmy u(x) +m
∑
|α|=m

(x− y)α
∫ 1

0

1

α!
sm−1Dαu

(
x+ s(y − x)

)
ds.

(7.25)

Applying (7.25) to each component of a function g : Rn → Rn for m = 2, we obtain the
following expression for the ith component of the error term Rg(x, y) in (7.7):

Rg(x, y)i = 2
∑
|α|=2

(x− y)α
∫ 1

0

1

α!
sDαgi

(
x+ s(y − x)

)
ds. (7.26)

To prove (7.24), we start with the chain rule:

ϕ′(s) = (x− y) · ∇u
(
y + s(x− y)

)
=

n∑
i=1

(xi − yi)u,i
(
y + s(x− y)

)
=
∑
|α|=1

(x− y)αDαu(y).

(7.27)

Draft September 23, 2016, do not distribute Page 107

7.1. FUNCTIONAL ITERATION FOR SYSTEMSCHAPTER 7. NONLINEAR SYSTEMS

This covers the case k = 1. We apply the chain rule again to (7.27) to find

ϕ′′(s) =
n∑
i=1

(xi − yi)(x− y) · ∇u,i
(
y + s(x− y)

)
=

n∑
i,j=1

(xi − yi)(xj − yj)u,ij
(
y + s(x− y)

)
= (x− y)THu (y + s(x− y)) (x− y),

(7.28)

where the matrix Hu is called the Hessian1 of u. This allows a useful representation of the
Taylor approximation of order 2:

u(x) ≈ u(y) +∇u(y) · (x− y) + 1
2
(x− y)THu(y)(x− y). (7.29)

To establish the relationship with (7.24), we just count the terms in (7.28):

ϕ′′(s) =
n∑

i,j=1

(xi − yi)(xj − yj)u,ij
(
y + s(x− y)

)
=

n∑
i=1

(xi − yi)2u,ii
(
y + s(x− y)

)
+ 2

n∑
i>j=1

(xi − yi)(xj − yj)u,ij
(
y + s(x− y)

)
=
∑
|α|=2

2

α!
(x− y)αDαu(y + s(x− y)).

(7.30)

This covers the case k = 2; since this is all we need to derive (7.26), we leave the general
case to exercise 7.5.

7.1.3 Higher-order convergence

Suppose that Jg(ξ) = 0 at a fixed point ξ = g(ξ). By analogy with the one-dimensional case,
we expect higher-order convergence in this case. Let us examine this now formally. We have
by (7.7),

g(y)− g(ξ) = Rg(ξ, y), (7.31)

where the remainder Rg(ξ, y) satisfies

‖Rg(ξ, y)‖ ≤ C‖ξ − y‖2 (7.32)

in view of (7.8), as can be verified by using (7.26). Therefore

‖eν+1‖ = ‖g(ξ)− g(xν)‖
= ‖Rg(ξ, x

ν)‖
≤C‖eν‖2,

(7.33)

and the convergence is second-order.

1Ludwig Otto Hesse (1811–1874) was a student of Jacobi (page 125) and was the advisor of Lipschitz
(page 19).

Draft September 23, 2016, do not distribute Page 108

CHAPTER 7. NONLINEAR SYSTEMS 7.2. NEWTON’S METHOD

7.1.4 Particular methods

Not all of the one-dimensional methods generalize to n dimensions. The chord method
becomes

xν+1 = xν − Af(xν), (7.34)

where A is a matrix. Thus g(x) = x− Af(x) and

Jg(x) = I − AJf (x) (7.35)

(see exercise 7.7). Thus we have Jg(ξ) small if A is close to Jf (ξ)
−1. Therefore, adaptive

methods will attempt to approximate A ≈ Jf (ξ)
−1.

7.2 Newton’s method

Newton’s method takes A = Jf (x
ν)−1 in the chord method (7.35); that is, we solve the linear

system

Jf (x
ν)(xν+1 − xν) = −f(xν) . (7.36)

We can write this as a fixed-point iteration with

g(x) = x− Jf (x)−1f(x). (7.37)

To compute Jg in this case will require some work.
To begin with, let us rewrite the expression (7.37) as

Jf (x)g(x) = Jf (x)x− f(x). (7.38)

Thus we need to differentiate the product h(x) = Jf (x)g(x) for two different functions g, so
let us consider this separately. Formally, we can expect this to be of the form

Jh(x) = Jf (x)Jg(x) +Hf (x)g(x), (7.39)

where Hf (x) (the Hessian of the vector function f) involves second-order derivatives of f .
The reasoning is just that the derivative of a product satisfies the rule (uv)′ = uv′ + u′v.
Note the similarity to (7.35). What is a bit unusual about the expression (7.39) is that, as
an equation for matrices, the “type” of Hf (x) is new. It is an algebraic object that maps a
vector to a matrix.

7.2.1 Tensors

Let us consider a function of the form

u(x) = Jf (x)ξ, (7.40)

where ξ ∈ Rn is a fixed (constant) vector. Thus

uj(x) =
n∑
k=1

∂fj
∂xk

(x)ξk. (7.41)

Draft September 23, 2016, do not distribute Page 109

7.2. NEWTON’S METHOD CHAPTER 7. NONLINEAR SYSTEMS

Differentiating, we find
∂uj
∂x`

(x) =
n∑
k=1

∂2fj
∂xkx`

(x)ξk. (7.42)

Let us define Hf (x) as a map of Rn → Rn2
via

(Hf (x)ξ)j,` =
n∑
k=1

∂2fj
∂xkx`

(x)ξk ∀ξ ∈ Rn. (7.43)

Thus (7.42) can be written as
Ju(x) = Hf (x)ξ. (7.44)

This allows us to justify (7.39) (see exercise 7.8).
The object Hf is called a tensor. We will not explore the algebraic properties of tensors in

detail, but suffice it to say they are things with indices. The number of indices is sometimes
called the “rank” but we prefer to reserve that word for another property, so we call the
number of indices the arity of the tensor. The arity of Hf is 3. Tensors of arity 2 are
matrices, and tensors of arity 1 are vectors (tensors of arity 0 are scalars).

The operation of multiplication of one tensor by another is often called contraction, and
it reduces the arity correspondingly. A contraction of a tensor of arity k by one of arity `
produces a tensor of arity k− `, as we saw in (7.44). Derivatives of tensor functions produce
tensors of higher arity, as we have seen.

The Hessian of a vector-valued function can be used to provide a Taylor approximation
analogous to (7.29):

u(x) ≈ u(y) + Ju(y)(x− y) + 1
2
(x− y)THu(y)(x− y), (7.45)

which we leave as exercise 7.11.

7.2.2 Quadratic convergence of Newton’s method

Convergence of Newton’s method is again quadratic, as we now show. Returning to the
expression (7.38), we differentiate it to get

Hf (x)g(x) + Jf (x)Jg(x) = Hf (x)x+ Jf (x)− Jf (x) = Hf (x)x. (7.46)

Thus we can solve for Jg(x) to get

Jg(x) = Jf (x)−1 (Hf (x)x−Hf (x)g(x))

= Jf (x)−1 (Hf (x)(x− g(x)))

= Jf (x)−1
(
Hf (x)(Jf (x)−1f(x))

)
.

(7.47)

In the second step, we used the fact that tensors are linear operators (exercise 7.13), and the
last step is just the definition (7.37) of g. Thus we have proved the following.

Theorem 7.2 Suppose that g is the iteration function for Newton’s method defined in (7.37).
Then at a point x where f(x) = 0, we have Jg(x) = 0 provided that Jf (x) is invertible. In
this case, Newton’s method is quadratically convergent.

Draft September 23, 2016, do not distribute Page 110

CHAPTER 7. NONLINEAR SYSTEMS 7.2. NEWTON’S METHOD

Most convergence results for Newton’s method are essentially local in nature. In general,
one expects chaotic behavior from Newton’s method globally [94]. The following result is
just one example of the type of local result that can be proved. See exercise 7.12 for a more
sophisticated result of this type in which the Jacobian of f is allowed to be singular at the
root f(x) = 0.

Theorem 7.3 Suppose that y ∈ Rn is a root f(y) = 0. Suppose that R > 0 is chosen so
that for the set

Ω =
{
x ∈ Rn

∣∣ |x− y| ≤ R
}
, (7.48)

the following conditions hold for some constants α, β:

sup
x∈Ω
‖J−1

f (x)f(x)‖ ≤α,

sup
x∈Ω
‖J−1

f (x)Hf (x)z‖ ≤ β‖z‖ ∀z ∈ Rn such that ‖z‖ ≤ α
(7.49)

for some norm ‖ · ‖ on Rn. Then if λ = αβ < 1, Newton’s method converges in Ω. That is,
for all starting points x0 ∈ Ω, all subsequent iterates remain in Ω, and

‖xk − y‖∞ ≤ λkR. (7.50)

The gist of the theorem is that we can make α as small as we want by choosing R small
enough (exercise 7.17), provided the Jacobian Jf of f is not too badly behaved (cf. exer-
cise 7.12). Concrete bounds on β can be made provided, e.g., we also assume that

sup
x∈Ω

max
j,k,`=1,...,n

∣∣∣∣ ∂2fj
∂xkx`

(x)

∣∣∣∣ ≤ c, (7.51)

together with the assumption that Jf (x)−1 is bounded for x ∈ Ω. Note that we have written
the assumptions (7.49) in an invariant way. Newton’s method is invariant with respect to
multiplication on the left by a nonsingular matrix A. That is, the iterates are the same
for solving f(x) = 0 and Af(x) = 0 for fixed A. Thus assumptions regarding convergence
should likewise be invariant [48].

The proof is just an application of (7.47): for x ∈ Ω, we have

‖Jg(x)‖ ≤‖Jf (x)−1Hf (x)(Jf (x)−1f(x))‖
≤ β‖Jf (x)−1f(x)‖
≤ βα = λ < 1.

(7.52)

Observe that the norm of the expression Jf (x)−1Hf (x)z is the operator norm associated with
‖ · ‖. Applying (7.6) proves (7.50), which in turn guarantees that all iterates remain in Ω.

Note that if Jf (x
ν) is nearly singular at any point, then the change xν+1−xν can be huge.

This occurs even in one dimension: consider f(x) = cosx and start Newton’s method near
x = 0. However, the behavior of Newton’s method in multiple dimensions with a singular
Jacobian is much more complex than in the one-dimensional case (exercise 2.5). We give an
example in section 7.2.4.

Draft September 23, 2016, do not distribute Page 111

7.2. NEWTON’S METHOD CHAPTER 7. NONLINEAR SYSTEMS

7.2.3 No other methods

Unfortunately, the other methods we studied in the one-dimensional case do not generalize
to multidimensions. For example, Steffensen’s method fails for two reasons. At the simplest
level, it is not clear how to “divide” by the difference quotient in the vector case. But more
fundamentally, the difference approximation f(x + f(x)) − f(x) would provide differential
information in only one direction.

7.2.4 Eigen problems

The eigenvalue problem for an n×n matrix is really a system of nonlinear equations in n+1
variables, which we can write as

Ax =λx

‖x‖2 = 1.
(7.53)

This is a good example to study as it is almost linear, being nonlinear only in the last
equation and in the simple product λx. Since we are talking about eigenvalues, we allow
everything to be complex. We have seen that Newton’s method is generally effective at
solving nonlinear problems, so it is reasonable to ask how it would apply to this problem.
The extension to complex variables does not make a substantial change.

Let us write (7.53) formally as solving F (x, λ) = 0, where we can take F to be defined
by

F (x, λ) =

(
Ax− λx

1
2

(1− ‖x‖2
2)

)
=

(
Ax− λx

1
2

(1− x?x)

)
. (7.54)

The Jacobian of F is given by

JF (x, λ) =

(
A− λI −x
−x? 0

)
. (7.55)

Note that if A is Hermitian, so is JF for λ ∈ R.
Newton’s method for F is then

JF (xk, λk)

(
xk+1 − xk
λk+1 − λk

)
= −F (xk, λk), (7.56)

which translates componentwise to

(A− λkI)(xk+1 − xk)− (λk+1 − λk)xk = − (A− λkI)xk

−(xk)?(xk+1 − xk) = − 1
2
(1− ‖xk‖2

2).
(7.57)

Simplifying, we find

(A− λkI)xk+1 = (λk+1 − λk)xk

−(xk)?xk+1 = − 1
2
− 1

2
‖xk‖2

2.
(7.58)

We can unravel this system by observing that xk+1 = (λk+1 − λk)yk, where yk solves

(A− λkI)yk = xk. (7.59)

Draft September 23, 2016, do not distribute Page 112

CHAPTER 7. NONLINEAR SYSTEMS7.3. LIMITING BEHAVIOR OF NEWTON’S METHOD

Using the second equation in (7.58), we find that

λk+1 = λk +
1
2

+ 1
2
‖xk‖2

2

(xk)?yk
. (7.60)

We will see that Newton’s method for the eigenvalue problem is essentially a version of what
is known as inverse iteration (section 15.2).

Suppose that x, λ is an eigenpair for A. Then JF (x, λ) is singular if and only if there is
a nontrivial solution to

0 = JF (x, λ)

(
y
µ

)
=

(
Ay − λy − µx
−x?y

)
. (7.61)

There are two types of solutions. We could have µ = 0, in which case y must be another
eigenvector corresponding to λ, orthogonal to x in view of the last component of (7.61). Or
we could have µ 6= 0, in which case (A − λI)2y = 0 and y is a generalized eigenvalue of A
corresponding to λ [11]. In either case, this implies that λ is not a simple eigenvalue. Thus
for simple eigenvalues, JF (x, λ) is nonsingular.

It is somewhat surprising that for simple eigenvalues, the system (7.59) and (7.60), which
is equivalent to (7.56), is not singular. We return to this question at more length in sec-
tion 15.2.

7.2.5 An example

The range of behaviors of Newton’s method for a singular Jacobian can best be seen by an
example [46]. Define

A =

(
0 1
0 0

)
, (7.62)

for which λ = 0 is an eigenvalue of multiplicity 2. There is one eigenvector (1, 0)T. Then the
Jacobian (7.55) satisfies

Jf (ν, µ, λ) =

−λ 1 −ν
0 −λ −µ
−ν −µ 0

 . (7.63)

If we start Newton’s method with x0 = (r, 0, λ)T, then the Newton step can be computed
explicitly to show that x1 = (r̂, 0, λ̂)T, where

r̂ = 1 +
(r − 1)2

2r
and λ̂ = λ

r2 − 1

2r2
. (7.64)

Thus Newton’s method is essentially a two-dimensional iteration in this case, with the second
(middle) coordinate of the iterates always remaining zero. Moreover, the iteration (r, λ) →
(r̂, λ̂) converges to (1, 0) quadratically, whereas for general starting values, x0 = (ν, µ, λ)
with µ 6= 0, the convergence is only linear (exercise 7.20).

7.3 Limiting behavior of Newton’s method

We are primarily interested in the rapid convergence of Newton’s method and perhaps do not
care how it gets there. But it is an interesting question in multiple dimensions as to whether

Draft September 23, 2016, do not distribute Page 113

7.3. LIMITING BEHAVIOR OF NEWTON’S METHODCHAPTER 7. NONLINEAR SYSTEMS

the iterates wander around as they approach the limit or perhaps instead approach the
limit in a systematic way. We can already get guidance from (2.36) in the one-dimensional
case. The sign of f ′′(α)/f ′(α) at a root f(α) = 0 determines the sign of the error. Thus the
iterates approach systematically from one side or the other at the end of the iteration process.
Moreover, there is a precise asymptotic relationship between the errors that expresses the
quadratic convergence. But in multiple dimensions, a wider range of behaviors might be
possible, so we consider this here.

To simplify the notation, let us assume that the root of interest for the function f : Rn →
Rn is at the origin: f(0) = 0. Thus the errors ek = xk. Denote the Newton iterates by

xk+1 = xk − Jf (xk)−1f(xk). (7.65)

We do not want to assume that the Jacobian Jf is always invertible, so we interpret the
notation in (7.65) to mean that there is a solution yk ∈ Rn to the equation

Jf (x
k)yk = f(xk), (7.66)

in which case xk+1 = xk − yk. If f(xk) is not in the range of the linear operator Jf (x
k),

then no such solution is possible, and Newton’s method fails. But we will simply ignore this
situation.

Using the Taylor approximation (7.45), we have

f(xk+1) ≈ f(xk) + Jf (x
k)(xk+1 − xk)

+ 1
2
(xk+1 − xk)THf (x

k)(xk+1 − xk)
= 1

2
(xk+1 − xk)THf (x

k)(xk+1 − xk),
(7.67)

where we have used the definition of the Newton step to cancel terms. On the other hand,
we can Taylor-expand around zero to find

f(xk+1) ≈ f(0) + Jf (0)xk+1 = Jf (0)xk+1. (7.68)

Combining (7.67) and (7.68) we find

Jf (0)xk+1 ≈ 1
2
(xk+1 − xk)THf (x

k)(xk+1 − xk)
≈ 1

2
(xk)THf (0)xk

(7.69)

since xk+1 = O
(
(xk)2

)
, cf. (2.36).

Suppose we are interested in tracking the direction of the approach to the solution; since
we have assumed that 0 = f(0), we can do this by defining

ξk = ‖xk‖−1
2 xk. (7.70)

Similarly, let

tk = ‖xk‖2. (7.71)

What we seek to understand is: do the vectors ξk on the unit sphere in Rn tend to a limit,
cycle systematically, or wander chaotically?

Draft September 23, 2016, do not distribute Page 114

CHAPTER 7. NONLINEAR SYSTEMS 7.4. MIXING SOLVERS

Let us write (7.69) in terms of ξ’s and t’s:

tk+1Jf (0)ξk+1 = Jf (0)xk+1 ≈ 1
2
(xk)THf (0)xk

= 1
2
t2k(ξ

k)THf (0)ξk.
(7.72)

Suppose there is a solution to the equation

λJf (0)ξ = ξTHf (0)ξ (7.73)

and that the vectors ξk → ξ as k →∞. Then tk+1 ≈ (1/2λ)t2k and Newton’s method behaves
asymptotically like a one-dimensional iteration in the direction ξ. The problem (7.73) is a
tensor eigenproblem, and the iteration implicit in (7.72) is similar to the power method
(section 15.1) [137, 136] for ordinary eigenproblems.

Let us consider a simple example in two dimensions where f(x) = x+Q(x) and

Q(x) =

(
xTAx
xTBx

)
, (7.74)

where A and B are 2 × 2 matrices. The limiting behavior of Newton’s method is governed
by the behavior of the iteration

x← ‖Q(x)‖−1
2 Q(x). (7.75)

Let us consider the following examples. First, define

A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
. (7.76)

Then there are four eigenpairs given by

Q

(
±1
0

)
= ±1

(
±1
0

)
and Q

(
±1
1

)
= ±2

(
±1
1

)
. (7.77)

Moreover, starting vectors x in (7.74) for which ±x1x2 > 0 tend rapidly to the eigenvector
with eigenvalue ±2. The four cases where the initial vector x satisfies x1x2 = 0 go imme-
diately to one of the eigenvectors with eigenvalue ±1 (see exercise 7.21). However, if we
instead define Q in (7.74) using

A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
, (7.78)

then the iterations (7.74) are chaotic (see exercise 7.22). Thus we see that there can be
quite complex ways in which Newton’s method can converge in terms of the directions of
approach, even though the rate of convergence is quadratic. For more information, see [57].

7.4 Mixing solvers

So far, we have viewed the problem of solving a nonlinear system f(x) = 0 as a two-level
process. At the first level, we define a sequence of linear problems to be solved, e.g., (7.36)
for Newton’s method. The second level is the solution of each of these linear systems, e.g.,
by one of the methods studied earlier. But can we relax the separation barrier between these
two phases and potentially achieve the same result (f(x) ≈ 0) more efficiently? Given the
generality of this question, there can be many answers. Here we will focus on only two to
make it clear what some of the possibilities are.

Draft September 23, 2016, do not distribute Page 115

7.5. MORE READING CHAPTER 7. NONLINEAR SYSTEMS

y
0x x

x
1

Figure 7.2: One step of Newton’s method goes from a starting point x0 to the next iterate
x1 as part of the process of converging to x. Instead of finding x1 exactly, it may be useful
to settle for the approximation y to x1.

7.4.1 Approximate linear solves

Since the steps in the nonlinear process are themselves only approximate, it is not necessary
to solve the linear systems exactly. As long as the approximate solution is closer to the exact
solution for the next nonlinear iteration than the old one, we have made progress. We depict
in figure 7.2 how this might work.

As we progress toward the solution, it may be necessary to solve the intermediate linear
systems more and more accurately, and there may be other restrictions along the way. But
this suggests that we should be interested in techniques that can approximate the solution
of linear equations using less work than the methods studied earlier. This will be the major
subject of chapters 8 and 9.

7.4.2 Approximate Jacobian

In section 2.2.4, we saw that the secant method can be more efficient than Newton’s method
depending on the relative cost of evaluating the function f and its derivative f ′. In multi-
dimensions, the dichotomy is even more compelling. In the case of Newton’s method, the
linear system to be solved at each step involves the Jacobian. Evaluating all the entries
in the Jacobian matrix Jf (x) requires O (n2) work, whereas evaluating f(x) requires only
O (n) work. A more subtle approximation is thus to evaluate the Jacobian operator only
approximately, even if the resulting approximate linear system is solved exactly. The class of
quasi-Newton methods are of this form [124]. The mathematics surrounding these methods
is very interesting, but lack of time and space forces us to leave this for section 7.5.

We will see that many iterative methods require access only to the operator action cor-
responding to the matrix in the linear system and not to the matrix itself. In the case of
Newton’s method, the operator in question is the Jacobian. There are iterative methods
that utilize this fact and are called matrix free methods. By Taylor’s theorem,

f(x0 + εx)− f(x0) ≈ Jf (x
0)εx+O

(
ε2‖x‖2

)
. (7.79)

Thus we can use the approximation

Jf (x
0)x ≈ ε−1

(
f(x0 + εx)− f(x0)

)
(7.80)

with a suitably chosen ε. Thus the action of the Jacobian operator Jf can be approximated
using only function evaluations of f [100].

7.5 More reading

The field of optimization is large and diverse, but the book [124] provides a good place to
start. Also see [97, 98]. Optimization on manifolds is the subject of [1]. For more on how
Newton’s method behaves for a singular Jacobian, see [46].

Draft September 23, 2016, do not distribute Page 116

CHAPTER 7. NONLINEAR SYSTEMS 7.6. EXERCISES

7.6 Exercises

Exercise 7.1 Suppose that g is a continuous function. Prove that, if fixed-point iteration
(7.4) converges to some ξ, then ξ is a fixed point, i.e., it satisfies (7.3).

Exercise 7.2 Prove theorem 7.1. (Hint: pick a norm ‖·‖ on Rn such that the corresponding
operator norm satisfies ‖Jg(ξ)‖ < 1. Now apply Taylor’s theorem in this norm.)

Exercise 7.3 Suppose that g(x) = x + f(x)− y, where y ∈ Rn is fixed. Show that Jg(x) =
I + Jf (x), where I denotes the n× n identity matrix.

Exercise 7.4 Prove Taylor’s theorem with an integral remainder in one dimension:

f(x)−
m−1∑
k=0

f (k)(y)

k!
(x− y)k

=
(x− y)m

(m− 1)!

∫ 1

0

(1− s)m−1f (m)(y + s(x− y)) ds

=
1

(m− 1)!

∫ x

y

(x− t)m−1f (m)(t) dt .

(7.81)

(Hint: integrate by parts successively in the expression on the right-hand side of (7.81) and
keep track of the terms that appear. Show that they are the same as on the left-hand side.)

Exercise 7.5 Prove (7.24) for k ≥ 3. (Hint: use induction. Apply the chain rule to the
case k − 1 as in (7.28).)

Exercise 7.6 The Hessian Hφ of a scalar function φ is the matrix of second derivatives

(Hφ(x))ij :=
∂2φ

∂xixj
(x). (7.82)

Prove that the Hessian of a scalar function is the Jacobian of its gradient.

Exercise 7.7 Verify (7.35). (Hint: write it out coordinatewise. That is, consider each
gj(x) = xj −

∑n
k=1 ajkfk(x) and just differentiate.)

Exercise 7.8 Verify (7.39). (Hint: use (7.44), or at least follow its derivation.)

Exercise 7.9 Apply Newton’s method to solve f(x) = (b2, c2), where f is defined in (7.2).

Exercise 7.10 Determine the set of points x at which the Jacobian Jf (x) is singular, where
f is defined in (7.2).

Exercise 7.11 Prove (7.45). (Hint: apply (7.29) for each coordinate ui and interpret the
corresponding terms.)

Draft September 23, 2016, do not distribute Page 117

7.6. EXERCISES CHAPTER 7. NONLINEAR SYSTEMS

Exercise 7.12 Weaken the α-condition in theorem 7.3 by the assumption that

‖Jf (x0)−1f(x0)‖∞ = ‖x1 − x0‖∞ ≤ a, (7.83)

where x1 is the Newton iterate obtained starting with x0, and weaken the β-condition in
theorem 7.3 by the assumption that only ‖J−1

f (x0)‖∞ ≤ b. Note that this allows Jf (y) to

be singular. Let c be the constant in (7.51). Assuming that abc ≤ 1
2
, prove that Newton’s

method converges. (Hint: see Theorem 3 in Chapter 3, Section 3.2 of [89]. Show that the
Jacobians ‖J−1

f (xk)‖∞ ≤Mk for some M <∞ as k →∞. Also see exercise 8.16.)

Exercise 7.13 Consider the operator ξ → Hf (x)ξ defined in (7.43) which maps Rn to Rn2
.

Show that this is a linear operator. That is, show that

Hf (x)(ξ1 + sξ2) = (Hf (x)ξ1) + s(Hf (x)ξ2) (7.84)

for all ξ1, ξ2 ∈ Rn and all s ∈ R. (Hint: just apply the definition and use associativity.)

Exercise 7.14 Let A be an n× n matrix. Prove that

‖A‖∞ ≤ n max
i,j=1,...,n

|aij|. (7.85)

Exercise 7.15 Consider the Hessian operator defined in (7.43). Show that

max
j,`=1,...,n

|(Hf (x)ξ)j,`| ≤ max
j,k,`=1,...,n

∣∣∣∣ ∂2fj
∂xkx`

(x)

∣∣∣∣ ‖ξ‖1. (7.86)

Exercise 7.16 Consider the Hessian operator defined in (7.43). Show that

‖Hf (x)ξ‖∞ ≤ n2 max
j,k,`=1,...,n

∣∣∣∣ ∂2fj
∂xkx`

(x)

∣∣∣∣ ‖ξ‖∞. (7.87)

(Hint: apply exercises 7.14 and 7.15 and use (5.9).)

Exercise 7.17 Consider the set Ω defined in (7.48). Prove that the constant α in (7.49)
may be bounded by

α ≤ R sup
x∈Ω
‖Jf (x)−1‖2‖Jf (x)‖2. (7.88)

(Hint: apply (7.25) for m = 1.)

Exercise 7.18 Suppose that n ≥ 2. Construct g : Rn → Rn such that α = g(α), 0 <
ρ(Jg(α)) < 1, and

lim
k→∞

‖xk − α‖
ρ(Jg(α))k

=∞, (7.89)

for initial guesses x0 ∈ Rn arbitrarily close to α. (Hint: contrast the one-dimensional case
in exercise 2.4. Pick g(x) = Mx for a suitable matrix M ; see (6.63).)

Draft September 23, 2016, do not distribute Page 118

CHAPTER 7. NONLINEAR SYSTEMS 7.7. SOLUTIONS

Exercise 7.19 Construct a smooth g : Rn → Rn with a fixed point α = g(α) and with the
property that ρ(Jg(α)) > 0 but such that

lim
n→∞

‖xn − α‖
ρ(Jg(α))n

= 0 (7.90)

for a suitable initial guess x0 ∈ Rn. (Hint: compare exercises 7.18 and 2.4. Pick the starting
guess so that all iterates lie in a lower-dimensional subspace orthogonal to the eigenvector
corresponding to the largest eigenvalue of Jg(α).)

Exercise 7.20 Prove that the iteration (r, λ) → (r̂, λ̂) defined in (7.64) converges quadrat-
ically for r near 1 and λ near zero. Verify computationally that for general starting values
the convergence is only linear.

Exercise 7.21 Verify the tensor eigenrelations stated in (7.77) for Q defined by (7.74) using
the matrices (7.76). Verify computationally the subsequent statements regarding the limiting
behavior of the iteration (7.75) for various starting vectors.

Exercise 7.22 Consider the iteration (7.75) with Q defined by (7.74) using the matrices
(7.78). Show that the iterates appear to be chaotic for typical starting vectors.

7.7 Solutions

Solution of Exercise 7.4. Suppose that m = 1. Then the statement is

f(x)− f(y) = (x− y)

∫ 1

0

f (1)(y + s(x− y)) ds. (7.91)

If we let t = y + s(x− y), then dt = (x− y)ds. Then we see that

(x− y)

∫ 1

0

f (1)(y + s(x− y)) ds =

∫ x

y

f (1)(t) dt = f(x)− f(y). (7.92)

Note that s = (t− y)/(x− y) and 1− s = (x− t)/(x− y). This shows that the two forms of
the remainder are the same after a change of variables.

We will think of s = s(t) as a function of t. Observe that s(x) = 1 and s(y) = 0. Using
the same approach as in (7.92) for general m, we find by integrating by parts that

(x− y)m

(m− 1)!

∫ 1

0

(1− s)m−1f (m)(y + s(x− y)) ds

=
(x− y)m−1

(m− 1)!

∫ x

y

(1− s(t))m−1f (m)(t) dt

=
(x− y)m−1

(m− 1)!

∫ x

y

(m− 1)(1− s(t))m−2s′(t)f (m−1)(t) dt

− (x− y)m−1

(m− 1)!
f (m−1)(y)

=
(x− y)m−1

(m− 2)!

∫ 1

0

(1− s)m−2f (m−1)(y + s(x− y)) ds

− (x− y)m−1

(m− 1)!
f (m−1)(y).

(7.93)

Draft September 23, 2016, do not distribute Page 119

7.7. SOLUTIONS CHAPTER 7. NONLINEAR SYSTEMS

That is, if we define

Rm−1 =
(x− y)m

(m− 1)!

∫ 1

0

(1− s)(m−1)f (m)(y + s(x− y)) ds, (7.94)

then we have proved that

Rm−1 = Rm−2 −
(x− y)m−1

(m− 1)!
f (m−1)(y). (7.95)

Moreover, we also showed that R0 = f(x)− f(y). Thus iterating (7.95) completes the proof.

Solution of Exercise 7.10. We have from (7.11) that

det Jf (x) = 4 (x1x2 − (x1 − a)x2) = 4ax2. (7.96)

Thus Jf is singular only along the line joining the two stations along the shore.

Solution of Exercise 7.17. In order to get the best error estimates in exercise 7.17, it
helps to be able to work with integrals of operators. Suppose that M(s) is a continuous
function of s ∈ R with values in Rn × Rn. Then

M =

∫ 1

0

M(s) ds

defines a matrix M . More precisely, for each i, j = 1, . . . , n, we define

Mij =

∫ 1

0

M(s)ij ds. (7.97)

Moreover, we can view this as defining an operator on Rn via

Mv =

∫ 1

0

M(s)v ds

for all v ∈ Rn. More precisely, for each j = 1, . . . , n, we define

(Mv)j =

∫ 1

0

(M(s)v)j ds. (7.98)

It is easy to see that the two definitions of Mv given using (7.97) and (7.98) agree.
If we have a sequence of operators M =

∑
iMi, we have

‖M‖ = ‖
∑
i

Mi‖ ≤
∑
i

‖Mi‖ (7.99)

via the triangle inequality. This follows by induction for finite sums, and by taking appro-
priate limits for infinite sums, assuming convergence of the right-hand side in (7.99). Using
Riemann sums and appropriate limits, we can similarly show that

‖
∫ 1

0

M(s) ds‖ ≤
∫ 1

0

‖M(s)‖ ds (7.100)

Draft September 23, 2016, do not distribute Page 120

CHAPTER 7. NONLINEAR SYSTEMS 7.7. SOLUTIONS

Familiar inequalities follow, such as

‖
(∫ 1

0

M(s) ds

)
v‖ ≤ ‖

∫ 1

0

M(s) ds‖‖v‖. (7.101)

We have ‖J−1
f (x)f(x)‖2 ≤ ‖J−1

f (x)‖2‖f(x)‖2 by (6.2). Using the hint and (7.25) with
m = 1, we have (recall f(y) = 0)

fj(x) = fj(y) +
∑
|ν|=1

(x− y)ν
∫ 1

0

Dνfj(x+ s(y − x)) ds

=

∫ 1

0

n∑
k=1

(x− y)jfj,k(x+ s(y − x)) ds

=

∫ 1

0

((x− y)TJf (x+ s(y − x)))j ds

for each j = 1, . . . , n. Therefore f(x) = (x− y)TM(x) where

M(x) =

∫ 1

0

Jf (x+ s(y − x)) ds

is well defined using Riemann sums and appropriate limits. Using (6.2) again, we have

sup
x∈Ω
‖f(x)‖2 ≤ R sup

x∈Ω
‖M(x)‖2.

For each x ∈ Ω, we have

‖M(x)‖2 = sup
06=v

‖M(x)v‖2

‖v‖2

and

M(x)v =

(∫ 1

0

Jf (x+ s(y − x)) ds

)
v =

∫ 1

0

Jf (x+ s(y − x))v ds

by using Riemann sums and appropriate limits. Therefore

‖M(x)v‖2 ≤
∫ 1

0

‖Jf (x+ s(y − x))v‖2 ds

≤
∫ 1

0

‖Jf (x+ s(y − x))‖2 ds‖v‖2

≤ sup
w∈Ω
‖Jf (w)‖2‖v‖2

Therefore
sup
x∈Ω
‖M(x)‖2 ≤ sup

x∈Ω
‖Jf (x)‖2,

and we conclude that

sup
x∈Ω
‖J−1

f (x)f(x)‖2 ≤ sup
x∈Ω
‖J−1

f (x)‖2 sup
x∈Ω
‖Jf (x)‖2,

as required.

Draft September 23, 2016, do not distribute Page 121

7.7. SOLUTIONS CHAPTER 7. NONLINEAR SYSTEMS

Draft September 23, 2016, do not distribute Page 122

Chapter 8

Iterative Methods

Niels Henrik Abel (1802–1829) achieved much in his short life and is
memorialized by the Abel prize, sometimes referred to as the Nobel
prize of mathematics. His name is used to denote commutativity in al-
gebra, and he made seminal contributions to the question of formulas for
roots of polynomials, which have implications for algorithms for finding
eigenvalues (section 14.4).

This chapter considers approximate solution techniques with potentially fewer operations
than the direct methods of chapters 3 and 4. Those methods have the property of producing
the exact answer (in exact arithmetic) in a predictable (finite) number of operations. How-
ever, the number of operations can approach astronomical proportions, and there is only
limited benefit with direct methods for sparse matrices (cf. section 4.3). Consider the family
of (2n− 1)× (2n− 1) matrices A which have

Aii = 2, Ai,i+1 = −1, Ai+n−1,i = −1 ∀i = 1, . . . , 2n− 1, (8.1)

with all other entries zero. Note that the bandwidth (section 4.3) of A is n− 1. In the case
n = 5, we have

A =

2 −1 0 0 0 0 0 0 0
0 2 −1 0 0 0 0 0 0
0 0 2 −1 0 0 0 0 0
0 0 0 2 −1 0 0 0 0
−1 0 0 0 2 −1 0 0 0
0 −1 0 0 0 2 −1 0 0
0 0 −1 0 0 0 2 −1 0
0 0 0 −1 0 0 0 2 −1
0 0 0 0 −1 0 0 0 2

. (8.2)

Since the bandwidth grows with n, even the banded direct methods in section 4.3 would
require O(n3) operations. We will see that iterative methods can produce acceptable results
in far fewer steps.

In many cases, we may be interested only in an approximate solution, say, with a specified
number of digits of accuracy. Moreover we saw in section 4.2, and will see in section 18.2,
that floating-point errors render direct methods to be only approximate in practice. Thus it
is reasonable to ask if there might be other methods that would provide approximate answers

123

8.1. STATIONARY ITERATIVE METHODS CHAPTER 8. ITERATIVE METHODS

in potentially fewer operations. Iterative methods may be of interest because they allow one
to stop when sufficient accuracy is reached, and they are self-correcting in that round-off
errors tend only to defer convergence not to deter it. In some cases, one might be interested
in a much lower level of accuracy from an approximation, so iterative methods similar to
those used to solve nonlinear equations might be of interest if there is the possibility of
monitoring the progress of the approximation. In particular, if the linear equation solution
is the inner loop in an algorithm for solving a nonlinear system, a perfect solution in the
intervening linear problems may not be useful.

8.1 Stationary iterative methods

We begin with a simple example, although it is one that captures the essence of stationary
methods. Suppose M is a given matrix. If we multiply the matrix I −M times the sum
I +M +M2 +M3 + · · · , we get a telescoping series:

(I −M)
n∑
k=0

Mk =
n∑
k=0

Mk −
n+1∑
k=1

Mk = I −Mn+1. (8.3)

If we are allowed to let n→∞, then this provides a formula for the inverse of I −M :

(I −M)−1 =
∞∑
k=0

Mk. (8.4)

Fortunately, we have a criterion for the validity of (8.4) as follows.

Lemma 8.1 Suppose that the spectral radius ρ(M) < 1. Then I−M is an invertible matrix
and the series in (8.4) converges to (I −M)−1.

Proof. The invertibility of I −M follows directly from ρ(M) < 1; if I −M is singular, then
0 is an eigenvalue, and thus 1 is an eigenvalue of M . We know by theorem 6.12 that Mn → 0
as n → ∞ if and only if ρ(M) < 1. Using (8.3) allows us to say that the partial sums of
matrices B(n) =

∑n
k=0M

k satisfy

B(n) = (I −M)−1(I −Mn+1). (8.5)

Therefore, the partial sums B(n) of the series in (8.4) tend to (I −M)−1 as n→∞. QED

8.1.1 An algorithm

We can use the formula (8.4) as the basis for an iterative algorithm to solve (I −M)x = f .
We can write x = (I−M)−1f and approximate the result by truncating the series (8.4). We
will see that it is possible to compute efficiently the result for n = 1, 2, . . . iteratively, and
we can stop the process once the approximation is sufficiently accurate. Thus suppose that
we want to compute successively, for increasing n,

xn =

(
n∑
k=0

Mk

)
f =

n∑
k=0

Mkf. (8.6)

Draft September 23, 2016, do not distribute Page 124

CHAPTER 8. ITERATIVE METHODS 8.2. GENERAL SPLITTINGS

To start with, we have x0 = f , and

xn+1 =
n+1∑
k=0

Mkf = f +
n+1∑
k=1

Mkf

= f +M

(
n∑
k=0

Mkf

)
= f +Mxn.

(8.7)

Thus the sequence xn defined in (8.6) can be computed by the simple iteration

x← f +Mx, (8.8)

starting with x← f . We leave the proof of the following as exercise 8.1.

Lemma 8.2 Suppose that the spectral radius ρ(M) < 1. Then the iteration (8.8) converges
to the solution of (I −M)x = f .

Note that (8.8) is fixed-point iteration for solving the equation

x = f +Mx, (8.9)

i.e., (I −M)x = f . The error en = x− xn satisfies

en = Mne0, (8.10)

so the convergence again follows from ρ(M) < 1.

8.1.2 General matrices

The algorithm (8.8) provides a way to solve a very special system, namely, (I −M)x = f .
But what if we have a general matrix problem of the form Ax = f to solve? Simply define
M = I −A. Then A = I −M , and we are in a position to apply the previous results. That
is, if ρ(I − A) < 1, then A is invertible, and the iteration

x← f + (I − A)x (8.11)

converges to a solution of Ax = f . We now consider more general algorithms of this type.

8.2 General splittings

The idea is to use a general splitting of the matrix A into A = N−P , where N is an invertible
matrix for which we are “willing” to solve systems directly. The splitting in section 8.1.2
corresponds to the splitting A = I − M = I − (I − A), so N = I. For example, N
could be a diagonal matrix or a triangular matrix, as systems with such matrices are easily
solved directly. The Jacobi1 method has N diagonal, and the Gauss-Seidel2 method has N
a triangular matrix.

1Carl Gustav Jacob Jacobi (1804–1851) (a.k.a. Jacques Simon) was applauded by Legendre as being “in
the ranks of the best analysts of our era” together with Abel (page 123).

2Philipp Ludwig von Seidel (1821–1896) was closely associated with Jacobi and worked on analysis as
well as in areas outside mathematics, including astronomy. He is credited with establishing, concurrently
with Stokes, the notion of uniform convergence (cf. [106, pp. 131–141] and also exercise 16.2).

Draft September 23, 2016, do not distribute Page 125

8.2. GENERAL SPLITTINGS CHAPTER 8. ITERATIVE METHODS

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100 120 140 160 180 200

Figure 8.1: The spectral radius of the Jacobi iteration matrix for the family of matrices
(8.1). The horizontal axis is the size (2n− 1) of the nth matrix.

Using the splitting, we convert the equation Ax = f to Nx = Px + f . Mathematically,
the sequence that is generated using this splitting is defined by solving

Nxn+1 = f + Pxn. (8.12)

We can cast this as a fixed-point problem (by formally inverting N) as x = N−1Px + g,
where Ng = f . Thus (8.12) takes the same form as (8.9), where M = N−1P (and f = g).
The convergence theory for such methods is simple iff M = N−1P = I−N−1A is convergent.

Theorem 8.3 Suppose that A = N − P with N invertible and that the spectral radius
ρ(N−1P) = ρ(I−N−1A) < 1. Then the iteration (8.12) converges to the solution of Ax = f .

8.2.1 Jacobi method

The Jacobi method [65] has N diagonal: N = diag(A), where diag(A) denotes the diagonal
matrix whose diagonal is the same as the diagonal of A. Therefore, the iteration takes the
special form

x← diag(A)−1f + (I − diag(A)−1A)x. (8.13)

The matrix MJ = (I − diag(A)−1A) for the Jacobi method is zero on the diagonal and
elsewhere involves just a simple scaling of A. We will see that MJ also plays a role in the
Gauss-Seidel method (section 8.2.2).

We show in figure 8.1 the spectral radius of the Jacobi iteration matrices for the the
family of matrices (8.1). Thus we see that in this example, the Jacobi interaction can be
very effective. We can show in certain cases that the diagonal scaling used to produce MJ

is a good idea, namely, when A is diagonally dominant.

Definition 8.4 An n× n matrix A is said to be diagonally dominant if

|aii| >
∑
j 6=i

|aij| (8.14)

Draft September 23, 2016, do not distribute Page 126

CHAPTER 8. ITERATIVE METHODS 8.2. GENERAL SPLITTINGS

for all i = 1, . . . , n.

The convergence estimate of this section says that when A is diagonally dominant, then
Jacobi converges. If A is diagonally dominant, then the Jacobi iteration matrix M = MJ

has the property that

n
max
i=1

n∑
j=1

|mij| =
n

max
i=1

∑
j 6=i

|aij/aii| = µ < 1. (8.15)

The maximal absolute row (respectively, column) sum of M can be identified as a particular
norm, ‖M‖∞ (respectively, ‖M‖1), as we describe in exercise 8.2. In particular, the constant
µ in (8.15) satisfies ‖M‖∞ = µ. Thus we have the following result.

Lemma 8.5 The matrix A is diagonally dominant if and only if

‖MJ‖∞ < 1, (8.16)

where MJ = I − diag(A)−1A denotes the Jacobi iteration matrix for A.

Corollary 8.6 If A is diagonally dominant, the Jacobi iteration (8.13) converges to the
solution of Ax = f .

Not only do we have a convergence condition, we also have a convergence estimate based
on the computable quantity µ = ‖MJ‖∞ (exercise 8.2). From (8.10), we have

‖en‖∞ ≤ µn‖e0‖∞. (8.17)

Note that if we start with x0 = 0, then e0 = x, so that (8.17) can be viewed as a relative-error
estimate.

Unfortunately, corollary 8.6 is far from sharp. Diagonal dominance is not necessary for
convergence of the Jacobi iteration. The matrices (8.1) represented in figure 8.1 are not
diagonally dominant, yet their spectral radii are well below 1. We return to this issue in
section 8.3.

8.2.2 Gauss-Seidel method

The easiest way to motivate the Gauss-Seidel algorithm3 is by considering the Jacobi algo-
rithm at the element-by-element level:

xn+1
i =

1

aii

(
fj −

∑
j 6=i

aijx
n
j

)
(8.18)

for i = 1, . . . , n. Note that precomputations could be done to avoid the repeated divisions,
but for n large, these do not add appreciably to the overall work.

3The relationship between the method described here and those considered by Gauss and Seidel is tenuous
[65], but Gauss definitely advocated iterative methods of this type in a letter to a colleague in which he said
the “procedure can be done while half asleep, or while thinking about other things” [64].

Draft September 23, 2016, do not distribute Page 127

8.2. GENERAL SPLITTINGS CHAPTER 8. ITERATIVE METHODS

If we write this using the assignment notation, it reads

yi ←
1

aii

(
fj −

∑
j 6=i

aijxj

)
∀i = 1, . . . , n, (8.19)

and once y has been computed, we update x: x← y. Consider the modified Jacobi algorithm
defined by

xi ←
1

aii

(
fj −

∑
j 6=i

aijxj

)
∀i = 1, . . . , n. (8.20)

For one thing, (8.20) avoids the need to keep a separate temporary vector y as needed in
(8.19). Moreover, it has the heuristic benefit of using the most recent values of xj as soon
as they are available. But to understand how it performs, we need to write it in different
notation as

xn+1
i =

1

aii

(
fj −

i−1∑
j=1

aijx
n+1
j −

n∑
j=i+1

aijx
n
j

)
(8.21)

for i = 1, . . . , n. We can write this as a system of equations for xn+1 as

i∑
j=1

aijx
n+1
j = fj −

n∑
j=i+1

aijx
n
j (8.22)

for i = 1, . . . , n. Now we can explain the algorithm (8.20) in terms of splitting. The system
(8.22) corresponds to solving Nxn+1 = f + Pxn, where N is the lower-triangular part of A
and −P is the strictly upper-triangular part of A:

N =

a11 0 · · · 0
a21 a22 · · · 0
· · ·
an1 an2 · · · ann

 and − P =

0 a12 · · · a1n

0 0 · · · a2n

· · ·
0 0 · · · 0

 . (8.23)

The performance of Gauss-Seidel for the family of matrices in (8.1) is very similar to
that of Jacobi (exercise 8.6). On the other hand, for the family of matrices indicated in
(4.20), the spectral radii of Jacobi and of Gauss-Seidel differ more substantially. In this
case, ρ(MJ) ≈ 1 − cJn−2 and ρ(MGS) ≈ 1 − cGSn−2, where CGS = 2CJ and CJ ≈ 1.234.
Since the error behaves like ρk after k iterations, as indicated in (8.17), we can estimate the
performance by considering the asymptotic behavior of

(1− ε)k = ek log(1−ε) ≈ e−εk. (8.24)

Thus we see that the error reduction with Jacobi for these matrices is about e−cJk/n
2
, and

for Gauss-Seidel it is about e−2cJk/n
2

= (e−cJk/n
2
)2. This means that it takes twice as many

iterations for Jacobi to reduce the error as much as Gauss-Seidel does. Thus Gauss-Seidel
shows a substantial performance improvement over Jacobi in this case, but both methods
require k = O(n2) to have substantial error reduction. In this case, the banded direct
methods are vastly superior.

A result analogous to corollary 8.6 can be proved (exercise 8.7). But we now examine
the convergence properties of general splittings.

Draft September 23, 2016, do not distribute Page 128

CHAPTER 8. ITERATIVE METHODS 8.2. GENERAL SPLITTINGS

8.2.3 Convergence of general splittings

There are simple calculations that give a general criterion for the convergence of general
splitting methods. This is useful in particular for establishing the convergence of Gauss-
Seidel and of Jacobi for an important class of matrices. Although we are generally interested
in only real matrices, we will consider complex matrices for the moment to get a complete
characterization.

To begin with, we establish a simple estimate that reveals a key matrix that governs the
success of general splittings.

Lemma 8.7 Suppose the matrix A is Hermitian and that the splitting matrix N in (8.12)
is nonsingular. Define the matrix

Q = N +N? − A. (8.25)

Then the subsequent iterations y = Mx = x−N−1Ax satisfy

y?Ay = x?Ax− (y − x)?Q(y − x). (8.26)

The expression
√
v?Bv forms a norm on v ∈ Cn under suitable conditions (exercise 8.8).

The interpretation of (8.26) is then that the norm of y is less than the norm of x (unless
y = x, in which case a fixed point has been reached).

Proof (of Lemma 8.7). We have Ny = Nx − Ax, so that N(y − x) = −Ax. Define
e = y − x. Then e?Ne = −e?Ax, and by conjugating this expression, we also have

e?N?e = e?Ne = −e?Ax = −x?Ae.

Therefore,

(y − x)?Q(y − x) = e?(N +N? − A)e = −e?Ax− x?Ae− e?Ae
= − e?Ax− (x+ e)?Ae = −e?Ax− y?Ae
= − y?Ax+ x?Ax− y?Ay + y?Ax

=x?Ax− y?Ay. QED

(8.27)

Lemma 8.8 Suppose that A is a Hermitian matrix and that the splitting matrix N in (8.12)
is nonsingular. Suppose that the matrix Q defined in (8.25) is positive definite. Then the
matrix M = I −N−1A satisfies ρ(M) < 1 if and only if A is positive definite.

Before proving the result, let us see why it is useful. For Gauss-Seidel, Q = diag(A),
where diag(A) denotes the diagonal matrix whose diagonal is the same as the diagonal of A.
When A is positive definite, diag(A) is always positive. Thus we have the following [141].

Corollary 8.9 Suppose that A is Hermitian with a positive diagonal. Then Gauss-Seidel is
convergent if and only if A is positive definite.

One simple corollary of this result is the following.

Theorem 8.10 Suppose that A is Hermitian and positive definite. Then Gauss-Seidel con-
verges.

Draft September 23, 2016, do not distribute Page 129

8.2. GENERAL SPLITTINGS CHAPTER 8. ITERATIVE METHODS

It appears that Gauss-Seidel provides a test for positive definiteness for a certain class of
matrices (Hermitian with a positive diagonal). This is not surprising since iterations of this
type are closely linked to the power method for determining eigenvalues (section 15.1).

Proof (of Lemma 8.8). Suppose that Mx = λx. Then λx = x − N−1Ax, and so
(1− λ)Nx = Ax. Thus

(1− λ)x?Nx = x?Ax. (8.28)

We are mainly interested in the “if” part of the theorem, so we start with that. So
suppose that A is positive definite. Then x?Ax > 0 since x 6= 0. In particular, this shows
that x?Nx 6= 0 and λ 6= 1. Moreover,

1

1− λ
=
x?Nx

x?Ax
. (8.29)

The complex conjugate of (8.29) is

1

1− λ̄
=
x?N?x

x?Ax
. (8.30)

Adding (8.29) and (8.30), we find

2Re 1

1− λ
=
x?(N +N?)x

x?Ax
=
x?(A+Q)x

x?Ax
= 1 +

x?Qx

x?Ax
, (8.31)

where Re z is the real part of z. Because we have assumed Q is positive definite, the last
term in (8.31) is positive, so (8.31) implies that

2Re 1

1− λ
> 1. (8.32)

Using the relation 1/z = z̄/|z|2 for any complex z, we reduce (8.32) to

2Re (1− λ̄) > |1− λ|2. (8.33)

Writing λ = µ+ iν, (8.33) expands to give

2(1− µ) > |1− µ|2 + ν2 = 1− 2µ+ µ2 + ν2. (8.34)

But (8.34) is precisely the condition 1 > µ2 + ν2, i.e., |λ| < 1.
For the “only if” case, we refer the reader to exercises 8.9 and 8.10. QED

For the Jacobi iteration, Q = 2 diag(A)−A, where diag(A) denotes the diagonal matrix
whose diagonal is the same as the diagonal of A. Suppose that A = I+B for some symmetric
matrix B. Then Q = I−B. Let the eigenvalues of B be denoted by λBi . Then the eigenvalues
of A are 1 + λBi , and those of Q are 1− λBi . Thus the condition for Jacobi to be convergent
is that

min{λBi } > −1 (A > 0) and max{λBi } < 1 (Q > 0). (8.35)

The Q-condition is clearly quite restrictive and indicates that diagonal dominance is quite
important for the success of the Jacobi method.

Draft September 23, 2016, do not distribute Page 130

CHAPTER 8. ITERATIVE METHODS8.3. NECESSARY CONDITIONS FOR CONVERGENCE

To give a concrete example, consider the matrix

A =

 6 −4 1
−4 6 −4
1 −4 6

 , (8.36)

which has positive eigenvalues (and is thus positive definite). The eigenvalues of the corre-
sponding Jacobi iteration matrix

MJ =
1

6

 0 4 −1
4 0 4
−1 4 0

 (8.37)

are 1/6 and (−1±
√

129)/12. The eigenvalue (−1−
√

129)/12 ≈ −1.03, and thus the Jacobi
iteration is not convergent for the matrix A defined in (8.36).

8.3 Necessary conditions for convergence

In section 8.2.3, we proved some theorems establishing necessary and sufficient conditions
for convergence of general splitting methods for a limited class of matrices. For more general
matrices, only limited results are available. However, it is possible to establish a result that
provides a converse to corollary 8.6. Moreover, it exposes some important structural features
of the Jacobi iteration.

The main weakness in using the concept of diagonal dominance to characterize the Jacobi
iteration is that it is not independent of scaling. Moreover, the Jacobi iteration itself is
invariant with respect to certain types of scaling. We can write the iteration matrix for the
Jacobi iteration for A as

MJ(A) = I − diag(A)−1A, (8.38)

where diag(A) denotes the diagonal matrix that agrees with A on the diagonal. Suppose
that B is a diagonal matrix. Then Ax = f iff BAx = Bf , and

MJ(BA) = I − diag(BA)−1BA = I − diag(A)−1B−1BA = MJ(A) (8.39)

since diag(BA) = B diag(A) (cf. exercise 8.12). Thus scaling by multiplication on the left
by a diagonal matrix does not change the convergence properties of Jacobi, and indeed the
two methods generate the same sequence of iterates (exercise 8.14). And by lemma 8.5, A
is diagonally dominant iff BA is diagonally dominant. However, diagonal scaling by right-
multiplication changes the concept of diagonal dominance substantially.

8.3.1 Generalized diagonal dominance

The notion of generalized diagonal dominance [92] captures the effect of scaling by right-
multiplication. For any v ∈ Rn, define diag(v) to be the diagonal matrix such that diag(v)ii =
vi. Note that

(A diag(v))ij = aijvj (8.40)

for all i, j. Let Rn
+ denote the subset of Rn consisting of vectors with positive entries.

Draft September 23, 2016, do not distribute Page 131

8.3. NECESSARY CONDITIONS FOR CONVERGENCECHAPTER 8. ITERATIVE METHODS

Definition 8.11 An n × n matrix A is said to satisfy generalized diagonal dominance (by

rows) if, for some positive scaling vector v ∈ Rn
+, Ã = A diag(v) is diagonally dominant, that

is,

vi|aii| >
∑
j 6=i

vj|aij| (8.41)

for all i = 1, . . . , n.

Analogous to lemma 8.5, we have the following result.

Lemma 8.12 The matrix A satisfies generalized diagonal dominance iff for some positive
scaling vector v ∈ Rn

+

‖I − diag(Ã)−1Ã‖∞ < 1, (8.42)

where Ã = A diag(v).

We saw that diagonal scaling of A on the left did not change the Jacobi iteration matrix.
Scaling on the right changes it via a similarity transformation.

Lemma 8.13 Suppose that v ∈ Rn
+ and A is any n×n matrix. Define Ã = A diag(v). Then

MJ(Ã) = diag(v)−1MJ(A)diag(v). (8.43)

Thus the Jacobi iteration (8.13) converges to the solution of Ax = f iff the Jacobi iteration

converges to the solution of Ãy = g.

The proof of the latter statement could proceed by relating the iterates of the Jacobi
method for A and Ã. We leave this approach as exercise 8.15. Instead, we argue more
abstractly by exploiting the relationship (8.43) between their respective Jacobi iterations
matrices.

Proof. By (8.40), we see that

diag(A diag(v)) = diag(A)diag(v). (8.44)

Therefore,

MJ(A diag(v)) = I − diag(A diag(v))−1A diag(v)

= I − diag(v)−1diag(A)−1A diag(v)

= diag(v)−1
(
I − diag(A)−1A

)
diag(v)

= diag(v)−1MJ(A)diag(v).

(8.45)

Since (8.45) represents a similarity transformation,

ρ(MJ(A diag(v))) = ρ(MJ(A)) (8.46)

(exercise 6.10). Thus the Jacobi iteration for A converges iff the Jacobi iteration for Ã
converges. QED

Analogous to corollary 8.6, we have the following result.

Draft September 23, 2016, do not distribute Page 132

CHAPTER 8. ITERATIVE METHODS8.3. NECESSARY CONDITIONS FOR CONVERGENCE

Corollary 8.14 If A satisfies generalized diagonal dominance, the Jacobi iteration (8.13)
converges to the solution of Ax = f .

Proof. By lemma 8.13, theorem 6.2, and lemma 8.12,

ρ(MJ(A)) = ρ(MJ(A diag(v))) ≤ ‖MJ(A diag(v))‖∞ < 1. (8.47)

QED

Under certain conditions [92], generalized diagonal dominance provides a necessary con-
dition for the convergence of Jacobi (and Gauss-Seidel). Rather than deriving conditions on
A that are necessary for convergence, we take the point of view that the issue is to estimate
the spectral radius of the Jacobi iteration matrix more effectively. However, we will see that
this leads to the same results.

8.3.2 Estimating the spectral radius

We know that the convergence of Jacobi depends precisely on the size of the spectral radius
ρ(MJ). Thus what is needed is a better way to estimate ρ(MJ). We will do this in the case
where MJ is nonnegative, as is the case with the families of matrices (4.20) and (8.1). But
first we establish an identity for a general matrix A.

For v ∈ Rn
+, define a new norm on Rn by

‖x‖v = ‖diag(v)x‖∞ (8.48)

(cf. exercise 6.14). Note that (exercise 6.13)(
diag(v)A diag(v)−1

)
ij

=
vi
vj
aij (8.49)

for any matrix A (exercise 8.17). Then the associated operator norm satisfies

‖A‖v = max
x 6=0

‖diag(v)Ax‖∞
‖diag(v)x‖∞

= max
y 6=0

‖diag(v)A diag(v)−1y‖∞
‖y‖∞

[y = diag(v)x]

= ‖diag(v)A diag(v)−1‖∞

= max
i=1,...,n

n∑
j=1

vi
vj
|aij|. [by (8.49) and exercise 8.2]

(8.50)

Note that by theorem 6.2,

ρ(A) ≤ inf
v∈Rn+
‖A‖v. (8.51)

The following result says that we can effectively approximate the spectral radius using the
∞-norm with the appropriate weight.

Draft September 23, 2016, do not distribute Page 133

8.3. NECESSARY CONDITIONS FOR CONVERGENCECHAPTER 8. ITERATIVE METHODS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80 90 100

Figure 8.2: The eigenvector of the Jacobi iteration matrix for the family of matrices (8.1)
for n = 50. The horizontal axis is the index of the eigenvector.

Lemma 8.15 Suppose that M is a nonnegative n×n matrix with a positive eigenpair λ > 0
and x > 0, i.e., Mx = λx and x = (x1, . . . , xn) with xi > 0 for all i = 1, . . . , n. Then

ρ(M) = min
v∈Rn+
‖M‖v = ‖M‖w, (8.52)

where wi = 1/xi for all i = 1, . . . , n.

Proof. In view of (8.51), we just need to verify that ρ(M) = ‖M‖w. But by (8.50),

ρ(M) ≤ ‖M‖w = max
i=1,...,n

n∑
j=1

xj
xi
|mij| = max

i=1,...,n

1

xi

n∑
j=1

xjmij

= max
i=1,...,n

1

xi
λxi = λ ≤ ρ(M).

(8.53)

QED

For the matrix in (8.1) for n = 50, figure 8.2 depicts the eigenvector corresponding to the
eigenvalue λ = ρ(M) for the associated Jacobi iteration matrix. This depicts the weighting
vector w in lemma 8.15 for this matrix.

The proof of lemma 8.15, and more precisely (8.53), leads to the following result, which
says that the only positive eigenvalue associated with a positive eigenvector for a nonnegative
matrix M is λ = ρ(M).

Corollary 8.16 Suppose that M is a nonnegative n × n matrix with a positive eigenpair
λ > 0 and x > 0. Then λ = ρ(M).

Draft September 23, 2016, do not distribute Page 134

CHAPTER 8. ITERATIVE METHODS8.3. NECESSARY CONDITIONS FOR CONVERGENCE

8.3.3 Convergence conditions

If A is a matrix with positive diagonal and negative off-diagonal entries, then the Jacobi
iteration matrix MJ(A) = I − diag(A)−1A is nonnegative. Thus if MJ(A) has a positive
eigenpair λ > 0 and x > 0, we conclude from lemma 8.15 that Jacobi converges only if
‖MJ(A)‖w < 1, where wi = 1/xi for i = 1, . . . , n. We now show that this implies that A
satisfies generalized diagonal dominance. By (8.50), for all i = 1, . . . , n,

aiixi > aiixi

n∑
j=1

xj
xi
mij = aiixi

n∑
i 6=j=1

xj
xi

|aij|
aii

=
n∑

i 6=j=1

xj|aij|. (8.54)

Thus we have proved the following result.

Theorem 8.17 Suppose A is a matrix with positive diagonal and negative off-diagonal en-
tries and that the Jacobi iteration matrix

MJ(A) = I − diag(A)−1A

has a positive eigenpair λ > 0 and x > 0. If the Jacobi method for A is convergent, then A
satisfies generalized diagonal dominance (8.41) with v = x.

Fortunately, simple additional conditions are known that guarantee the existence of pos-
itive eigenpairs for positive matrices, as we describe in the section 8.3.4. Thus theorem 8.17
provides a broadly applicable converse to corollary 8.14.

8.3.4 Perron-Frobenius theorem

The Perron4-Frobenius5 theorem provides a sufficient condition to guarantee the existence
of the positive eigenpair appearing in lemma 8.15. The result holds for a nonnegative matrix
provided that it cannot be decomposed in a particular way.

Definition 8.18 An n× n matrix A is said to be reducible if the indices can be partitioned
into two sets

{1, 2, . . . , n} = {i1, . . . , ik} ∪ {j1, . . . , jl}, (8.55)

where n = k + l, with aiκ,jν = 0 for all κ = 1, . . . , k and ν = 1, . . . l. If no such partition
exists, A is said to be irreducible.

Theorem 8.19 Suppose that M is a nonnegative n × n irreducible matrix. Then it has a
positive eigenpair λ > 0 and x > 0, i.e., Mx = λx and x = (x1, . . . , xn) with xi > 0 for all
i = 1, . . . , n. Moreover, λ = ρ(M).

This theorem can be proved by considering the power method for computing eigenpairs,
so we postpone it until chapter 14.

Note that the concept of reducibility relates only to off-diagonal elements of a matrix.
Since indices of the nonzero off-diagonals of A and the Jacobi iteration matrix Mj(A) are
the same, we conclude that A is reducible iff MJ(A) is reducible. Thus we have the following
theorem.

4Oskar Perron (1880–1975) was, like David Hilbert, Hermann Minkowski, Arnold J. W. Sommerfeld, and
Martin Kutta (see page 292), a student of Lindemann, who was in turn a student of Felix Klein.

5See page 85.

Draft September 23, 2016, do not distribute Page 135

8.4. MORE READING CHAPTER 8. ITERATIVE METHODS

Theorem 8.20 Suppose that A is an n×n irreducible matrix that is positive on the diagonal
and negative off-diagonal. Then the Jacobi iteration converges iff A satisfies generalized
diagonal dominance.

8.4 More reading

For further information, see [13, 75, 176]. There are many variants and generalizations
of Jacobi and Gauss-Seidel iterations. In particular, parallel computation introduces new
constraints and leads to novel algorithms [150]. Algorithms have been proposed [109] to
determine whether a given matrix satisfies general diagonal dominance.

8.5 Exercises

Exercise 8.1 Prove lemma 8.2. (Hint: see the proof of lemma 8.1; note that xn = B(n)f .)

Exercise 8.2 Let B be an n× n matrix. Prove that the maximum absolute row sum can be
identified as

n
max
i=1

n∑
j=1

|Bij| = ‖B‖∞ (8.56)

and that the maximum absolute column sum can be identified as

n
max
j=1

n∑
i=1

|Bij| = ‖B‖1. (8.57)

Exercise 8.3 Consider the iteration matrix for the general splitting method M = I−N−1A,
where N is any invertible matrix. Show that if λ = 1 is an eigenvalue of M , then A cannot
be invertible. (Hint: see the derivation of (8.28).)

Exercise 8.4 Consider the iteration matrix for the general splitting method M = I−N−1A,
where N is any invertible matrix. Show that if M is invertible and ρ(M) < 1, then successive
iterations y1 = My0 + b must satisfy y1 6= y0 unless y0 = x where x is the fixed point
x = Mx+ b. (Hint: consider successive errors ei = yi − x.)

Exercise 8.5 Consider the iteration matrix for the general splitting method M = I−N−1A,
where N is any invertible matrix. Show that if M is invertible and ρ(M) < 1, then fixed
point iteration cannot converge in a finite number of steps, unless we start with the exact
fixed point as initial iterate. (Hint: consider successive errors ei = yi − x.)

Exercise 8.6 Compare the Jacobi iteration with the Gauss-Seidel iteration for the family of
matrices in (8.1). Take for the right-hand side a vector F with all entries equal to 1, and
take for starting vector X0 = 0 in both cases. Compare the error for the two methods as a
function of the number of iterations. How does this change with the size of the matrices in
(8.1) (that is, for different n)?

Draft September 23, 2016, do not distribute Page 136

CHAPTER 8. ITERATIVE METHODS 8.5. EXERCISES

Exercise 8.7 Suppose that the Jacobi iteration matrix MJ = I−D−1A, where D = diag(A)
is the diagonal matrix that agrees with A on the diagonal, satisfies ‖MJ‖∞ < 1. Prove that
Gauss-Seidel converges, in particular, that ‖MGS‖∞ < 1. (Hint: at each iteration, where
y = MGSx, proceed by induction on i to show that |yi| ≤ ‖MJ‖∞‖x‖∞.)

Exercise 8.8 Prove that the expression ‖v‖B :=
√
v?Bv defines a norm on Cn provided that

B is Hermitian and positive definite. Compare this with exercise 6.14 and explain how the
two results relate to each other.

Exercise 8.9 Suppose A, M , and Q are as in lemma 8.8 and that ρ(M) < 1. Show that
x?Ax ≥ 0 for all eigenvectors of M . (Hint: reverse the proof of the “if” case in lemma 8.8.)

Exercise 8.10 Suppose A, M , and Q are as in lemma 8.8 and that ρ(M) < 1. Prove that
A has to be positive definite. (Hint: Show that x?Ax ≤ 0 implies that y?Ay < 0, where
y = Mx, by using exercise 8.4. Show that all subsequent iterates w = Mnx for n > 1 satisfy
w?Aw < y?Ay and hence that the w’s cannot tend to zero, yielding a contradiction.)

Exercise 8.11 Show that the matrix in (8.36) is positive definite. Compute the correspond-
ing Jacobi iteration matrix and determine its eigenvalues. Show that one of them exceeds 1 in
absolute magnitude. Verify that the corresponding matrix Q, in the condition in lemma 8.8,
is not positive definite.

Exercise 8.12 Suppose B is an n× n diagonal matrix. Show that for any n× n matrix A,

diag(BA) = B diag(A). (8.58)

Exercise 8.13 Suppose that A = I −M , where M is nonnegative and irreducible and sat-
isfies diag(M) = 0. Prove that if the Jacobi iteration for solving Ax = f converges for
any f and initial guess, then A has to satisfy generalized diagonal dominance. (Hint: use
theorem 8.19 to guarantee a positive eigenpair and see lemma 8.15 to define an appropriate
weight as needed in definition 8.11.)

Exercise 8.14 Suppose B is an n× n diagonal matrix. Show that the Jacobi iterations for
solving Ax = f and BAx = Bf generate the same sequence of iterates xn.

Exercise 8.15 Suppose A is an n× n matrix and v ∈ Rn
+. Show that the Jacobi iterations

for solving Ax = f and A diag(v)y = f generate sequences of iterates xn and yn related by
diag(A)yn = xn.

Exercise 8.16 Suppose that ‖M‖ < 1 for some norm. Prove that I −M is invertible and

‖(I −M)−1‖ ≤ 1

1− ‖M‖
. (8.59)

(Hint: compare lemma 8.1.)

Exercise 8.17 Prove (8.49). (Hint: see exercise 6.13.)

Draft September 23, 2016, do not distribute Page 137

8.6. SOLUTIONS CHAPTER 8. ITERATIVE METHODS

Exercise 8.18 Show that the mapping z → 1/(1−z) maps the unit circle (minus one point){
z = cos θ + i sin θ

∣∣ 0 < θ < 2π
}

to the line{
z = 1

2
+ it

∣∣ t ∈ R
}
. (8.60)

Exercise 8.19 Suppose that A is an n × n Hermitian matrix (A? = A) such that diag(A)
has all positive entries. Show that if A is diagonally dominant, then A is positive definite.
(Hint: apply exercise 8.7 and corollary 8.9.)

Exercise 8.20 Prove a converse to lemma 8.2. That is, suppose that the iteration (8.8)
converges for any f and any starting vector. Prove that the spectral radius ρ(M) < 1.

Exercise 8.21 Consider an n × n matrix M with ρ(M) < 1, and suppose that M is not
invertible. Consider successive iterations y1 = My0 + b and the corresponding errors ei =
yi−x with respect to the fixed point x = Mx+ b. Show that it is possible to have e1 = 0 with
e0 6= 0, meaning that the iteration can terminate in a finite number of steps. What starting
vector y0 is required in this case?

Exercise 8.22 Consider an n×n matrix M with ρ(M) < 1 and successive iterations xk+1 =
Mxk + f , with x0 = 0 and f 6= 0. If we found xk ∈ kerM for some k > 1, then the sequence
would cycle: xlk+j = xj = f + · · · + M j−1f for all j = 1, . . . , k. Explain why this cannot
happen unless xk = f for all k, i.e., f ∈ kerM . (Hint: prove that Mf = 0.)

Exercise 8.23 Consider an n×n matrix M that is nilpotent (see the proof of lemma 6.14).
Consider successive iterations xk+1 = Mxk + b, with x0 = 0. Prove that the sequence
converges in a finite number of steps.

8.6 Solutions

Solution of Exercise 8.2. Define

µ =
n

max
i=1

n∑
j=1

|Bij|. (8.61)

Then for any x ∈ Rn and any i = 1, . . . , n,

|(Bx)i| =
∣∣∣ n∑
j=1

Bijxj

∣∣∣
≤

n∑
j=1

|Bij| |xj|

≤µ‖x‖∞.

(8.62)

Therefore, ‖Bx‖∞ ≤ µ‖x‖∞. Since x ∈ Rn was arbitrary, ‖B‖∞ ≤ µ.

Draft September 23, 2016, do not distribute Page 138

CHAPTER 8. ITERATIVE METHODS 8.6. SOLUTIONS

Pick i so that the ith absolute row sum equals µ, which we can assume is positive (if
µ = 0, the previous estimate shows that ‖B‖∞ = 0). Define xj = sign(Bij) for j = 1, . . . , n,
where sign(t) is +1 if t > 0, −1 if t < 0, and 0 for t = 0. Then

(Bx)i =
n∑
j=1

Bijxj =
n∑
j=1

|Bij| = µ. (8.63)

Therefore, ‖Bx‖∞ ≥ µ, which incidentally shows that x 6= 0. Since ‖x‖∞ = 1, we have
‖B‖∞ ≥ µ, as claimed.

Now define µ to be the maximum absolute column sum:

µ =
n

max
j=1

n∑
i=1

|Bij|. (8.64)

Then for any x ∈ Rn,

‖Bx‖1 =
n∑
i=1

|(Bx)i| =
n∑
i=1

∣∣∣ n∑
j=1

Bijxj

∣∣∣
≤

n∑
i,j=1

|Bij| |xj| ≤ µ‖x‖1.

(8.65)

Since x ∈ Rn was arbitrary, ‖B‖1 ≤ µ.
Pick j so that the jth absolute column sum equals µ, which we can assume is positive (if

µ = 0, the previous estimate shows that ‖B‖1 = 0). Define xi = δij for i = 1, . . . , n, where
δ is the Kronecker symbol. Then

(Bx)i =
n∑
k=1

Bikxk = Bij. (8.66)

Therefore, ‖Bx‖1 = µ. Since ‖x‖1 = 1, we have ‖B‖1 ≥ µ. Therefore, ‖B‖1 = µ, as claimed.

Solution of Exercise 8.9. Much of the “if” case argument is reversible. In particular, we
showed that |λ| < 1 if and only if 2Re (1−λ)−1 > 1. Moreover, as long as x?Ax is not zero,
(8.31) is still valid, and so |λ| < 1 implies that

x?Qx

x?Ax
= 2Re 1

1− λ
− 1 > 0. (8.67)

This implies that x?Ax > 0.

Solution of Exercise 8.15. The sequence of iterates for the Jacobi method for solving
Ax = f is

xn+1 = (I − diag(A)−1A)xn + g, (8.68)

where g = diag(A)−1f . The sequence of iterates for the Jacobi method for solving Ãy = f is

yn+1 = (I − diag(Ã)−1Ã)yn + g̃, (8.69)

Draft September 23, 2016, do not distribute Page 139

8.6. SOLUTIONS CHAPTER 8. ITERATIVE METHODS

where g̃ = diag(Ã)−1f . Then by (8.44),

diag(Ã)−1 = diag(v)−1 diag(A)−1,

so that

diag(v)yn+1 =
(
diag(v)− diag(A)−1A diag(v)

)
yn + diag(v)g̃

=
(
I − diag(A)−1A

)
diag(v)yn + g,

(8.70)

which agrees with (8.68) with xn = diag(v)yn.

Draft September 23, 2016, do not distribute Page 140

Chapter 9

Conjugate Gradients

In a letter to a colleague in 1824, Abel (see page 123) wrote “in analysis
one is largely concerned with functions that can be represented by power-
series. As soon as other functions enter—and this happens rarely—then
[induction] does not work any more and an infinite number of incorrect
theorems arise from false conclusions” [106].

The conjugate gradient (CG) method was perceived for some time as a direct method
for solving systems of linear equations. In exact arithmetic, the method produces the exact
solution in a finite number of steps. More precisely, for an n × n matrix, CG “converges”
in at most n steps. The advantages of conjugate gradients as an iterative method were not
widely appreciated until much later. Not only does CG provide good approximate solutions
with fewer iterations than what is required to produce an exact result, it can also be seen
to be a more adaptive procedure than the stationary iterative methods studied previously
in section 8.1.

We will develop the method in a sequence of steps to put it in context. It can be applied
to symmetric, positive definite matrices, so we will limit our discussion to linear systems
with such matrices.

9.1 Minimization methods

If A is an n × n symmetric, positive definite matrix, then there is a naturally associated
inner product

(u, v)A = uTAv (9.1)

defined for u, v ∈ Rn. As with any inner product, there is an associated norm (cf. exercise 8.8)

‖u‖A =
√

(u, u)A . (9.2)

We will see that minimization algorithms can be viewed as an interplay between the inner
product (u, v)A and the natural Euclidean inner product, which in this notation can be
written

(u, v)I = uTv (9.3)

for u, v ∈ Rn. First, there is the obvious relationship (exercise 9.2)

(u, v)A = (Au, v)I = (u,Av)I . (9.4)

141

9.1. MINIMIZATION METHODS CHAPTER 9. CONJUGATE GRADIENTS

There is also a naturally associated quadratic function of v ∈ Rn defined by

QA(v)A = 1
2
(v, v)A − (f, v)I (9.5)

defined for any f ∈ Rn. The relationship between these inner products is expressed in the
following lemma.

Lemma 9.1 The minimum of QA occurs at u ∈ Rn, which is the solution of the equation

Au = f. (9.6)

Proof. The proof for n = 1 is elementary (exercise 9.3). In general, we can reduce it to a
one-dimensional problem by expanding, for u, v ∈ Rn and t ∈ R,

QA(u+ tv)A =QA(u) + t(u, v)A + 1
2
t2(v, v)A − t(f, v)I

=QA(u) + t(uTA− fT)v + 1
2
t2(v, v)A

=QA(u) + t(Au− f, v)I + 1
2
t2(v, v)A,

(9.7)

where we used the symmetry of A in the last equality. Thus QA(u+tv)A = α+βt+γt2, where
β = (Au− f)Tv = (Au− f, v)I . A quadratic q(t) = α+ βt+ γt2 with γ > 0 has a minimum
at t = 0 iff β = 0 (exercise 9.5). Therefore, the minimum u of QA(u) is characterized by

(Au− f)Tv = 0 ∀v ∈ Rn. (9.8)

Setting v = Au − f , we conclude that (9.6) must hold if (9.8) holds, and the converse is
obvious. QED

Thus a natural strategy to approximate the solution of Au = f is to minimize QA.

9.1.1 Descent methods

The geometry of the function (9.1) to be minimized is quite simple. When f = 0, the graph
of QA is a simple elliptical bowl. When f 6= 0, the picture is tilted slightly. Thus a natural
approach is to pick a search direction s 6= 0 in which QA is decreasing and proceed in that
direction until you start to go up again. Suppose that u0 is our starting point. We search
for the optimum along a line including the point u0 that is parallel to s; this part of the
algorithm is called a line search. This corresponds to minimizing the problem

QA(u0 + ts)A =QA(u0) + t(Au0 − f, s)I + 1
2
t2(s, s)A (9.9)

in view of (9.7), where t is a scalar that measures the distance we have gone.

Definition 9.2 If u0 is the current approximation of the solution u of the equation Au− f ,
then the residual r is defined by

r = Au0 − f. (9.10)

Draft September 23, 2016, do not distribute Page 142

CHAPTER 9. CONJUGATE GRADIENTS 9.1. MINIMIZATION METHODS

 e + t s

e

s

0

Figure 9.1: The ellipse indicates points in the plane determined by s and e that have the
same norm. The solid line indicates the set of points ts for t ∈ R, and the dashed line
indicates the set of points e+ ts for t ∈ R.

The residual provides a way to monitor the approximation process. For example, if r = 0
then Au0 = f , i.e., u0 = u. In general, we can define the error by

e = u0 − u, (9.11)

and we find that the error satisfies an equation with the residual as the right-hand side:

Ae = r. (9.12)

Thus e = A−1r is small if r is small (and A−1 is not too large).
The minimum in (9.9) occurs where the derivative with respect to t is zero:

tmin = −(Au0 − f, s)I
(s, s)A

= − (r, s)I
(s, s)A

= −(Ae, s)I
(s, s)A

= −(e, s)A
(s, s)A

(9.13)

(cf. exercise 9.6 for the last step). Then the next position in our descent process will be
u0 + tmins.

It is important to realize that line search really does search the entire line (in both
directions), so that the search direction does not matter. That is, using s and −s give the
same result: the resulting product tmins, where tmin is defined in (9.13), is the same. If you
change the sign of s, you change the sign of tmin.

There is a geometric interpretation of the value of t in (9.13) (see figure 9.1). The value
of t is the length (in the norm ‖ · ‖A) of e in the direction s, with the sign of t indicating
whether e correlates with plus or minus s. Note that we do not know u, and thus we do not
know e. Nevertheless, we can compute t (via the first or second equality) and find out the
size of e in the direction s. Consider minimizing

‖e+ ts‖2
A = ‖e‖2

A + 2t(e, s)A + t2‖s‖2
A (9.14)

over all t. Differentiating with respect to t and setting the result to zero, we find that t is
given again by (9.13). Therefore, we have proved the following.

Lemma 9.3 Minimizing (9.9) is equivalent to minimizing (9.14). The minimum occurs at
the value of t given in (9.13).

Draft September 23, 2016, do not distribute Page 143

9.1. MINIMIZATION METHODS CHAPTER 9. CONJUGATE GRADIENTS

This can be visualized in figure 9.1. Remarkably, we are able to cause the maximum
decrease in the error (in the norm ‖ · ‖A) in the descent direction s by minimizing (9.9),
even though we do not know e. An alternative interpretation is found in exercise 9.7, which
shows that

2QA(v) = (u− v, u− v)A − (u, u)A (9.15)

for all v ∈ Rn. That is, QA(v) differs from 1
2
‖u− v‖2

A by a constant (1
2
‖u‖2

A), so minimizing
QA is equivalent to minimizing the error u− v in the A-norm.

At the minimum value given by (9.13), we find that (9.14) reduces to

‖e+ tmins‖2
A = ‖e‖2

A −
(e, s)2

A

‖s‖2
A

= ‖e‖2
A − t2min‖s‖2

A. (9.16)

Thus unless rTs = (r, s)I = (e, s)A = 0, the error is decreased at each step. In fact, (9.13)
implies that the largest step, and thus the largest decrease in error, will occur if s = αr for
some scalar α.

9.1.2 Descent directions

Now we turn to the question of finding good descent directions. The best possible descent
direction would be the error e, but we do not know how to evaluate this. Instead, we can
minimize QA; to do so, we compute the gradient ∇QA(u0) of the expression (9.5). This
vector points in the direction of the maximum increase of QA(u0), so

s = −∇QA(u0) (9.17)

points in the direction of the greatest decrease.
Computing the gradient of the quadratic QA is possible by calculus, but we can also infer

it from Taylor’s theorem:

QA(u0 + v) = QA(u0) +∇QA(u0) · v +O(v2). (9.18)

Comparing with the expansion (9.7), we find

∇QA(u0) = Au0 − f = r. (9.19)

Thus we see that (minus) the residual provides the direction of maximum descent, in concert
with the observation at the end of section 9.1.1 that s = αr provides the greatest error
reduction.

9.1.3 The gradient descent method

Suppose we decide to descend in the direction of the gradient at each step (so s = −r) and
to proceed as far as the minimum at each step (so t = tmin). Since the notation gets denser
at this point, we switch to denoting the scalar tmin by α. This corresponds to taking

rk =Auk − f

αk =
(rk, rk)I
(rk, rk)A

uk+1 =uk − αkrk.

(9.20)

Draft September 23, 2016, do not distribute Page 144

CHAPTER 9. CONJUGATE GRADIENTS9.2. CONJUGATE GRADIENT ITERATION

−r
0

e
k

k

Figure 9.2: The ellipse indicates points in the plane determined by rk and uk that have the
same norm.

The error ek = uk − u at each step satisfies

ek+1 = uk+1 − u = uk − αkrk − u = ek − αkrk. (9.21)

The error ek = uk − u at each step is reduced, in view of (9.16), by

‖ek+1‖2
A = ‖ek‖2

A −
(rk, rk)

2
I

‖rk‖2
A

= ‖ek‖2
A −

(rk, ek)
2
A

‖rk‖2
A

. (9.22)

Although the gradient descent method makes the maximal reduction in QA, it is not the
direction that minimizes the error ek; that direction would be −ek. This sort of greedy
algorithm can be improved by an algorithm with a more global view. The difficulty can
be seen in figure 9.2. When the norm ‖ · ‖A is not very isotropic, the direction of greatest
descent for QA may not be the best global strategy for reducing the error.

9.2 Conjugate Gradient iteration

The conjugate gradient method uses a more sophisticated choice for the search directions
sk. Instead of just using the current residual (sk = −rk), the direction is chosen to be
orthogonal (conjugate) to previous residuals. This avoids repeating previous mistakes, or
rather it avoids repeating directions already traversed.

9.2.1 The basic iteration

We switch notation temporarily and consider solving Cy = g, where C is an n× n positive
definite matrix. We define sequences {yk, rk, sk} ⊂ Rn × Rn × Rn and {αk, βk} ⊂ R× R as
follows. We assume that an initial approximation y0 is given, and we define

s0 = r0 = Cy0 − g. (9.23)

The main iteration steps proceed for k = 0, 1, 2, . . . by defining

αk = − (rk, sk)I
(sk, sk)C

= −(rk, sk)I
(sk, zk)I

(9.24)

yk+1 = yk + αksk, (9.25)

zk = Csk, (9.26)

rk+1 = Cyk+1 − g = rk + αkCsk = rk + αkzk, (9.27)

Draft September 23, 2016, do not distribute Page 145

9.2. CONJUGATE GRADIENT ITERATIONCHAPTER 9. CONJUGATE GRADIENTS

k+1

k

k+1

s

r

s

Figure 9.3: Search directions and residuals in Conjugate Gradients. The choice of αk in
(9.24) insures that rk+1 ⊥I sk, and the choice of βk in (9.28) insures that sk+1 ⊥C sk.

βk = −(rk+1, sk)C
(sk, sk)C

= −(rk+1, zk)I
(sk, zk)I

(9.28)

sk+1 = rk+1 + βksk. (9.29)

We can interpret these definitions as follows.
Equations (9.24) and (9.25) represent the descent method with direction sk.
Equation (9.26) can be viewed as just a definition, but it is also the only time in the

iteration where the matrix C is applied to a vector. Thus it is the most computationally
intense step.

The first equation in (9.27) defines the residual in the usual way, and the second equation
follows because (9.25) implies that

rk+1 = Cyk+1 − g = C(yk + αksk)− g = rk + αkCsk. (9.30)

The third equation in (9.27) follows from (9.26).
Equations (9.28) and (9.29) define the new descent direction. The second equation in

(9.28) follows from (9.26) and (9.4). Thus the conjugate gradient method is just a descent
method in which the descent direction is derived from, but not equal to, the residual.

The choice of αk in (9.24) insures that rk+1 ⊥I sk. The choice of βk in (9.28) insures
that sk+1 ⊥C sk. These orthogonalities are depicted only schematically in figure 9.3 since
the geometry is different for the two orthogonalities. Here, a ⊥M b means (a, b)M = 0.

We have presented various forms for the coefficients αk and βk to indicate more efficient
ways to evaluate them. Note that only one matrix multiplication is required in (9.24)-(9.29),
the evaluation of zk in (9.26). The different forms also simplify subsequent derivations. We
will also derive other forms for these coefficients that can be used in alternate algorithms.

We will see that the convergence theory for the conjugate gradient method is quite
sophisticated, but the derivation of these results takes some work. We begin with some basic
orthogonality relations that are critical to the success of the CG method.

9.2.2 Orthogonality relations

There are three immediate orthogonality relations among the residuals and search directions
for subsequent steps. Each of these has an important resulting equality and/or inequality.
We develop all these in this section. We will ultimately see that other orthogonalities hold,
but we will require a more complex induction to establish them.

Equations (9.28) and (9.29) say that the new search direction is based on the residual,
modified so that it is orthogonal (with respect to the C-inner product) to the previous search
direction:

(sk+1, sk)C = (rk+1 + βksk, sk)C = (rk+1, sk)C + βk(sk, sk)C = 0. (9.31)

Draft September 23, 2016, do not distribute Page 146

CHAPTER 9. CONJUGATE GRADIENTS9.2. CONJUGATE GRADIENT ITERATION

Note that (9.29) and (9.31) imply that

‖sk+1‖2
C = (sk+1, sk+1)C = (rk+1 + βksk, sk+1)C

= (rk+1, sk+1)C + βk(sk, sk+1)C

= (rk+1, sk+1)C ≤ ‖rk+1‖C‖sk+1‖C ,
(9.32)

so that dividing by ‖sk+1‖C yields

‖sk+1‖C ≤ ‖rk+1‖C (9.33)

(if ‖sk+1‖C = 0, (9.33) holds trivially). We will see that a reverse inequality holds in a
different norm.

The definition of αk ensures that the current residual is orthogonal in the Euclidean inner
product to the previous search direction:

(rk+1, sk)I = (rk + αkCsk, sk)I [by (9.27)]

= (rk, sk)I + αk(sk, sk)C = 0 [by (9.4) and (9.24)].
(9.34)

There is an immediate consequence of this orthogonality:

(rk, sk)I = ‖rk‖2
I + (rk, sk − rk)I

= ‖rk‖2
I + (rk, βk−1sk−1)I [by (9.29)]

= ‖rk‖2
I [by (9.34)].

(9.35)

We should note that when k = 0, (9.35) holds trivially since r0 = s0 by definition. Therefore,
we get a reverse inequality to (9.33) (see its proof for details):

‖sk‖I ≥ ‖rk‖I . (9.36)

The inequality (9.36) ensures that conjugate gradients can continue as long as rk 6= 0 since
this implies that sk 6= 0. Once we have rk = 0, we are done.

Using the definitions of αk, rk, sk, and yk, find that (for k ≥ 1)

(rk+1, rk)I = (rk + αkCsk, rk)I [by (9.27)]

= ‖rk‖2
I + αk(sk, rk)C [by (9.4)]

= ‖rk‖2
I + αk(sk, sk − βk−1sk−1)C [by (9.29)]

= ‖rk‖2
I + αk(sk, sk)C [by (9.31)]

= ‖rk‖2
I − (rk, sk)I [by (9.24)]

= ‖rk‖2
I − (rk, rk + βk−1sk−1)I [by (9.29)]

= βk−1(rk, sk−1)I = 0 [by (9.34)].

(9.37)

From (9.34), we have 0 = (r1, s0)I = (r1, r0)I . Therefore,

(rk+1, rk)I = 0 ∀k ≥ 0. (9.38)

Draft September 23, 2016, do not distribute Page 147

9.2. CONJUGATE GRADIENT ITERATIONCHAPTER 9. CONJUGATE GRADIENTS

9.2.3 Further orthogonalities

Based on the three orthogonalities (9.31), (9.34), and (9.38) derived for subsequent iterations,
we now derive some further orthogonalities among all iterates by induction.

Lemma 9.4 The conjugate gradient process (9.23)-(9.29) terminates at the kth step only if
rk = 0; i.e., if rk 6= 0, then sk 6= 0. Further, if rl 6= 0 for l = 0, . . . , k, then

0 = (rk+1, sq)I = (rk+1, rq)I = (sk+1, sq)C (9.39)

for 0 ≤ q ≤ k. The conjugate gradient process will terminate in at most n steps for an n×n
matrix C.

Proof. As we have noted, (9.36) ensures that the process will continue while rk 6= 0. The
fact that it will terminate after n steps is due to the orthogonality relations (9.39), which
can hold for at most n nonzero vectors in Rn.

We have already verified the first three orthogonalities for k = 0. So we assume that the
lemma holds for some value of k ≥ 0 and prove by induction that it also holds for k + 1.

We have already verified the three orthogonalities for q = k, so we may assume that
q < k. By (9.27),

(rk+1, sq)I = (rk, sq)I + αk(Csk, sq)I = 0, (9.40)

in view of (9.4) and the induction hypothesis. Also, by (9.27), (9.29), and the induction
hypothesis,

(rk+1, rq)I = (rk, rq)I + αk(Csk, rq)I

= (rk, rq)I + αk(Csk, sq

omit if q = 0︷ ︸︸ ︷
−βq−1sq−1)I

= 0 + αk(0− 0) = 0.

(9.41)

Similarly, by (9.29), (9.25), and (9.27),

(sk+1, Csq)I = (rk+1, Csq)I + βk

= 0︷ ︸︸ ︷
(sk, Csq)I

= (rk+1,
1

αq
(yq+1 − yq))I

= (rk+1,
1

αq
(rq+1 − rq))I

= 0.

(9.42)

QED

Corollary 9.5 The search directions and residuals for conjugate gradients satisfy

0 = (sk+1, rq)C (9.43)

for 0 ≤ q ≤ k.

Draft September 23, 2016, do not distribute Page 148

CHAPTER 9. CONJUGATE GRADIENTS 9.3. OPTIMAL APPROXIMATION OF CG

Proof. Again, by definition we have s0 = r0, so that

(s1, r0)C = (s1, s0)C = 0 (9.44)

since s0 = r0 by definition. So we assume that the lemma holds for some value of k ≥ 0 and
prove by induction that it also holds for k + 1. For 0 ≤ q ≤ k, (9.29) implies that

(sk+1, rq)C = (sk+1, sq

omit if q = 0︷ ︸︸ ︷
−βq−1sq−1)C

= 0,

(9.45)

by (9.39). QED

9.2.4 New formulas for α and β

It is of interest to have different forms for the coefficients in CG as they tend to have different
behaviors in floating-point computations because cancellations related to the orthogonalities
in CG are avoided. Equation (9.35) implies that we can write αk as

αk = − ‖rk‖
2
I

‖sk‖2
C

= − ‖rk‖
2
I

(sk, zk)I
. (9.46)

Using the orthogonality (9.38), we can derive a new formula for βk:

βk = − (rk+1, sk)C
(sk, sk)C

= −(rk+1, zk)I
(sk, sk)C

[by (9.24)]

= − (rk+1, α
−1
k (rk+1 − rk))I
(sk, sk)C

[by (9.27)]

= − (rk+1, rk+1)I
αk(sk, sk)C

[by (9.38)]

=
(rk+1, rk+1)I

(rk, sk)I
[by (9.24)]

=
‖rk+1‖2

I

‖rk‖2
I

[by (9.35)].

(9.47)

9.3 Optimal approximation of CG

Originally, we motivated conjugate gradients as an iterative method based on minimizing a
quadratic form. We have seen that CG can also be viewed as a direct method, in that it
is guaranteed to reduce the residual to zero in at most n steps for an n × n system. Now
we change our point of view back to our original presentation of CG: as an approximation
algorithm. To do so, we need to develop some technology.

Draft September 23, 2016, do not distribute Page 149

9.3. OPTIMAL APPROXIMATION OF CG CHAPTER 9. CONJUGATE GRADIENTS

9.3.1 Operator calculus

We have seen (exercise 6.1) that the set Pk of polynomials of degree k in one variable can
be viewed as a vector space of dimension k + 1. We will now see that there is a way to map
this space to the linear space O(Rn,Rn) of operators on Rn (cf. section 6.1). Suppose we
have an n× n matrix C and consider the mapping v → Cv for all v ∈ Rn. Then this defines
such an operator in O(Rn,Rn), which we can also denote by C. Similarly, we can define
C2 by v → C(Cv) for all v ∈ Rn. In fact, for any integer k, Ck is defined inductively by
v → C(Ck−1v). Thus for any polynomial P ∈ Pk, we can define P (C) by

P (C) =
k∑
i=0

aiC
i, where P (x) =

k∑
i=0

aix
i. (9.48)

By convention, we define C0 = I, where I denotes the identity operator on Rn, associated
with the n × n identity matrix. Thus (exercise 9.8) (9.48) defines a linear operator LC :
Pk → O(Rn,Rn). Note that if P (x) ≡ 1 is the constant polynomial, then P (C) = I for any
C.

9.3.2 CG error representation

Recall that the residual rk = Cyk − g and the error ek = yk − y are related by rk = Cek.
The next lemma relates the errors and search directions in CG to the initial error.

Lemma 9.6 For k ≥ 0, ek = Pk(C)e0 and sk = CQk(C)e0, where Pk and Qk are polynomi-
als of degree at most k and Pk(0) = 1.

Proof. The proof is by induction. It is clear that P0 ≡ 1 and Q0 ≡ 1 work for k = 0 since
s0 = r0 = Ce0 by (9.12). For k ≥ 0 we have

ek+1 = ek + yk+1 − yk
= ek + αksk [by (9.25)]

= (Pk(C) + αkCQk(C)) e0

=Pk+1(C)e0,

(9.49)

that is, Pk+1(x) := Pk(x) + αkxQk(x) (cf. exercise 9.9). Note that Pk+1(0) = Pk(0); hence
Pk+1(0) = 1. Similarly,

sk+1 =Cek+1 + βksk [by (9.29) and (9.12)]

= (CPk+1(C) + βkCQk(C)) e0

=CQk+1(C)e0,

(9.50)

that is, Qk+1(x) := Pk+1(x) + βkQk(x). QED

Lemma 9.7 Assuming that rk 6= 0, the set {s0, . . . , sk} of vectors defined in (9.29) spans
the Krylov1 subspace

Sk =
{
v ∈ Rn

∣∣ v = CT (C)e0, T ∈ Pk
}
. (9.51)

1Alexei Nikolaevich Krylov (1863–1945) first used this subspace in 1931 to transform characteristic poly-
nomials [60]. He was very active in the theory and practice of shipbuilding and is commemorated by the
Krylov Shipbuilding Research Institute.

Draft September 23, 2016, do not distribute Page 150

CHAPTER 9. CONJUGATE GRADIENTS 9.3. OPTIMAL APPROXIMATION OF CG

Proof. First, we need to show that Sk is a vector space and that its dimension is k + 1. By
definition, Sk is a subset of Rn. If T1, T2 ∈ Pk, then set vi = CTi(C)e0, i = 1, 2. Expanding,
we find

v1 + v2 =CT1(C)e0 + CT2(C)e0 = C(T1(C) + T2(C))e0

=C(T1 + T2)(C)e0 ∈ Sk,
(9.52)

and similarly scalar multiples of v ∈ Sk are also in Sk. Thus Sk is a linear subspace of Rn

(cf. exercises 9.10 and 9.11).
We can view Sk as the image of Pk in Rn via the mapping B defined by BT = CT (C)e0.

We have just shown that this mapping is linear. The image of a (k + 1)-dimensional space
can be no more than k + 1, so we have shown that dimSk ≤ k + 1.

By lemma 9.6, each sl is in Sk for l = 0, . . . , k, and by (9.31) they are orthogonal (in the
C-inner product). Hence they are a basis. QED

Lemma 9.8 Define
P0
k =

{
P ∈ Pk

∣∣ P (0) = 1
}
. (9.53)

The error ek is optimal in the sense that

‖ek‖C = min
{
‖P (C)e0‖C

∣∣ P ∈ P0
k

}
. (9.54)

Proof. Let Pk be the polynomial guaranteed by lemma 9.6. Since Pk ∈ P0
k , we have

‖ek‖C ≥ inf
{
‖P (C)e0‖C

∣∣ P ∈ P0
k

}
because lemma 9.6 tells us that ek = Pk(C)e0. Now let

us prove the reverse inequality.
Let P ∈ P0

k and define v = P (C)e0. Then

v = ek + (P − Pk)(C)e0. (9.55)

But since (P − Pk)(0) = 0, (P − Pk)(x) = xTk−1(x), where Tk−1 is a polynomial of degree
≤ k − 1 (exercise 5.22). Hence

v = ek + δk, (9.56)

δk ∈ Sk−1. Now (ek, δk)C = (rk, δk)I = 0 since (rk, sq)I = 0 for all q < k. Thus

‖v‖2
C = ‖ek‖2

C + 2(ek, δk)C + ‖δk‖2
C

= ‖ek‖2
C + ‖δk‖2

C ≥ ‖ek‖2
C ,

(9.57)

which proves that ‖ek‖C ≤ inf
{
‖P (C)e0‖C

∣∣ P ∈ P0
k

}
and confirms the equality (9.54).

QED

9.3.3 Spectral theory

We now introduce a bit more technology from operator theory. Since we are working with
a symmetric matrix C, we can expand in terms of its eigenvectors Xj, where CXj = λjXj.
That is, for any v ∈ Rn, we can write

v =
n∑
j=1

ajXj. (9.58)

Draft September 23, 2016, do not distribute Page 151

9.3. OPTIMAL APPROXIMATION OF CG CHAPTER 9. CONJUGATE GRADIENTS

Then Ckv =
∑n

j=1 ajλ
k
jXj, and indeed (exercise 9.12)

P (C)v =
n∑
j=1

ajP (λj)Xj (9.59)

for all P ∈ Pk. Note that we can choose the eigenvectors to be orthonormal:

(Xj, Xk)I = δjk, (9.60)

where δjk is the Kronecker δ. This means they are also orthogonal in the C-inner product:

(Xj, Xk)C = (CXj, Xk)I = (λjXj, Xk)I = λjδjk. (9.61)

Also, it follows for v of the form (9.58) that (exercise 9.13)

‖v‖2
I =

n∑
j=1

a2
j and ‖v‖2

C =
n∑
j=1

λja
2
j . (9.62)

Therefore, by (9.59),

‖P (C)v‖2
I =

n∑
j=1

P (λj)
2a2
j and ‖P (C)v‖2

C =
n∑
j=1

P (λj)
2λja

2
j . (9.63)

Let us introduce the notation

‖P (λ(·))‖∞ = max
{
|P (λj)|

∣∣ j = 1, . . . , n
}
. (9.64)

Then from (9.62), we see that

‖P (C)v‖2
C ≤ ‖P (λ(·))‖2

∞

n∑
j=1

λja
2
j = ‖P (λ(·))‖2

∞‖v‖2
C . (9.65)

The following result shows that error estimates for CG can be reduced to a polynomial
approximation result on the spectrum of C.

Theorem 9.9 Suppose that λ1, . . . , λn are the eigenvalues of C. Then

‖ek‖C ≤ inf
{
‖P (λ(·))‖∞

∣∣ P ∈ P0
k

}
‖e0‖C , (9.66)

where ‖P (λ(·))‖∞ is defined in (9.64) and P0
k was defined in (9.53).

Proof. Apply (9.65) to lemma 9.8. QED

Draft September 23, 2016, do not distribute Page 152

CHAPTER 9. CONJUGATE GRADIENTS 9.3. OPTIMAL APPROXIMATION OF CG

9.3.4 CG error estimates

There are many results that can be derived from theorem 9.9. Here we are able to give only
a sample.

Corollary 9.10 Suppose that there are only k distinct eigenvalues for C. Then the CG
iteration terminates (in the absence of rounding error) in k steps.

Proof. The proof is an application of Lagrange interpolation (chapter 10). That is, we take
P to be a polynomial of degree k that is 1 at 0 and 0 at all eigenvalues:

P (0) = 1, P (λj) = 0, j = 1, . . . , k. (9.67)

The existence of P will be proved in section 10.2.1. (For example, if k = 1, we take P (x) =
1− x/λ1.) Then P ∈ P0

k , and we conclude from theorem 9.9 that ek = 0. QED

Let us see what theorem 9.9 implies in a concrete case. Suppose there are only two
eigenvalues, λ1 < λ2. Let P (x) = 1−x/λ, where we will pick λ subsequently. Then P ∈ P0

1 ,
and theorem 9.9 implies that

‖e1‖C ≤ max{|1− λ1/λ|, |1− λ2/λ|}‖e0‖C (9.68)

for all λ. Presumably, the minimum occurs when λ1 < λ < λ2, and

1− λ1/λ = −(1− λ2/λ), (9.69)

which implies that λ = 1
2
(λ1 + λ2). Thus (cf. exercise 9.14)

‖e1‖C ≤
(

1− 2λ1

λ1 + λ2

)
‖e0‖C =

(
λ2 − λ1

λ1 + λ2

)
‖e0‖C . (9.70)

In general, we will prove the following result.

Lemma 9.11 Suppose that 0 < λ1 < λ2. Then there is a polynomial qk of degree k such
that qk(0) = 1 and

‖qk‖∞,[λ1,λ2] ≤
(

Λ +
√

Λ2 − 1
)−k

, (9.71)

where Λ = (λ1 + λ2)/(λ2 − λ1).

We postpone the proof of the lemma until section 11.1.2. We can write Λ = (κ+1)/(κ−1),
where κ = λ2/λ1. By exercise 9.15, we then have

Λ +
√

Λ2 − 1 =

√
κ+ 1√
κ− 1

. (9.72)

Thus we have the following result.

Corollary 9.12 Suppose that the eigenvalues of C lie in an interval [λ1, λ2], where 0 < λ1 <
λ2. Define κ = λ2/λ1. Then

‖ek‖C ≤
(√

κ− 1√
κ+ 1

)k
‖e0‖C =

(
1− 2√

κ+ 1

)k
‖e0‖C

≤ e−2k/(
√
κ+1)‖e0‖C .

(9.73)

Draft September 23, 2016, do not distribute Page 153

9.3. OPTIMAL APPROXIMATION OF CG CHAPTER 9. CONJUGATE GRADIENTS

In the last inequality in (9.73), we used the fact that 1−x ≤ e−x for x ≥ 0 (exercise 9.16).
If we set

λ{1,2} = {min,max}
{
|λ|
∣∣ λ is an eigenvalue of A

}
,

then (6.10) and exercise 6.7 imply that (for A symmetric and positive definite)

κ = λ2/λ1 = ‖A‖2‖A−1‖2. (9.74)

The quantity κ is called the condition number of A with respect to the Euclidean norm.

9.3.5 Preconditioned Conjugate Gradient iteration

Suppose that we want to solve
Ax = b (9.75)

and that M−1 is an approximate inverse for A, that is, M is a symmetric positive definite
matrix such that M−1A is close to the identity in some sense. Suppose there is a symmetric
positive definite matrix B such that B2 = M−1 (see exercise 9.17). We write B as M−1/2.
Suppose that we apply CG to

C = M−1/2AM−1/2

(at least in our heads). Then
Cy = g, (9.76)

where y = M1/2x and g = M−1/2b.
Let x0 be given and take y0 = M1/2x0. Let the sequences {yk}, {rk}, {αk}, and {βk} be

defined by CG, as in (9.23)-(9.29). Let

xk =M−1/2yk,

σk =M−1/2sk,

ρk =M1/2rk.

(9.77)

Then the iteration can be cast in terms of these variables:

αk = − (M−1ρk, ρk)/(Aσk, σk),

xk+1 =xk + αkσk,

ρk+1 = ρk + αkAσk,

βk = (M−1ρk+1, ρk+1)/(M−1ρk, ρk),

σk+1 =M−1ρk+1 + βkσk.

(9.78)

The verification of these formulas involves not only (9.23)-(9.29) but also lemma 9.4.
Note that the only additional work caused by the preconditioning is one application of

M−1 per iteration.
If ek = yk − C−1g and εk = xk − A−1b, then

ek = M1/2xk −M1/2A−1M1/2b = M1/2εk

and

(Cek, ek) = ‖ek‖2
C

= (M−1/2AM−1/2M1/2εk,M
1/2εk)

= ‖εk‖2
A.

This observation and the previous results on CG give the following theorem.

Draft September 23, 2016, do not distribute Page 154

CHAPTER 9. CONJUGATE GRADIENTS 9.4. COMPARING ITERATIVE SOLVERS

Theorem 9.13 Suppose that

µ{1,2} = {min,max}
{
|λ|
∣∣ λ is an eigenvalue of M−1A

}
and define κ = µ2/µ1. Then the error for the algorithm (9.77) and (9.78) satisfies

‖εk‖A ≤
(√

κ− 1√
κ+ 1

)k
=

(
1− 2√

κ+ 1

)k
≤ e−2k/(

√
κ+1).

9.4 Comparing iterative solvers

It is possible to compare the behavior of stationary iterative methods with that of conjugate
gradients. To simplify the analysis, let us assume that A is an n × n matrix with 1’s on
the the diagonal: diag(A) = I. Let us compare CG and Jacobi for A. First, note that the
assumption diag(A) = I is not an essential restriction. Jacobi is invariant with respect to
scaling (on the left) by a diagonal matrix, and we can then compare with the diagonally
scaled (preconditioned) CG.

We assume as well that A is symmetric and positive definite, so this means we can expand
in eigenvectors as in (9.58). Let us write the initial error as

e0 =
n∑
i=1

aiXi. (9.79)

Combining (9.54) and (9.63), we see that the resulting CG error ekCG after k steps satisfies

‖ekCG‖2
A ≤

n∑
i=1

a2
iPk(λi)

2λi. (9.80)

On the other hand, the error in Jacobi satisfies ekJ = MJ(A)ke0, where MJ(A) = I−A is the
Jacobi iteration matrix for A. The eigenvalues µi of MJ(A) are related to the eigenvalues
λi of A by µi = (1 − λi). Moreover, the eigenvectors of MJ(A) and A are the same. In
particular, we have

ekJ =
n∑
i=1

(1− λi)kaiXi. (9.81)

Thus (9.62) implies that

‖ekJ‖2
A =

n∑
i=1

a2
i (1− λi)2kλi. (9.82)

This corresponds to the choice P (λ) = (1− λ)k in (9.80). Thus we see that CG adapts the
choice of polynomial to the data, whereas for Jacobi it is fixed. Thus we see why the word
“stationary” is appropriate for such iterative methods.

Draft September 23, 2016, do not distribute Page 155

9.5. MORE READING CHAPTER 9. CONJUGATE GRADIENTS

9.5 More reading

The conjugate gradient method is attributed primarily to Hestenes2 and Stiefel3 although
there were additional influences [70], including Lanczos (see page 250) who was at UCLA at
the time [163]. There are several monographs on conjugate gradients and related methods
[73, 122, 173]. The theory of convergence rates for CG has an intriguing relation to potential
theory [55]. The CG algorithm applies as well to infinite-dimensional operators, and in some
cases CG for such operators can have surprising convergence rates [181].

9.6 Exercises

Exercise 9.1 Suppose that A is an n×n symmetric, positive definite matrix. Prove that the
expression (9.1) defines an inner product on Rn. In particular, verify that (u, v)A = (v, u)A.

Exercise 9.2 Suppose that A is an n× n symmetric, positive definite matrix. Prove (9.4).
(Hint: use the symmetry of A.)

Exercise 9.3 Use calculus to verify that the minimum of the expression (9.5) occurs at the
solution of Au = f in the case n = 1. (Hint: just write out QA(u) and differentiate with
respect to u and find where the derivative is zero.)

Exercise 9.4 Verify all the steps in the derivation of the expression (9.7). (Hint: expand
the quadratic terms and use the symmetry of the inner product; cf. exercise 9.1 or 9.6).

Exercise 9.5 Suppose q(t) = α + βt + γt2. Prove that q(t) has a minimum at t = 0 iff
β = 0.

Exercise 9.6 Suppose that A is an n × n symmetric, positive definite matrix. Prove that
(u, v)A = (Au)Tv for all u, v ∈ Rn. (Hint: use the symmetry of A.)

Exercise 9.7 Suppose that Au = f and that v ∈ Rn. Let r = Av− f and e = v−u (so that
Ae = r). Prove that 2QA(v) = (e, e)A − (u, u)A.

Exercise 9.8 Prove that the operator LC : Pk → O(Rn,Rn) defined by (9.48) is linear.
That is, if P (x) =

∑k
i=0 aix

i, Q(x) =
∑k

i=0 bix
i, and α ∈ R, then

LCP + αLCQ = LCR, (9.83)

where R is the polynomial given by R(x) =
∑k

i=0 α(ai + bi)x
i.

2Magnus Rudolph Hestenes (1906–1991) obtained a Ph.D. at the University of Chicago with Gilbert Bliss
in 1932. Bliss was an early graduate of Chicago, receiving a B.Sc. in 1897 and a Ph.D. in 1900 under the
direction of Oskar Bolza, who had studied with Felix Klein in Göttingen. Hestenes was a professor at UCLA
from 1947 to 1973.

3Eduard L. Stiefel (1909–1978) was a student of Heinz Hopf, who was in turn a student of Erhard Schmidt.
Stiefel was the advisor of Peter Henrici (page 303) as well as 63 other students over a period of 37 years.
He is known for his work on the Stiefel-Whitney characteristic classes, and he was also an early user and
developer of computers [160].

Draft September 23, 2016, do not distribute Page 156

CHAPTER 9. CONJUGATE GRADIENTS 9.7. SOLUTIONS

Exercise 9.9 Suppose that P is a polynomial given by P (x) =
∑k

i=0 aix
i and that C is an

n× n matrix. Prove that CP (C) = Q(C), where Q(x) =
∑k

i=0 aix
i+1.

Exercise 9.10 Suppose that M ⊂ O(Rn,Rn) is a linear subspace. Show that the set
{
Av
∣∣ A ∈M}

is a linear subspace of Rn for any v ∈ Rn.

Exercise 9.11 Suppose that M ⊂ O(Rn,Rn) is a linear subspace and that B ∈ O(Rn,Rn).
Prove that the set

{
BA

∣∣ A ∈M} is a linear subspace of O(Rn,Rn).

Exercise 9.12 Verify (9.59). (Hint: Expand.)

Exercise 9.13 Verify (9.62). (Hint: Expand.)

Exercise 9.14 Suppose that λ1 > 0 and λ2 > 0. Prove that

argmin
{

max{|1− λ1/λ|, |1− λ2/λ|}
∣∣ λ > 0

}
= 1

2
(λ1 + λ2). (9.84)

(Hint: show that max{|a|, |b|} = 1
2
|a+ b|+ 1

2
|a− b| for a, b ∈ R.)

Exercise 9.15 Prove that (9.72) holds. (Hint: just expand and note that (
√
κ+1)(

√
κ−1) =

κ− 1.)

Exercise 9.16 Prove that 1−x ≤ e−x for x ≥ 0. (Hint: expand e−x as an alternating series
and note that 1− x represents the first two terms.)

Exercise 9.17 Prove that for any symmetric, positive definite matrix A, there is a sym-
metric, positive definite matrix B such that B2 = A. (Hint: write A = UTDU , where U is
orthogonal and D is diagonal with positive entries; cf. corollary 6.6 and set B = UT

√
DU .)

Exercise 9.18 Prove theorem 9.13.

Exercise 9.19 Prove (9.36).

Exercise 9.20 Prove that a polynomial of degree n can have at most n roots, counting
multiplicity, unless it is identically zero. (Hint: use exercise 5.22 to represent the polynomial
in terms of linear factors.)

9.7 Solutions

Solution of Exercise 9.7. Recall that Au = f and e = v− u. We expand and use the fact
that AT = A:

(e, e)A = (v − u, v − u)A = (v − u)TA(v − u)

= vTAv + uTAu− uTAv − vTAu

= vTAv + uTAu− uTAv − vTf

= vTAv + uTAu− (ATu)Tv − fTv

= vTAv + uTAu− (Au)Tv − fTv

= vTAv + uTAu− 2fTv

= 2QA(v) + uTAu.

(9.85)

Draft September 23, 2016, do not distribute Page 157

9.7. SOLUTIONS CHAPTER 9. CONJUGATE GRADIENTS

Thus 2QA(v) = (e, e)A − uTAu.

Solution of Exercise 9.14. First, we show that

max{|a|, |b|} = 1
2
|a+ b|+ 1

2
|a− b| (9.86)

for a, b ∈ R. We can assume that |a| ≥ |b| without loss of generality since we can just rename
the variables if it is the other way around.

If a ≥ 0, then max{|a|, |b|} = a and a+ b ≥ 0 (since |b| ≤ a). Then

max{|a|, |b|} − 1
2
|a+ b| = a− 1

2
(a+ b) = 1

2
(a− b) = 1

2
|a− b|. (9.87)

The last equality also follows from the fact that |b| ≤ a.
If a ≤ 0, then max{|a|, |b|} = −a and a+ b ≤ 0 and a− b ≤ 0 (since |b| ≤ −a). Then

max{|a|, |b|} − 1
2
|a+ b| = −a+ 1

2
(a+ b) = −1

2
(a− b) = 1

2
|a− b| (9.88)

as well. Thus we have completed the proof of (9.86).
Now suppose that λ1 > 0 and λ2 > 0. Then

max{|1− λ1/λ|, |1− λ2/λ|} = |1− 1
2
(λ1 + λ2)/λ|+ |1

2
(λ1 − λ2)/λ|. (9.89)

Let us write r = 1
2
(λ1 + λ2)/λ, so that λ = 1

2
(λ1 + λ2)/r and

max{|1− λ1/λ|, |1− λ2/λ|} = |1− r|+ r|λ1 − λ2|
λ1 + λ2

. (9.90)

Furthermore, our objective is now to show that

argmin

{
|1− r|+ r|λ1 − λ2|

λ1 + λ2

∣∣ r > 0

}
= 1. (9.91)

Define a function φ by

φ(r) = |1− r|+ r|λ1 − λ2|
λ1 + λ2

. (9.92)

For r ≥ 1, φ(r) = r − 1 + r |λ1−λ2|
λ1+λ2

is strictly increasing. For r ≤ 1, φ(r) = 1− r + r |λ1−λ2|
λ1+λ2

is
strictly decreasing since

|λ1 − λ2| = max{λ1, λ2} −min{λ1, λ2}
< max{λ1, λ2} ≤ λ1 + λ2

(9.93)

since both λi are positive. Thus
argminφ(r) = 1. (9.94)

Draft September 23, 2016, do not distribute Page 158

Chapter 10

Polynomial Interpolation

The web site http://www.blackphoto.com/glossary/i.asp describes in-
terpolation as “a technique used by digital cameras, scanners and print-
ers to increase the size of an image in pixels by averaging the colour and
brightness values of surrounding pixels.”

The approximation of general functions by simple classes of functions has many applica-
tions as well as theoretical implications. The uniform approximation of a general continuous
function on an interval by polynomials (a theorem of Weierstrass1) is a fundamental result
that casts light on the nature of both polynomials and continuous functions. In the era of
modern computers, approximation via interpolation has emerged as a general paradigm for
computing elementary functions as part of typical system software on current computers
[110]. Probably one of the earliest applications of interpolation was simply to link scat-
tered data to provide some sense of what a continuum representation might look like. The
phrase “connecting the dots” has become a common metaphor for problem solving, but this
is precisely what polynomial interpolation does.

One feature of the subject is that it introduces infinite-dimensional vector spaces in a
natural way. Dealing with such spaces in a complete (pun intended) way is beyond the scope
of this book, but we hope that the ideas stimulate interest in further study of functional
analysis. We start by considering approximation by polynomials in one dimension. Some
of the technology we develop applies to other classes of approximating spaces, as well as
multivariate approximation.

10.1 Local approximation: Taylor’s theorem

Taylor’s theorem2 in calculus provides a polynomial approximation to a sufficiently smooth
function:

Pn(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k. (10.1)

1Karl Theodor Wilhelm Weierstrass (1815–1897) was the only student of Christoph Gudermann, who
was, along with Friedrich Bessel, J. W. Richard Dedekind, Sophie Germain, and Georg Riemann, a student
of Gauss.

2This theorem appears to have been first discovered by Gregorie (see page 226) [170].

159

10.2. DISTRIBUTED APPROXIMATION: INTERPOLATIONCHAPTER 10. POLYNOMIAL INTERPOLATION

For x near x0, this yields an accurate approximation to the function f provided we have the
required data. Moreover, we have (exercise 7.4) a representation of the error:

f(x)− Pn(x) =
(x− x0)n+1

n!

∫ 1

0

(1− s)nf (n+1)(x0 + s(x− x0)) ds . (10.2)

Thus we can say that f − Pn = O((x − x0)n+1) for x near x0, provided that f is smooth
enough.

This is a very powerful, but local, result. Moreover, it requires knowing the values of high-
order derivatives of f to construct Pn. We now consider a more distributed approximation
and one that does not require derivatives, only the values of f .

10.2 Distributed approximation: interpolation

Suppose that we gather data fi associated with parameters xi and that we want to depict
these data as a function f(x) with the property that f(xi) = fi. This is clearly not a
well-defined problem since there are many functions with this property. (To simplify the
discussion, we assume here that the xi’s are distinct, but also see exercise 12.12.) On the
other hand, if we are restricted to the appropriate finite-dimensional space of functions, we
can potentially make the process well-posed. One simple approach is to interpolate the data,
e.g., with polynomials.

The name of Lagrange3 is associated with the fact that a polynomial of degree n can
be determined uniquely to match arbitrary values fi at n + 1 distinct points xi, e.g., with
i = 0, . . . , n. At the risk of further inflaming French-English relations, we point out that
Newton (see page 17) had solved this problem earlier in an adaptive way (section 10.2.3).

We begin by considering arbitrary (but distinct) interpolation points xi. In many data-
fitting problems, there is little control on the spacing of the points, and in the application
(9.67) the points are unknown. We will later consider specifying the points in a systematic
way, but we will see that equally spaced points can be a bad choice. In chapter 11, we
consider a better choice.

10.2.1 Existence of interpolant

The existence of the Lagrange interpolant can be proved by constructing polynomials φi such
that

φi(xj) = δij. (10.3)

Then the Lagrange interpolant is defined by

Lnf(x) =
n∑
i=0

fiφi. (10.4)

3Joseph-Louis Lagrange (1736–1813), born in Turin and baptized Giuseppe Lodovico Lagrangia, be-
came a dominant figure in his adopted country France. Best known for his work in mechanics, essentially
establishing the variational calculus [104], his students included Poisson and Fourier. He is interred in the
Pantheon in Paris.

Draft September 23, 2016, do not distribute Page 160

CHAPTER 10. POLYNOMIAL INTERPOLATION10.2. DISTRIBUTED APPROXIMATION: INTERPOLATION

The magic perhaps is in the fact that one can write a formula for each φi:

φi(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

=

∏
j 6=i(xj − x)∏
j 6=i(xj − xi)

. (10.5)

Here the indices j in the products range over the set {0, 1, . . . , n}. Each φi is a polynomial
of degree n since it is presented as a product of n monomials. Also φi(xk) = 0 for k 6= i
since one of the factors is (x − xk). Finally, φi(xi) = 1 because of the normalization. This
completes the verification of (10.3).

The operator Ln defined in (10.4) maps the linear space Rn+1 to the space Pn of polyno-
mials of degree n. The operator Ln is clearly linear, by construction. That is, if f ∈ Rn+1

and g ∈ Rn+1 are two sets of data, then Ln(f+g) = Lnf+Lng, and similarly Ln(sf) = sLnf
for any scalar s.

The Lagrange interpolant can be extended to any continuous function f by

Lnf(x) =
n∑
i=0

f(xi)φi. (10.6)

The operator Ln is a projection, i.e.,

Lnq = q for all q ∈ Pn. (10.7)

To prove this, consider p = Lnq − q, which is also a polynomial of degree n such that
p(xi) = 0 for n + 1 points. By the fundamental theorem of algebra, a polynomial of degree
n that vanishes at n + 1 distinct points must be identically zero (exercise 9.20). Therefore,
Lnq = q. In fact, this approach can be used to show (exercise 12.19) the existence of the
φi’s.

10.2.2 Error expression

The error in Lagrange interpolation vanishes at all the interpolation points, so we can assert
that the error is divisible by the function ωk defined by

ωk(x) =
k−1∏
i=0

(x− xi). (10.8)

It is possible to prove (exercise 10.1) that

f(x)− Lnf(x) =
ωn+1(x)

(n+ 1)!
f (n+1)(ξ(x)), (10.9)

where ξ(x) is just like the magic point in the pointwise remainder expression for Taylor’s
theorem. This expression has limitations as a way to understand the error in Lagrange
interpolation in general, but it is useful theoretically and motivates certain things we will
derive independently.

It is easy to see in one important case that (10.9) is valid, namely, when p(x) = xn+1.
Note that by expanding the expression (10.8), we find

ωn+1(x) = xn+1 + q(x) = p(x) + q(x), (10.10)

Draft September 23, 2016, do not distribute Page 161

10.2. DISTRIBUTED APPROXIMATION: INTERPOLATIONCHAPTER 10. POLYNOMIAL INTERPOLATION

where the degree of q is at most n. Thus p = ωn+1 − q. Because p− Lnp is a polynomial of
degree n+ 1 that vanishes at the roots of ωn+1, we have p−Lnp = αωn+1 for some constant
α. Thus

αωn+1 = p− Lnp = ωn+1 − q − Lnp, (10.11)

so that (1 − α)ωn+1 = q + Lnp is a polynomial of degree n. This can happen only if α = 1
(and q = −Lnp). Thus we conclude that

p− Lnp = ωn+1, (10.12)

consistent with (10.9).

10.2.3 Newton’s divided differences

There is another approach to defining an interpolant that is associated with Newton (see
page 17) and thus predates Lagrange (see page 160). It proceeds inductively based on the
number of interpolation points, and it could be viewed as an adaptive procedure in which
the interpolant with n + 1 points is derived from the one with n points. This allows one to
derive (and use) the nth-order interpolation and assess whether further points need to be
added.

Let f be fixed for the moment and let pn = Lnf . If n = 0, there is only one point
x0 and p0 is the constant function equal to f(x0). Now add another point x1 6= x0. Then
p1 = p0 + q1, where q1 is a linear polynomial. For p1 to interpolate f at x0, we must have
q1(x0) = 0, and thus q1(x) = a1(x− x0). For p1 to interpolate f at x1, we must have

f(x1) = f(x0) + a1(x1 − x0), (10.13)

so that the coefficient a1 must be

a1 =
f(x1)− f(x0)

x1 − x0

=
f(x0)− f(x1)

x0 − x1

. (10.14)

The coefficient a1 is what is known as a divided difference, i.e., a difference quotient ap-
proximating the derivative of f near x0, x1. The standard notation for divided differences
is

f [x0, x1] =
f(x1)− f(x0)

x1 − x0

. (10.15)

With this notation, we have p1 = p0+f [x0, x1](x−x0). If we define ω0 ≡ 1 and f [x0] = f(x0),
then we can write

p1 = f [x0]ω0 + f [x0, x1]ω1(x), (10.16)

where ωk for k ≥ 0 is defined in (10.8).
Lagrange interpolation was defined by exhibiting particular basis functions for polyno-

mials. The Newton approach can be viewed as one in which a different basis is chosen. It is
not hard to see that the error polynomials ωk defined in (10.8) form a basis for polynomials.
The key observation is that they are linearly independent (exercise 10.4). Thus we can write
any polynomial p ∈ Pn as

p(x) =
n∑
i=0

aiωi(x), (10.17)

Draft September 23, 2016, do not distribute Page 162

CHAPTER 10. POLYNOMIAL INTERPOLATION10.2. DISTRIBUTED APPROXIMATION: INTERPOLATION

for suitable coefficients ai. Thus for any continuous function f , we define coefficients afi by

Lnf(x) =
n∑
i=0

afi ωi(x). (10.18)

Motivated by (10.16), we define

f [x0, x1, . . . , xi] = afi (10.19)

for i ≥ 0. Thus by definition we have the Newton divided difference form of (Lagrange)
interpolation:

Lnf(x) =
n∑
k=0

f [x0, x1, . . . , xk]ωk(x). (10.20)

Divided differences are defined for any set of points x0, . . . , xn, and they obey rules similar
to those of calculus. First, it is evident from (10.15) that f [x0, x1] = f [x1, x0]. But from the
definition (10.19), we see that the order of the xi’s does not matter in general, that is,

f [x0, x1, . . . , xn] = f [xσ(0), xσ(1), . . . , xσ(n)] (10.21)

for any permutation σ of {0, 1, . . . , n}, as we get the same interpolant independently of what
order we use to introduce the points xi into the interpolation process.

It is useful to derive explicitly the expression of p2 in terms of second divided differences,
but we leave this as exercise 10.5 and proceed to the general properties.

Theorem 10.1 For distinct points x0, . . . , xn, the nth coefficient of the Newton interpolation
(10.20) defined by (10.19) satisfies

f [x0, x1, . . . , xn] =
n∑
k=0

f(xk)∏
i 6=k(xk − xi)

, (10.22)

where f [x0] = f(x0) in the case of n = 0.

Note that (10.15) and (10.22) are consistent when n = 1.

Proof. We have two representations of the interpolant: (10.20) and (10.4). If we differentiate
these n times, we find

f [x0, x1, . . . , xn]ω(n)
n (x) =

n∑
i=0

f(xi)φ
(n)
i (x) (10.23)

since all the other terms in (10.20) vanish because ωk is a polynomial of degree k. By
inspection, we see that

φ
(n)
i (x) =

n!∏
j 6=i(xi − xj)

(10.24)

because the leading-order term in the numerator in (10.5) is xn. Similarly, the leading-order

term in ωn(x) is also xn, so that ω
(n)
n ≡ n!. Plugging these values for the derivatives into

(10.23) completes the proof of the theorem. QED

Draft September 23, 2016, do not distribute Page 163

10.3. BEHAVIOR OF LAGRANGE INTERPOLATIONCHAPTER 10. POLYNOMIAL INTERPOLATION

Lemma 10.2 For distinct points x, x0, . . . , xn in an interval I,

f(x)− Lnf(x) = f [x0, x1, . . . , xn, x]ωn+1(x). (10.25)

Notice the similarity to Taylor’s theorem with a remainder. Both approximations are
written in terms of a sequence of basis functions ((x − x0)k versus ωk(x)), and the error
terms are written in terms of the next basis functions in the sequence.

Proof. We think of x as an additional interpolation point and use (10.20) to write

Ln+1f(y) = Lnf(y) + f [x0, x1, . . . , xn, x]ωn+1(y). (10.26)

But since x is an interpolation point, we have Ln+1f(x) = f(x), so applying (10.26) with
y = x completes the proof. QED

Corollary 10.3 For distinct points x0, . . . , xn in an interval I, there is a point ξ ∈ I satis-
fying

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
, (10.27)

provided that f ∈ C(n)(I).

Proof. Apply (10.9) and lemma 10.2. QED

Further manipulation (exercise 10.7) of the indices in (10.22) shows that the nth divided
difference is a divided difference of divided differences of order n − 1, as described in the
following result.

Corollary 10.4 For distinct points x0, . . . , xn, the nth divided difference satisfies

f [x0, x1, . . . , xn] =
f [x̂i]− f [x̂j]

j − i
(10.28)

for any indices i 6= j, where x̂i = (x0, . . . , xi−1, xi+1, . . . , xn).

10.3 Behavior of Lagrange interpolation

We need to formalize a statement made about the definition of the Lagrange interpolation
operator. This requires some technology that extends what we have been doing with finite-
dimensional vector spaces.

10.3.1 Norms in infinite-dimensional spaces

Initially, in (10.4) Lagrange interpolation was defined for f ∈ Rn+1, but then it was extended
in (10.6) to be defined for f ∈ C0, the space of continuous functions. This space is also a
vector space. Addition in C0 is defined by saying that

(f + g)(x) = f(x) + g(x) for all x, (10.29)

Draft September 23, 2016, do not distribute Page 164

CHAPTER 10. POLYNOMIAL INTERPOLATION10.3. BEHAVIOR OF LAGRANGE INTERPOLATION

and scalar multiplication is defined by

(sf)(x) = sf(x) for all x, (10.30)

for any scalar s. But C0 is an infinite-dimensional vector space. However, there is a natural
norm defined on it, the maximum norm. To be more precise, for any closed interval I, we
can define

‖f‖∞ = sup
x∈I
|f(x)|. (10.31)

We leave as exercise 10.8 the verification that this is indeed a norm.
We can state a corollary to (10.9) using this notation as follows.

Theorem 10.5 For distinct points x0, . . . , xn in an interval I, the Newton-Lagrange inter-
polation operator Ln using these points satisfies

‖f − Lnf‖∞ ≤
1

(n+ 1)!
‖f (n+1)‖∞‖ωn+1‖∞, (10.32)

where ωn+1(x) = (x− x0)(x− x1) · · · (x− xn).

10.3.2 Instability of Lagrange interpolation

Lagrange interpolation is more robust than Taylor approximation, but it has properties that
make it sensitive to use in practice. In particular, the placement of the interpolation points
is extremely influential regarding its performance. The main difficulty stems from a lack of
stability of the interpolation operator in the maximum norm for many choices of interpolation
points.

For the moment, let us think of Lagrange interpolation as defining an operator Ln :
C0(I) → Pn. If we take ‖ · ‖∞ as the norm for both of these spaces, we can define an
operator norm in the same way as we did in (6.1) in the finite-dimensional case:

‖Ln‖∞ = sup
f∈C0(I)

‖Lnf‖∞
‖f‖∞

. (10.33)

In view of (6.2), we can think of ‖Ln‖∞ as the smallest constant C such that ‖Lnf‖∞ ≤
C‖f‖∞. (See exercise 10.9 for a finite-dimensional interpretation of the norm defined in
(10.33).)

We will see that ‖Ln‖∞ can be very large for typical choices of interpolation points.
Suppose in this case that some small errors are made in the specification of the interpolation
data f . That is, suppose we apply interpolation to f + δ, where δ is small but somewhat
arbitrary (e.g., due to round-off error). Since Ln is linear, the result is

Ln(f + δ) = Lnf + Lnδ. (10.34)

We can then assert that the error, which is equal to Lnδ, must be no larger than ‖Ln‖∞‖δ‖∞.
But since we may have little control over δ, it could possibly be as large as ‖Ln‖∞‖δ‖∞.
Thus ‖Ln‖∞ represents the error amplification factor.

Draft September 23, 2016, do not distribute Page 165

10.3. BEHAVIOR OF LAGRANGE INTERPOLATIONCHAPTER 10. POLYNOMIAL INTERPOLATION

–7

–6

–5

–4

–3

–2

–1

 0

 1

 2

–1 –0.5 0 0.5 1

Figure 10.1: The Lagrange basis function φ5 for 11 equally spaced interpolation points on
the interval [−1, 1]. The circles indicate the interpolation data.

Let us estimate the size of ‖Ln‖∞. Since we can choose f in (10.33) arbitrarily, we can
pick f to be 1 at the ith interpolation point and 0 at the others. In this case, Lnf = φi, the
corresponding basis function. Thus we conclude that

‖Ln‖∞ ≥ max
i=0,...,n

‖φi‖∞ . (10.35)

On the other hand, it is not hard (exercise 10.11) to show that

‖Ln‖∞ ≤
n∑
i=0

‖φi‖∞ . (10.36)

Thus we need to look carefully at the size of the Lagrange basis functions.
Since the Lagrange basis functions are chosen to be 1 at one point and 0 at the others,

one might hope that the maximum of the basis functions will not be too big. In particular,
it might be the case that the maximum occurs at the interpolation point where it is specified
to be 1. But in general, this does not happen. A typical Lagrange basis function for equally
spaced interpolation points

xi = −1 + (i− 1)/k, i = 1, . . . , 2k + 1, (10.37)

is depicted in figure 10.1. For n = 2k + 1 equally spaced interpolation points on [−1, 1]
as defined in (10.37), the largest norm appears to occur for φk (which is associated with
the interpolation point xk = −1/k), and its maximum appears to occur in the first interval
[x1, x2] (see exercise 10.16). Computing the Lagrange basis functions for various values of
k and the maximum value φk in this interval yields lower bounds via (10.35), which grow
exponentially (see exercise 10.17). In particular, for k = 31, ‖L2k+1‖∞ exceeds 1016 (we
explain in section 11.3 how this operator norm can be computed with some confidence).
This means that round-off errors in the data f could lead to order one errors in computing
Lnf for large n no matter how well-behaved f may be.

Draft September 23, 2016, do not distribute Page 166

CHAPTER 10. POLYNOMIAL INTERPOLATION10.3. BEHAVIOR OF LAGRANGE INTERPOLATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

–1 –0.5 0 0.5 1

Figure 10.2: The Runge function r3 (dashed line) and its Lagrange interpolant for 11 equally
spaced interpolation points on the interval [−1, 1]. The “+” signs indicate the interpolation
data.

10.3.3 Data-dependence of Lagrange interpolation

In addition to the inherent instability of Lagrange interpolation for large n, there are also
classes of functions that are not suitable for approximation by certain types of interpolation.
There is a celebrated example of Runge4 [89] based on interpolating the function 1/(1 + x2)
on various intervals. For simplicity, here we instead look at interpolating the function

rγ(x) = 1/(1 + (γx)2) (10.38)

on the fixed interval [−1, 1].
The special feature of the Runge function rγ is that it has a singularity in the complex

plane at z = ±i/γ despite the fact that it is infinitely differentiable on the real line (where
the interpolation is being done). As γ gets large, the singularity encroaches upon the domain
[−1, 1] of approximation. For γ = 2, the maximum error

‖rγ − Lnrγ‖∞ (10.39)

slowly decreases as a function of n for uniformly spaced points (see table 10.1). However,
for γ = 3, the error (10.39) increases; figure 10.2 depicts the error with n = 11. We again
see that the maximum error occurs in the first and last segments.

10.3.4 Runge versus Gauss

The behavior of Lagrange interpolation is mysterious. It is very sensitive to the distribution
of higher derivatives of the function being interpolated as well as the distribution of the

4Carl David Tolmé Runge (1856–1927) was a student of Weierstrass and Kummer, and he married the
niece of Paul Du Bois-Reymond (see page 70). He was a close friend of, and student with, Max Planck, and
he was a teacher and mentor of Max Born.

Draft September 23, 2016, do not distribute Page 167

10.3. BEHAVIOR OF LAGRANGE INTERPOLATIONCHAPTER 10. POLYNOMIAL INTERPOLATION

γ n = 5 7 9 11 13 15 17 19 21√
2 0.07 0.04 0.02 0.01 0.007 0.004 0.003 0.002 0.001

2 0.16 0.12 0.10 0.09 0.080 0.075 0.072 0.070 0.068
3 0.30 0.32 0.38 0.50 0.67 0.94 1.3 1.9 2.7

Table 10.1: Errors ‖rγ − Lnrγ‖∞ in Lagrange interpolation Ln of the Runge function for
various values of γ and polynomial order n.

function interpolated n = 15 17 19 21
Runge 1/(1 + (3x)2) 0.937 1.32 1.89 2.73

Gaussian e−(3x)2 0.074 0.037 0.017 0.007

Table 10.2: Errors ‖f − Lnf‖∞ for Lagrange interpolation Ln of a function f , where f is
either the Runge function with γ = 3 or a Gaussian, as a function of the number n of equally
spaced interpolation points.

interpolation points. More precisely, we see from (10.25) and (10.27) that the quantities
to focus on are f (k)/k! and the size of ωk. This is most evident for Lagrange interpolation
on uniformly spaced points. In figure 10.3, we see the interpolant of the Runge function
[10.37] together with the interpolant of a Gaussian. Superficially, the Runge function is the
smoother of the two: they have the same value and curvature at the origin, but the Gaussian
dives toward zero much more rapidly. Nevertheless, the interpolation error is significantly
smaller for the Gaussian than for the Runge function once the number of interpolation points
gets high enough.

The discrepancy has to do with the fact that the higher derivatives of the Gaussian grow
more slowly than those of the Runge function. Indeed, Lagrange interpolation at a smaller
number of (uniformly spaced) points, as shown in figure 10.4 for 7 interpolation points, has a
larger maximum error for the Gaussian (=0.381) than for the Runge function (=0.315). For
larger numbers of points, Lagrange interpolation becomes sensitive to the higher derivatives
which are not so easily visualized in a graph.

As shown in table 10.2, the interpolation increases for the Runge function but decreases
for the Gaussian as the number of intepolation points is increased.

We can easily verify the relationship between the growth rates of the derivatives for the
Runge function and a Gaussian. Let f(x) = r1(x) = 1/(1 + x2). Then the series

∞∑
k=0

f (k)(0)

k!

diverges since f has a singularity in the complex plane at ±i. On the other hand, g(x) = e−x
2

is an entire function, so
∞∑
k=0

g(k)(0)rk

k!
<∞

for any finite value of r.

Draft September 23, 2016, do not distribute Page 168

CHAPTER 10. POLYNOMIAL INTERPOLATION10.3. BEHAVIOR OF LAGRANGE INTERPOLATION

Figure 10.3: Interpolation of the Runge function and a Gaussian at 15 uniformly spaced
points. The maximum interpolation error is approximately 0.937 for the Runge function and
0.0742 for the Gaussian.

Figure 10.4: Interpolation of the Runge function and a Gaussian at 7 uniformly spaced
points. The maximum interpolation error is approximately 0.315 for the Runge function and
0.381 for the Gaussian.

Draft September 23, 2016, do not distribute Page 169

10.4. MORE READING CHAPTER 10. POLYNOMIAL INTERPOLATION

10.4 More reading

Polynomial interpolation has been motivated by a variety of factors. With the advent of
modern computing machines, the need to provide accurate approximations of various sorts
[81, 116] includes interpolation [110] as a major technique.

The approach to the Newton form of interpolation was guided by [44], which should be
consulted for information about other types of interpolation as well.

We have shown that Lagrange interpolation requires some thought if we want to compute
stable approximations. See [86] regarding the influence of floating-point and stable ways of
computing Lagrange interpolants.

10.5 Exercises

Exercise 10.1 Prove (10.9). (Hint: explain why

f(x)− Lnf(x) = Cxωn+1(x), (10.40)

where Cx depends on x but will be held fixed for the calculations. Use Rolle’s theorem repeat-
edly to show that the function

χ(y) = f(y)− Lnf(y)− Cxωn+1(y) (10.41)

has the property that χ(k) vanishes at n + 2− k distinct points in an interval containing all
the points x0, . . . , xn and x. Let ξ be the point where χ(n+1) vanishes.)

Exercise 10.2 Show that the Lagrange interpolation problem may be reduced to a linear
system of equations with a Vandermonde matrix

1 x0 x2
0 · · · xn0

1 x1 x2
1 · · · xn1
· · ·

1 xn x2
n · · · xnn

 . (10.42)

Prove that a Vandermonde matrix is invertible if and only if the xi’s are distinct. (Hint:
represent polynomials in terms of the standard monomial basis functions xi.)

Exercise 10.3 Consider the determinant of a Vandermonde matrix

Vn(x0, . . . , xn) = det

1 x0 x2

0 · · · xn0
1 x1 x2

1 · · · xn1
· · ·

1 xn x2
n · · · xnn

 . (10.43)

Show that V is a polynomial of degree 1
2
n(n + 1) and that, for all 0 ≤ i < j ≤ n, xi − xj

divides Vn, that is, Vn(x0, . . . , xn) = (xi − xj)p(x0, . . . , xn) for some polynomial p. Use this
to show that

Vn(x0, . . . , xn) = C
∏

0≤i<j≤n

(xi − xj)

for some constant C. (Hint: use exercise 10.2.)

Draft September 23, 2016, do not distribute Page 170

CHAPTER 10. POLYNOMIAL INTERPOLATION 10.5. EXERCISES

Exercise 10.4 Prove that the error polynomials ωn defined in (10.8) are linearly indepen-
dent. (Hint: use induction. Note that you cannot have ωn =

∑n−1
i=0 aiωi(x) because the

right-hand side is a polynomial only of degree n.)

Exercise 10.5 Derive the expression

p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) (10.44)

following the approach used to construct the representation for p1.

Exercise 10.6 Suppose that f [x0, x1, x2] is defined as a divided difference of two first-order
divided differences, e.g.,

f [x0, x1, x2] =
f [x0, x2]− f [x0, x1]

x2 − x1

. (10.45)

Show that
f [x0, x1, x2] = f [xσ(0), xσ(1), xσ(2)] (10.46)

for any permutation σ of {0, 1, 2}.

Exercise 10.7 Prove corollary 10.4. (Hint: use theorem 10.1 to show that

f [x0, x1, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0

(10.47)

and then apply (10.21).)

Exercise 10.8 Show that ‖ ·‖∞ defined in (10.31) is a norm, that is, satisfies the properties
(5.1)-(5.3).

Exercise 10.9 Show that the definition (10.33) yields the same number ‖Ln‖∞ if we replace
C0(I) by Rn+1 as the domain of Ln:

‖Ln‖∞ = sup
f∈Rn+1

‖Lnf‖∞
‖f‖∞

, (10.48)

where we use the alternative interpretation Ln : Rn+1 → Pn defined in (10.4).

Exercise 10.10 Give an example of a function f such that Lnf = φi and has the required
properties that allow us to conclude the estimate (10.35).

Exercise 10.11 Prove (10.36).

Exercise 10.12 Prove that the determinant of a Vandermonde matrix as described in (10.42)
satisfies

det

1 x0 x2

0 · · · xn0
1 x1 x2

1 · · · xn1
· · ·

1 xn x2
n · · · xnn

 =
∏

0≤i<j≤n

(xj − xi) (10.49)

and is thus invertible when all xi’s are distinct. (Hint: reduce this to a problem involving
Lagrange interpolation by expanding the determinant along the last column.)

Draft September 23, 2016, do not distribute Page 171

10.5. EXERCISES CHAPTER 10. POLYNOMIAL INTERPOLATION

Exercise 10.13 Consider Lagrange interpolation Ln based on distinct interpolation points
xi. Prove that, for any continuous function f ,

(Ln(xf)− xLnf) (x) = (−1)n+1f [x0, x1, . . . , xn]ωn(x). (10.50)

Here the commutator Ln(xf)−xLnf is defined as follows. We let g(x) = xf(x) and gn(x) =
x(Lnf(x)). Then (Ln(xf)− xLnf) (x) = Lng(x)− gn.

Exercise 10.14 Determine a bound for the derivatives of the Runge function rγ defined in
(10.38) as a function of n and γ. Use this in (10.9) to give an estimate for the error in
Lagrange interpolation.

Exercise 10.15 Suppose that f is a polynomial of degree n+ 1. Prove that

f [x0, x1, . . . , xn] =
f (n+1)

(n+ 1)!
, (10.51)

where we note that f (n+1) is a constant. (Hint: see corollary 10.3.)

Exercise 10.16 Let φi denote the ith basis function for Lagrange interpolation for n = 2k+1
equally spaced interpolation points xi = −1 + (i− 1)/k on [−1, 1], i = 1, . . . , 2k + 1. Verify
computationally that the largest norm occurs for φk associated with the interpolation point
xk = −1/k and that its maximum occurs in the first interval [x1, x2].

Exercise 10.17 Let φi denote the ith basis function for Lagrange interpolation for n = 2k+1
equally spaced interpolation points xi = −1 + (i− 1)/k on [−1, 1], i = 1, . . . , 2k + 1. Verify
computationally that

Mk = max
i=1,...,2k+1

‖φi‖∞ (10.52)

grows exponentially with k. In particular, verify that M63 > 1016. (Hint: plot (logMk)/k.)

Exercise 10.18 Verify table 10.1 computationally.

Exercise 10.19 Consider equally spaced points xi = i/n (i = 0, . . . , n) on [0, 1] and consider
ωn+1(x) =

∏n
i=0(x − xi). Verify computationally that, for n odd, |ωn+1(1/2n)| ≈ e−an and

|ωn+1(1/2)| ≈ e−bn, where a ≈ 1.0 and b ≈ 1.7.

Exercise 10.20 Consider any distinct points x0, x1, . . . xn. Show that each Lagrange basis
functions φi defined in (10.5) can be written as

φi(x) =
ciωn+1(x)

x− xi
(10.53)

for some constant ci, where ωn+1(x) = (x− x0)(x− x1) · · · (x− xn). What is ci?

Draft September 23, 2016, do not distribute Page 172

CHAPTER 10. POLYNOMIAL INTERPOLATION 10.6. SOLUTIONS

10.6 Solutions

Solution of Exercise 10.5.
Suppose we add now x2 and try to determine p2 from p1 in the way that we determined

p1 from p0 and q1. Then we have p2 = p1 + q2, where q2 is quadratic and must vanish at
x0, x1 (to avoid spoiling the interpolation at those points). Thus

q2(x) = a2(x− x0)(x− x1) = a2ω2, (10.54)

and the value of a2 will be determined by the requirement p2(x2) = f(x2):

f(x2) = f(x0) + f [x0, x1](x2 − x0) + a2(x2 − x0)(x2 − x1). (10.55)

Rearranging terms in (10.55), we find

f(x2)− f(x0) = (x2 − x0)(f [x0, x1] + a2(x2 − x1)), (10.56)

which says that
f [x2, x0] = f [x0, x1] + a2(x2 − x1). (10.57)

Thus we have found that

a2 =
f [x2, x0]− f [x0, x1]

x2 − x1

. (10.58)

The result then follows from theorem 10.1.

Solution of Exercise 10.8. In the derivation of the properties of the norm, we have to
calculate the supremum of the set

{
|f(x)|

∣∣ x ∈ I} for various functions f . By definition,
‖f‖∞ ≥ 0 since it is the supremum of nonnegative numbers.

If ‖f‖∞ = 0, then f must be identically zero, since in this case we must have{
|f(x)|

∣∣ x ∈ I} = {0}. (10.59)

Now let f ∈ C0(I) be arbitrary, let s be any scalar, and let r = |s|. Note that

|f(x)| ≤ ‖f‖∞ ∀x ∈ I. (10.60)

Then
|sf(x)| = r|f(x)| ≤ r‖f‖∞ (10.61)

for all x ∈ I. So r‖f‖∞ is an upper bound for
{
|sf(x)|

∣∣ x ∈ I}. Thus

‖sf‖∞ = sup
{
|sf(x)|

∣∣ x ∈ I} ≤ r‖f‖∞. (10.62)

If r = 0, then (10.62) implies that

‖sf‖∞ = 0 = |s| ‖f‖∞. (10.63)

So now suppose r > 0. If b is an upper bound for
{
|sf(x)|

∣∣ x ∈ I}, then

r|f(x)| = |sf(x)| ≤ b (10.64)

Draft September 23, 2016, do not distribute Page 173

10.6. SOLUTIONS CHAPTER 10. POLYNOMIAL INTERPOLATION

for all x ∈ I. Then |f(x)| ≤ b/r for all x ∈ I. Hence

‖f‖∞ = sup
{
|f(x)|

∣∣ x ∈ I} ≤ b/r. (10.65)

Since this holds for all b, we find

r‖f‖∞ ≤ sup
{
|sf(x)|

∣∣ x ∈ I} = ‖sf‖∞. (10.66)

Combining (10.66) and (10.62), we conclude that |s| ‖f‖∞ = ‖sf‖∞.
Now let us address the triangle inequality. By (10.60), we have

|(f + g)(x)| = |f(x) + g(x)|
≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞ ∀x ∈ I.

(10.67)

That is, ‖f‖∞ + ‖g‖∞ is an upper bound for
{
|(f + g)(x)|

∣∣ x ∈ I}. Thus

‖f + g‖∞ = sup
{
|(f + g)(x)|

∣∣ x ∈ I} ≤ ‖f‖∞ + ‖g‖∞. (10.68)

Solution of Exercise 10.12. For n = 1, we have

det

(
1 x0

1 x1

)
= x1 − x0 =

∏
0≤i<j≤1

(xj − xi), (10.69)

so we may proceed by induction. For x ∈ Rn+1, define dn(x) via

dn(x0, x1, . . . , xn) =
∏

0≤i<j≤n

(xj − xi). (10.70)

Expanding the Vandermonde determinant around the last column, we have by induction
that

(−1)n det

1 x0 x2

0 · · · xn0
1 x1 x2

1 · · · xn1
...

...
...

...
...

1 xn x2
n · · · xnn

 =

{ xn0dn−1(x1, x2, . . . , xn)−
xn1dn−1(x0, x2, . . . , xn) +

...
(−1)nxnndn−1(x0, x1, . . . , xn−1)

=
n∑
k=0

(−1)kxnkdn−1(x̂(k)),

(10.71)

where x̂(k) denotes the point in Rn obtained by deleting the kth coordinate of x ∈ Rn+1.
Expanding the expression (10.70), we find

dn(x0, x1, . . . , xn) = dn−1(x̂(k))
∏

0≤j<k

(xk − xj)
∏

k<j≤n

(xj − xk). (10.72)

Therefore,

dn−1(x̂(k)) =
dn(x0, x1, . . . , xn)

(−1)k
∏

0≤j≤n, j 6=k(xj − xk)
. (10.73)

Draft September 23, 2016, do not distribute Page 174

CHAPTER 10. POLYNOMIAL INTERPOLATION 10.6. SOLUTIONS

Thus (10.71) becomes

(−1)n det

1 x0 x2

0 · · · xn0
1 x1 x2

1 · · · xn1
· · ·

1 xn x2
n · · · xnn

= dn(x0, x1, . . . , xn)

n∑
k=0

xnk∏
0≤j≤n, j 6=k(xj − xk)

.

(10.74)

Thus we have reduced the problem to prove the (unlikely looking) expression

(−1)n =
n∑
k=0

xnk∏
0≤j≤n, j 6=k(xj − xk)

. (10.75)

The denominator of this expression is the same as in the Lagrange interpolation basis func-
tions, so we can write

n∑
k=0

xnk∏
0≤j≤n, j 6=k(xj − xk)

=
n∑
k=0

xnkφk(x)∏
0≤j≤n, j 6=k(xj − x)

= (−1)n
n∑
k=0

xnkφk(x)∏
0≤j≤n, j 6=k(x− xj)

= (−1)n
n∑
k=0

xnkφk(x)(x− xk)∏
0≤j≤n(x− xj)

= (−1)nωn+1(x)−1

n∑
k=0

xnkφk(x)(x− xk)

(10.76)

for any x 6= xj for all j = 0, . . . , n, by (10.8). Let p(x) = xn+1 and q(x) = xn. Then

n∑
k=0

xnkφk(x)(x− xk) =x

(
n∑
k=0

xnkφk(x)

)
−

(
n∑
k=0

xn+1
k φk(x)

)
=xLnq(x)− Lnp(x) = xq(x)− Lnp(x)

= p(x)− Lnp(x) = ωn+1(x),

(10.77)

as required. Note that (10.75) implies that

(−1)n =
n∑
k=0

xnk∏
0≤j≤n, j 6=k(xj − xk)

=
n∑
k=0

1∏
0≤j≤n, j 6=k

(
xj
xk
− 1
)

=
n∑
k=0

∏
0≤j≤n, j 6=k

(
xj
xk
− 1

)−1

.

(10.78)

Solution of Exercise 10.13. Using the definition of the Lagrange interpolation basis

Draft September 23, 2016, do not distribute Page 175

10.6. SOLUTIONS CHAPTER 10. POLYNOMIAL INTERPOLATION

functions,

f [x0, x1, . . . , xn] =
n∑
k=0

f(xk)∏
j 6=k(xj − xk)

=
n∑
k=0

f(xk)φk(x)(xk − x)∏n
j=0(xj − x)

= (−1)n+1ωn+1(x)−1

n∑
k=0

f(xk)φk(x)(xk − x)

= (−1)n+1ωn+1(x)−1 (Ln(xf)− xLnf) (x)

(10.79)

for any x 6= xj for all j. This proves the result for x 6= xj; for x = xj, the result is true
because

xjLnf(xj) = xjf(xj) = Ln(xf)(xj). (10.80)

Draft September 23, 2016, do not distribute Page 176

Chapter 11

Chebyshev and Hermite Interpolation

“This is a mathematical textbook rather than a compendium of com-
putational rules. It is hoped that the material included will provide a
useful background for those seeking to devise and evaluate routines for
numerical computation.” (Alston S. Householder in [87])

For equally spaced points, two examples have suggested that bad things happen at the
ends of the interpolation interval: the basis functions are large there, and the approximation
of the Runge function (10.38) can be as well. Also, the size of the error function ωk defined
in (10.8) is relatively larger (exercises 10.19 and 11.1) at the ends of the interval. The
Chebyshev1 points are a special set of Lagrange interpolation points that cluster at the ends
of the interval:

xj = xj,n = − cos

(
π(2j + 1)

2(n+ 1)

)
= cos

(
π(2(n− j) + 1)

2(n+ 1)

)
(11.1)

for j = 0, 1, . . . , n (for interpolation on [−1, 1]). We include the extra subscript xj,n to be
precise, as we will compare error terms for different values of n. The key feature is that
these points are clustered around the ends of the interval: x1− x0 = O(n−2), whereas in the
middle of the interval, the spacing is O(n−1).

We will also consider more general forms of interpolation involving derivative and other
information in addition to function values.

1Pafnuty Lvovich Chebyshev (1821–1894) “was probably the first mathematician to recognize the general
concept of orthogonal polynomials” [145]. His students included Andrei Andreyevich Markov and Aleksandr
Mikhailovich Lyapunov.

function interpolated n = 7 11 15
Runge 1/(1 + (3x)2) 0.096 0.027 0.0074

Gaussian e−(3x)2 0.110 0.014 0.0010

Table 11.1: Errors ‖f − Lnf‖∞ for Lagrange interpolation Ln of a function f , where f is
either the Runge function for γ = 3 or a Gaussian, as a function of number n of Chebysheb
interpolation points.

177

11.1. CHEBYSHEV INTERPOLATIONCHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

Figure 11.1: Interpolation of the Runge function and a Gaussian at 7 Chebyshev points.
The maximum interpolation error is reduced at the expense of a larger error in the middle
of the interval; compare figure 10.4.

11.1 Chebyshev interpolation

By Chebyshev interpolation, we simply mean Lagrange interpolation at the Chebyshev points
(11.1). We can compare Lagrange interpolation for the Runge function and a Gaussian at
Chebyshev points, as shown in figure 11.1. For a modest number of interpolation points, the
picture is not much different from what we saw with equally spaced points in figure 10.4.
The maximum interpolation error is reduced, but at the expense of a larger error in the
middle of the interval. However, for larger numbers of points, the maximum error decreases
for both functions, as indicated in table 11.1. For example, figure 11.2 shows very small
error for 15 points.

11.1.1 Error term ω

There is a simple interpretation of the Chebyshev points in terms of the error function ωn+1

defined in (10.8), as follows.

Theorem 11.1 With the Chebyshev interpolation points (11.1), the error function ωn+1

defined in (10.8) for Lagrange interpolation satisfies

ωn+1(x) =

{
2−n cos((n+ 1) cos−1 x) ∀x ∈ [−1, 1]

2−n−1
((
x+
√
x2 − 1

)n+1
+
(
x−
√
x2 − 1

)n+1
)
∀x ∈ R.

(11.2)

Moreover, the following three-term recursion relation holds:

ωn+1(x) = xωn(x)− 1
4
ωn−1(x), (11.3)

where ωn+1−i(x) =
∏n−i

j=0(x− xj,n−i) for i = 0, 1, 2 and xj,n is defined in (11.1).

Draft September 23, 2016, do not distribute Page 178

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION11.1. CHEBYSHEV INTERPOLATION

Figure 11.2: Interpolation of the Runge function and a Gaussian at 15 Chebyshev points.
The maximum interpolation error is very small in the eye-ball norm for both functions;
compare figure 10.3.

Proof. The function cos((n+ 1) cos−1 x) has the right roots:

cos((n+ 1) cos−1 xj) = cos((π/2)(2(n− j) + 1)) = 0 (11.4)

since 2(n− j) + 1 = 1, 3, 5, It is somewhat remarkable that

cos((n+ 1) cos−1 x)

is a polynomial in x, of degree n + 1, but let us suppose for the moment that it is true
(cf. exercise 11.2). Since cos((n + 1) cos−1 x) and ωn+1(x) have the same roots, they are a
constant multiple of each other.

It is also surprising that square-roots appear in (11.2) in a representation of a polyno-
mial. But for n = 0, the two square-root terms cancel, giving ω1(x) = x, as required. Also
disconcerting is the fact that, for |x| < 1, the square-roots are complex numbers. How-
ever, expanding the terms in the second representation in (11.2) via the binomial theorem
(exercise 11.3) shows that all the square-root terms cancel, leaving only polynomial terms:(

x+
√
x2 − 1

)k
+
(
x−
√
x2 − 1

)k
= 2

∑
0≤j≤k/2

(
k
2j

)
(x2 − 1)jxk−2j. (11.5)

Thus if we can identify the two expressions in (11.2), then we have shown that the cosine
expression is a polynomial in x.

We use some facts about complex variables, namely, that

(cos θ + i sin θ)k =
(
eiθ
)k

= eikθ = cos kθ + i sin kθ, (11.6)

where i =
√
−1. The equality of the leftmost and rightmost terms in (11.6) is known as

a theorem of De Moivre, which was used by Euler2 to prove the equalities involving the

2Leonhard Euler (1707–1783) lived in the same period as Benjamin Franklin (1706–1790) [129] and was
said by Laplace to be “the master of us all” [56].

Draft September 23, 2016, do not distribute Page 179

11.1. CHEBYSHEV INTERPOLATIONCHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

complex exponential and trigonometric functions [56]. For |x| ≤ 1, write x = cos t. Then

x±
√
x2 − 1 = cos t± i

√
1− x2 = cos t± i sin t = e±it. (11.7)

Combining (11.7) with (11.6), we find(
x+
√
x2 − 1

)k
+
(
x−
√
x2 − 1

)k
= eikt + e−ikt = 2 cos kt, (11.8)

which confirms that the two expressions in (11.2) are the same for |x| ≤ 1.
The expression (11.2) shows that the leading term of cos((n + 1)t) is 2nxn+1, and since

the leading term of ωn+1(x) is xn+1, we must have cos((n+ 1)t) = 2nωn+1(x).
We leave the recursion relation (11.3) as exercise 11.4. QED

11.1.2 Chebyshev asymptotics

The formula (11.2) provides a complete description of the error polynomial ωn+1(x) for
all x. Between −1 and 1, the first representation shows that it just oscillates between
±2−n (cf. exercise 10.19). For x outside this interval, ωn+1(x) increases in size dramatically.
Fortunately, it is easy to describe its behavior precisely for large n based on the second
representation in (11.2). Although the square-root terms cancel algebraically, they can be
used to obtain a precise estimate of the growth.

To simplify notation, we switch subscripts and consider

ωn(x) = (x− x0,n−1)(x− x1,n−1) · · · (x− xn−1,n−1) (11.9)

in the remainder of the section, where the Chebyshev points are given in (11.1).

Theorem 11.2 Suppose that ωn is as in (11.9). For ±x > 1,

lim
n→∞

|ωn(x)|1/n = 1
2

(
±x+

√
x2 − 1

)
. (11.10)

Moreover,

|ωn(x)| >
(

1
2

(
±x+

√
x2 − 1

))n
. (11.11)

We leave the proof as exercise 11.6. Figure 11.3 depicts the ratio

ωn(x)(
1
2

(
x+
√
x2 − 1

))n (11.12)

for n = 10, 20, 40, 80 on the interval [1, 1.001].

11.1.3 Application to CG

One way to describe the error term ωn is to say that it is the polynomial of degree n that
deviates least from zero on the interval [−1, 1] among all polynomials that are asymptotic
to xn at infinity. We can make this precise by turning (11.11) around. Suppose we want a

Draft September 23, 2016, do not distribute Page 180

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION11.2. CHEBYSHEV BASIS FUNCTIONS

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 1 1.0001 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007 1.0008 1.0009 1.001

Figure 11.3: Plot of the ratio (11.12) for x ∈ [1, 1.001] and n = 10, 20, 40, 80 (top to bottom).

polynomial pn of degree n such that pn(Λ) = 1, for some fixed Λ > 1, and pn is small on
[−1, 1]. Define

pn(x) = ωn(x)/ωn(Λ). (11.13)

Then

‖pn‖∞,[−1,1] = 2−n/ωn(Λ) <
(

Λ +
√

Λ2 − 1
)−n

. (11.14)

Thus we see that even though pn(Λ) = 1, pn is exponentially small on the interval [−1, 1].
We now use this to prove lemma 9.11.

Recall that 0 < λ1 < λ2 and define b = 1
2
(λ2 − λ1) and

Λ =
λ1 + λ2

λ2 − λ1

=
λ1 + λ2

2b
. (11.15)

Then we have
λ1 = (Λ− 1)b and λ2 = (Λ + 1)b. (11.16)

Define qn(x) = pn(Λ− x/b). Then qn(0) = 1, and

‖qn‖∞,[λ1,λ2] = ‖qn‖∞,[(Λ−1)b,(Λ+1)b] = ‖pn‖∞,[−1,1]. (11.17)

Thus (11.14) implies

‖qn‖∞,[λ1,λ2] ≤
(

Λ +
√

Λ2 − 1
)−n

, where Λ =
λ1 + λ2

λ2 − λ1

. (11.18)

This completes the proof of lemma 9.11.

11.2 Chebyshev basis functions

We can identify the jth basis function for the Chebyshev interpolation points (see exer-
cise 10.20) as

φj(x) = φj(cos t) = c′j
ωn+1(x)

(x− xj)
=
cj cos((n+ 1)t)

cos t− cos tj
, (11.19)

Draft September 23, 2016, do not distribute Page 181

11.3. LEBESGUE FUNCTIONCHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

where tj = π(2(n−j)+1)
2(n+1)

and cj = c′j2
n is defined such that φj(xj) = 1. By l’Hopital’s Rule, we

have

cj = lim
t→tj

cos t− cos tj
cos((n+ 1)t)

=
sin tj

(n+ 1) sin((n+ 1)tj)
=

(−1)n−j sin tj
(n+ 1)

(11.20)

because (n+ 1)tj = 1
2
π(2(n− j) + 1) = (n+ 1

2
)π, (n− 1

2
)π, . . . , 1

2
π.

Now let us develop some bounds for how big the Chebyshev basis functions can get. For
| cos t − cos tj| ≥ |cj|, we have |φj(t)| ≤ 1. Thus we need to estimate |φj(t)| for t only near
tj. For the numerator of |φj(t)|, we see

| cos((n+ 1)t)| = | cos((n+ 1)t)− cos((n+ 1)tj)|

=
∣∣∣∫ (n+1)t

(n+1)tj

sinx dx
∣∣∣ ≤ (n+ 1)|tj − t|

(11.21)

for any t. Similarly, if tj < t ≤ 1
2
π, then the denominator of |φj(t)| can be estimated by

| cos(t)− cos(tj)| =
∫ t

tj

sinx dx ≥ |tj − t| sin tj. (11.22)

Combining (11.22) and (11.21), we see that |φi(x)| ≤ 1 for xj < x ≤ 0 by (11.20).
Unfortunately, the maximum of φj does not occur at xj, so we have |φi(x)| > 1 for

x < xj. Thus the norm of the Chebyshev interpolation operator is greater than 1. Rather
than trying to estimate the basis functions in more detail, we approach the problem more
generally.

11.3 Lebesgue function

We have seen by examples that the norm of the Lagrange interpolation operator can be
challenging to compute and that its size is strongly dependent on the choice of interpolation
points. We now consider the issue in more depth. The norm of the Lagrange interpolation
operator is a double supremum, and it is useful to take the suprema one at a time. The
Lebesgue function is defined to be

λn(x) = sup
{
|(Lnf)(x)|

∣∣ ‖f‖∞ = 1
}
. (11.23)

In figure 11.4, a typical case with Chebyshev points is presented (cf. exercise 11.9). Note
that the maximum value occurs at the ends of the interval [153].

The Lebesgue constant is the name for the norm of the Lagrange interpolation operator,
and we see (exercise 11.8) that

‖Ln‖∞ = ‖λn‖∞. (11.24)

Fortunately, the Lebesgue function is easy to compute:

Theorem 11.3 For any set of interpolation points x0, . . . , xn and corresponding Lagrange
basis functions φj, the Lebesgue function (11.23) satisfies

λn(x) =
n∑
j=0

|φj(x)| (11.25)

for all x.

Draft September 23, 2016, do not distribute Page 182

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION11.3. LEBESGUE FUNCTION

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

–1 –0.5 0 0.5 1

Figure 11.4: The Lebesgue function for Chebyshev interpolation points on the interval
[−1, 1]. The circles indicate the interpolation points where the Lebesgue function has the
value 1.

As a result of (11.25), we see that λn(xj) = 1 for all interpolation points xj; cf. figure 11.4.

Proof. For any x ∈ I, there is an f ∈ C0(I) such that

|Lnf(x)| =
∣∣∣ n∑
j=0

f(xj)φj(x)
∣∣∣

=
n∑
j=0

|φj(x)| ,
(11.26)

by taking f(xj) = sign(φj(x)). For example, we can take f to be the piecewise linear function
with these values at the interpolation points, and we thus have ‖f‖∞ = 1. This proves that
λ(x) ≥

∑n
j=0 |φj(x)|. The reverse inequality follows because

|Lnf(x)| =
∣∣∣ n∑
j=0

f(xj)φj(x)
∣∣∣

≤‖f‖∞
n∑
j=0

|φj(x)|
(11.27)

for any f ∈ C0(I). QED

It is beyond our scope to compute analytical expressions for the Lebesgue constants, but
for completeness we report on what is known. For equally spaced points, the behavior is
exponential:

‖Ln‖∞ ≈
2n

en log n
, (11.28)

and for the Chebyshev points,
‖Ln‖∞ ≈ 1

2
π log n (11.29)

Draft September 23, 2016, do not distribute Page 183

11.4. GENERALIZED INTERPOLATIONCHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

(see [153] for references). We might think that the logarithmic growth in the Lebesgue
constant for Chebyshev points could be improved by a better choice of interpolation points
(cf. exercise 11.13). In fact, it was proved by Erdös3 [59] that for all choices of n interpolation
points on [−1, 1],

‖Ln‖∞ ≥ (1
2
π log n)− E ∀n (11.30)

for some constant E (see exercise 11.14).

11.4 Generalized interpolation

Suppose that we have data associated not just with function values but also with other
quantities, such as derivatives, that we want to use in an interpolation scheme. An example
of this is the Hermite4 interpolation scheme which involves the value and derivative at each
end of an interval [a, b]. These four parameters determine uniquely a cubic polynomial, but
it is less simple to write down the basis functions than it was for Lagrange interpolation.
Moreover, we might be interested in other interpolation data, such as the integral over the
interval. We will show that quadratics are determined uniquely to interpolate a function at
a and b and to match the integral over [a, b].

Rather than approaching each of these interpolation problems in an ad hoc manner, we
develop a systematic approach. The key concept that we use is that of a linear functional
(or linear form) defined on a vector space V . Suppose that V is a vector space over the
scalar field F. Then a linear functional L is a function L : V → F such that

L(v + αw) = L(v) + αL(w) (11.31)

for all v, w ∈ V and α ∈ F. For example, if V = C0(I), we can define Lx(v) = v(x) for a
given x ∈ I. Note that we can write the conditions for the Lagrange interpolant P of a given
function f as LxiP = Lxif for all interpolation points xi.

We assume in general that there are n linear functionals Lj for which we want to enforce
interpolation, that is, Ljp = Ljf to determine a polynomial p of degree n− 1. For Lagrange
interpolation, Ljf = f(xj) for all j, but with Hermite Ljf = f ′(xj) for some j. And similarly
we can define

Lf =

∫ b

a

f(x) dx (11.32)

as well as an infinite variety of other functionals.

11.4.1 Existence of interpolant

The existence of the generalized interpolant can be proved by constructing polynomials
φi ∈ Pn such that

Ljφi = δij. (11.33)

3Paul Erdös (1913–1996) was one of the most prolific mathematicians of all time and a proponent of the
importance of beauty in proofs. He was a student of Leopold Fejér (see page 235).

4Charles Hermite (1822–1901) was, among many distinguished appointments, Mâıtre de Conférence at
École Polytechnique, despite having had a low score on the entrance exam as a student and ultimately
leaving before graduating. His name is also commemorated in the name “Hermitian matrix.”

Draft September 23, 2016, do not distribute Page 184

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION11.4. GENERALIZED INTERPOLATION

Then the generalized interpolant is defined by

Gnf(x) =
n∑
i=0

(Lif)φi. (11.34)

We can again also think of Gn being defined on data f ∈ Rn by

Gnf(x) =
n∑
i=0

fiφi. (11.35)

As in the case of the Lagrange interpolant, Gn is a projection, and error estimates can be
determined once a bound for the operator norm ‖Gn‖ is determined.

The key issue is to have a simple condition that is equivalent to (11.33).

Definition 11.4 A set of linear functionals {L0,L1, . . . ,Ln} uniquely determines Pn if
Ljp = 0 for all j = 0, . . . , n implies p ≡ 0 for any p ∈ Pn.

We recall that the kernel of a linear function is the set where it vanishes:

kerL =
{
p ∈ Pn

∣∣ Lp = 0
}

(11.36)

in our case. Then we can say that L0, . . . ,Ln uniquely determines Pn iff

∩ni=0 kerLj = {0}. (11.37)

Another term often used is unisolvent; we say {L0, . . . ,Ln} is unisolvent on Pn iff (11.37)
holds.

Lemma 11.5 There is a basis of Pn satisfying (11.33) if and only if the set of linear func-
tionals {L0,L1, . . . ,Ln} uniquely determines Pn.

Proof. Define a matrix A by aij = Li(xj). Then if p(x) =
∑n

i=0 cjx
j, we have (AC)i = Lip.

Thus Ljp = 0 for all j = 0, . . . , n if and only if AC = 0. Therefore, L0, . . . ,Ln uniquely
determines Pn if and only if AC = 0 implies C = 0, which in turn is equivalent to A being
invertible. The condition (11.33) means that we need, for each i, a vector C of coefficients
such that AC = D, where Dj = δij. But this is just another condition equivalent to the
invertibility of A. Thus we have shown that both conditions are equivalent to the invertibility
of A and hence are equivalent to each other. QED

We note that lemma 11.5 provides the basis for constructing multidimensional approxi-
mations of a very general type [21]. The space Pn can be essentially any space of functions
of dimension n+ 1 for which the linear functionals Lj are defined.

Draft September 23, 2016, do not distribute Page 185

11.4. GENERALIZED INTERPOLATIONCHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

11.4.2 Applications

We now see how the (easy half of the) fundamental theorem of algebra guarantees the
existence of the Lagrange basis functions. In view of lemma 11.5, all we need to show is that
any polynomial of degree n that vanishes at n+ 1 distinct points is identically zero, and this
is part of what the fundamental theorem of algebra states (cf. exercise 9.20).

But now we can use the same idea with more complicated forms of interpolation. In
particular, we can again use the fundamental theorem of algebra to guarantee the existence of
the Hermite basis functions simply by observing that we count zeros with multiplicity. That
is, a cubic function that vanishes to second-order at two distinct points must be identically
zero. In view of lemma 11.5, there are cubic polynomials φi such that φ

(k)
ij (`) = δikδj`. This

notation is suitable for the Hermite cubic basis on [0, 1], but the approach is the same for
any interval.

Finally, consider quadratic polynomials p that vanish at a, b and have∫ b

a

p(x) dx = 0. (11.38)

We must have
p(x) = c(a− x)(b− x) (11.39)

because p vanishes at a and b. But since
∫ 1

0
x(1 − x) dx 6= 0, we must have c = 0 (cf. exer-

cise 11.16). Thus we have an interpolation scheme for quadratics based on the values at the
endpoints and the integral over the interval.

Lemma 11.5 does not always produce a positive result. It can also be used to show that a
particular interpolation scheme will not work. For example, it is easy to see that we cannot
use both the integral over an interval and the value at the midpoint to determine a linear
interpolant. Both of these linear functionals vanish on the linear function that is zero at the
midpoint.

To demonstrate the power of the abstract approach, we consider an interpolation problem
related to the Euler-Maclaurin formula (see section 13.3.4). This is also a good example of
the general Birkhoff 5 interpolation problem [15, 115].

Lemma 11.6 Let k be a positive integer. Suppose that p is a polynomial of degree 2k + 1
that vanishes at −1 and +1, together with its odd-order derivatives up through order 2k− 1.
That is, p(±1) = 0 and

p(2i−1)(±1) = 0 (11.40)

for i = 1, . . . , k. Then p ≡ 0.

Proof. For k = 1, this is just Hermite interpolation. But for larger k we are missing
even-order derivative information, so we cannot apply the fundamental theorem of algebra.
However, a simple application of Rolle’s theorem provides the missing information. Since
p(±1) = 0 as well, there is a point −1 < ξ1 < 1 such that p(1)(ξ1) = 0. Since p(1)(±1) = 0,
there must be two points −1 < µ−1 < µ+

1 < 1 such that p(2)(µ±1) = 0 (in particular,
µ−1 < ξ1 < µ+

1). Thus there is a point −1 < ξ2 < 1 such that p(3)(ξ2) = 0. Since p(3)(±1) = 0,

5George David Birkhoff (1884–1944) was born in Overisel Township, Michigan, and was a graduate
student at the University of Chicago where he worked with E. H. Moore.

Draft September 23, 2016, do not distribute Page 186

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION11.4. GENERALIZED INTERPOLATION

we conclude that there must be two points −1 < µ−2 < µ+
2 < 1 such that p(4)(µ±2) = 0.

Continuing in this way, we find ultimately that there is a point −1 < ξk < 1 such that
p(2k−1)(ξk) = 0. Also since p(2k−1)(±1) = 0 and since p(2k−1) is a polynomial of degree at
most 2, p(2k−1) ≡ 0. It is sometimes useful to give a particular type of argument a name so
that we can refer to it without repeating all the steps as we do, e.g., with a proof involving a
“telescoping series.” Thus we suggest that the previous argument is one in which we “Rolle
up” the roots of derivatives of the polynomial p.

Now let us argue by induction. We have already demonstrated the case k = 1 since
this is just Hermite interpolation. Thus suppose that we have demonstrated the lemma for
j = k − 1 ≥ 1 and that we now want to verify it for k. So consider a polynomial p of
degree 2k+ 1 satisfying the conditions of the lemma. Our argument in which we “Rolle up”
the roots of derivatives of p allows us to assert that the degree of p is at most 2k − 2 since
p(2k−1) ≡ 0. But the data for the lemma for k include the data for j = k − 1, and since the
degree of p is ≤ 2k − 2 < 2j + 1, then p ≡ 0 by the induction hypothesis. QED

11.4.3 Numerical differentiation

Suppose we are given data and we want to compute the derivative of a function that the data
represent. We can use interpolation as a general paradigm to compute any linear operator
defined on functions. Suppose that D is a linear functional defined on Ck(I), that is, a linear
mapping D : Ck(I)→ R (cf. (11.31)). Suppose as well that we have a favorite interpolation
scheme (Lagrange, Hermite, etc.) Ln that takes data f ∈ Rn and produces a polynomial
p = Lnf that represents the data f in some way. Then for data f ∈ Rn, we define

Dnf = D(Lnf). (11.41)

Suppose now, by abuse of notation, we write Lnf for a function f ∈ Ck(I), where we mean
that the data f ∈ Rn used to define Ln are taken from the function f in (11.34). Then we
can compare the resulting approximation Dnf with the exact Df :

Df −Dnf = Df −D(Lnf) = D(f − Lnf). (11.42)

Thus the error D −Dn is just D applied to the error in interpolation. So far, we have not
considered the error in derivatives for interpolation, but this can be done in a fashion similar
to what we did for the function values for interpolation error.

For Df = f (k)(x) for some x ∈ I, Dnf provides an approximation to f (k)(x). Let us
consider some examples. Suppose that k = 1 and I = [0, 1]. Suppose that Ln represents
linear (Lagrange) interpolation at the points x0 = 0 and x1 = 1. Then p = Lnf satisfies
(cf. section 10.2.3)

p′ = f(x1)− f(x0) = f [x0, x1], (11.43)

and we note that p′ is constant. Thus if Df = f ′(x), we have Dnf = f(x1)−f(x0) = f [x0, x1]
no matter which x ∈ I we choose. On the other hand, if we take Ln to represent quadratic
interpolation at x0 = 0, x1/2 = 1

2
, and x1 = 1, then p = Lnf is quadratic and p′ is a linear

function. We can use the Newton divided difference representation (10.28) to determine the
form of p′:

p′ = f [x0, x1]ω′1 + f [x0, x1, x1/2]ω′2, (11.44)

Draft September 23, 2016, do not distribute Page 187

11.5. MORE READINGCHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

where ω1(x) = (x − x0) = x and ω2(x) = (x − x0)(x − x1) = x(x − 1). Thus if we define
Df = f ′(1

2
), then

f ′(1
2
) ≈ Dnf = f [x0, x1] = f(x1)− f(x0) (11.45)

since ω′2(1
2
) = 0. Thus we get the same approximation for f ′(1

2
) using both linear and

quadratic interpolants.
On the other hand, if we define Df = f ′(0), then we get a more complex expression for

Dnf :

f ′(0) ≈ Dnf

= f [x0, x1]ω′1(0) + f [x0, x1, x1/2]ω′2(0) = f [x0, x1]− f [x0, x1, x1/2]

= f [x0, x1]− (f [x0, x1]− f [x0, x1/2])/(x1 − x1/2) [by (10.28)]

= f [x0, x1]− 2(f [x0, x1]− f [x0, x1/2]) = −f [x0, x1] + 2f [x0, x1/2]

= − (f(x1)− f(x0)) + 2(f(x1/2)− f(x0))

= − 3f(x0) + 4f(x1/2)− f(x1).

(11.46)

Correspondingly, we see (e.g., by antisymmetry) that

f ′(1) ≈ f(x0)− 4f(x1/2) + 3f(x1). (11.47)

11.5 More reading

For more on approximation theory in general and Chebyshev approximation in particular,
see [166]. Applications of Chebyshev polynomials to solving differential equations is the topic
of [18]. For information on the history and current research on Chebyshev polynomials, see
[140]. For more detailed information about Lebesgue constants, see [153]. The Newton
approach to interpolation can be applied to Hermite and other types of interpolation [44].

11.6 Exercises

Exercise 11.1 Plot the error function ωn defined in (10.8) for points that are equally spaced
(10.37) and for Chebyshev points.

Exercise 11.2 Prove the trigonometric identities

cos((n+ 1)t) = 2(cos t)(cosnt)− cos((n− 1)t). (11.48)

(Hint: use (11.6) to express cos kt = 1
2
(eikt + e−ikt) and then use this to expand the product

(cos t)(cosnt).)

Exercise 11.3 Use the binomial theorem to expand

(a+ b)k + (a− b)k =
(
x+
√
x2 − 1

)k
+
(
x−
√
x2 − 1

)k
and show that the square-roots disappear; then verify (11.5). (Hint: odd powers of the square-
root terms cancel.)

Draft September 23, 2016, do not distribute Page 188

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION 11.6. EXERCISES

Exercise 11.4 Prove that the recursion relation (11.3) holds. (Hint: use (11.48). Note that
x = cos t and interpret the other expressions in terms of the ω’s as functions of x.)

Exercise 11.5 The functions Tk(x) = 2k−1ωk(x) are called Chebyshev (often spelled Tcheby-
shev) polynomials when ωk is the error function corresponding to the Chebyshev points.
Prove that these functions satisfy the following three-term recursion relation: Tk+1(x) =
2xTk(x)− Tk−1(x).

Exercise 11.6 Prove theorem 11.2. (Hint: use the second relation in (11.2) and observe
that ±(x±

√
x2 − 1) > 1 and 1 > ±(x∓

√
x2 − 1) > 0 for ±x > 1.)

Exercise 11.7 Prove that the functions ωk(x) (and Tk(x), cf. exercise 11.5) are orthogonal
in the sense that ∫ 1

−1

ωj(x)ωk(x)(1− x2)−1/2 dx = 0 (11.49)

if j 6= k. (Hint: introduce the change of variables x = cos t.)

Exercise 11.8 Prove (11.24). (Hint: observe that

‖Ln‖∞ = sup
{
|(Lnf)(x)|

∣∣ x ∈ I, ‖f‖∞ = 1
}
, (11.50)

where I is the interval of interpolation.)

Exercise 11.9 Verify figure 11.4 computationally.

Exercise 11.10 Let x1, . . . , xn be the Chebyshev points for [−1, 1]. Consider the stretched
set of points defined by

x̂j =

(
λ+

1− λ
|x1|

)
xj,

where λ ∈ [0, 1]. When λ = 1, these are the regular Chebyshev points, and when λ = 0, we
have x̂1 = −1 and x̂n = 1 [153]. Plot the Lebesgue function for various values of n and λ.
Does λ = 1

2
minimize the maximum norm of the Lebesgue function?

Exercise 11.11 Suppose that f ∈ C0(I). Prove that there is an x ∈ I such that |f(x)| =
‖f‖∞,I .

Exercise 11.12 Consider mesh points where x1 = −1 + h2 and xi − xi−1 = h2(1 + h)i for
i = 2, . . . n − 1, where n ≈ log(1 + 1/h)/ log(1 + h). Reflect this set of points around the
origin and add the origin as well. Compare polynomial interpolation on this set of points
with the Chebyshev points.

Exercise 11.13 The Chebyshev points are not the optimal points for reducing the size of
the Lebesgue function. The optimal points have the property that the Lebesgue function equi-
oscillates in each subinterval [28, 45, 99], that is, between each pair of interpolation points
xi and xi+1, there is a point ξi where λ(ξi) = ‖λ‖∞ (at the ends, λ(±1) = ‖λ‖∞ as well).
Analytical solutions for optimal points are known only for small values of polynomial degree
n [139]. Determine computationally [119, section 1.4.7] the set of points xi which minimize
‖λ‖∞ for a given value of n.

Draft September 23, 2016, do not distribute Page 189

11.6. EXERCISES CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

Exercise 11.14 The estimate (11.30) implies that there is a constant E such that

E ≥ (1
2
π log n)− ‖Ln‖∞ ∀n (11.51)

so that we can define

E0 = sup
{

(1
2
π log n)− ‖Ln‖∞

∣∣ n ≥ 1
}
. (11.52)

Investigate the value of E0. (By analogy with (18.6), we could call E0 the Erdös number.)

Exercise 11.15 The error polynomial ωn+1 for Chebyshev interpolation oscillates between
±1, and in particular |ωn+1(±1)| = 1. What is the derivative of ωn+1 at ±1?

Exercise 11.16 Explain why (11.38) implies that c = 0 for the polynomial (11.39).

Exercise 11.17 Define Df = f ′′(0) for f ∈ C2([−1, 1]). Let L2 denote Lagrange inter-
polation by quadratics at −1, 0, 1. Determine the corresponding formula for D2f = DL2f .
(Hint: see section 11.4.3.)

Exercise 11.18 Consider the error in Chebyshev approximation on a general interval [a, b].
Let x̂i denote the Chebyshev points for [−1, 1] defined in (11.1) and define points xi in [a, b]
by xi = a+ 1

2
(b− a)(1 + x̂i). Prove that

‖f − Lnf‖∞,[a,b] ≤
2

(n+ 1)!

(
b− a

4

)n+1

‖f (n+1)‖∞,[a,b], (11.53)

where Ln denotes Lagrange interpolation at the points xi. (Hint: set h = 1
2
(b−a) and define

f̂(x̂) = f(a + h(1 + x̂)). Compare Lagrange interpolation on [−1, 1] with points x̂i, and on
[a, b] with points xi. Observe that f̂ (k)(x̂) = hkf (k)(a+ h(1 + x̂)).)

Exercise 11.19 The Chebyshev polynomials Tn as defined in exercise 11.5 satisfy

Tn(x) = 1
2

((
x+
√
x2 − 1

)n
+
(
x−
√
x2 − 1

)n)
, (11.54)

in view of theorem 11.1. The Chebyshev polynomials of the second kind are denoted by Un(x)
and can be defined by

Un(x) =
1

2
√
x2 − 1

((
x+
√
x2 − 1

)n+1

−
(
x−
√
x2 − 1

)n+1
)
. (11.55)

Prove that U0(x) = 1 and U1(x) = 2x and in general that

Un(x) =
∑

0≤j≤n/2

(
n+ 1
2j + 1

)
(x2 − 1)jxn−2j (11.56)

for all n ≥ 0.

Exercise 11.20 The Chebyshev polynomials of the second kind are defined in exercise 11.19.
Prove the recursion relation

Uk+1(x) = 2xUk(x)− Uk−1(x), k ≥ 1. (11.57)

Exercise 11.21 The Chebyshev polynomials of the second kind are defined in exercise 11.19.
Prove that T ′n = nUn−1 for all n ≥ 1, where Tn denotes the Chebyshev polynomial of the first
kind defined in exercise 11.5.

Draft September 23, 2016, do not distribute Page 190

CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION 11.7. SOLUTIONS

11.7 Solutions

Solution of Exercise 11.2. For n = 0, we have (note that x0 = 0 in this case)

cos((n+ 1) cos−1 x) = cos(cos−1 x) = x = x− x0 = ω1(x). (11.58)

Let t = cos−1 x. Then by a trigonometric identity,

cos 2t = (2 cos2 t)− 1 = 2x2 − 1. (11.59)

Thus we know that cos 2t = cos(2 cos−1 x) and ω2(x) are both polynomials of degree 2 with
the same roots. Matching the terms of order x2, we find that cos 2t = 2ω2(x). This covers
the case n = 1.

We can prove (11.48) by complex analysis; cf. (11.6):

cos((n± 1)t) =Re e(n±1)ti = Re (entie±ti)

= (cosnt) cos t∓ (sinnt) sin t,
(11.60)

where i =
√
−1 and Re z denotes the real part of z. Then (11.48) follows by adding the plus

and minus versions of (11.60). Similarly,

sin((n± 1)t) = Ime(n±1)ti = Im (entie±ti)

= (sinnt) cos t± (cosnt) sin t,
(11.61)

where Imz denotes the imaginary part of z.
Using the induction hypothesis (11.48) translates to

cos((n+ 1)t) = 2nxωn(x)− 2n−2ωn−1(x). (11.62)

This proves that cos((n+ 1)t) = cos((n+ 1) cos−1 x) is a polynomial in x of degree n+ 1.

Solution of Exercise 11.11. By definition, there is a sequence of points xi ∈ I such that
|f(xi)| > ‖f‖∞,I − 1/i. Since I is closed, there is an accumulation point for the points xi;
that is, there is a subsequence xi` such that xi` → x as ` → ∞. Since f is continuous, we
have f(xi`)→ f(x). Of course, we must have |f(x)| ≤ ‖f‖∞,I . Thus

0 ≤ ‖f‖∞,I − |f(x)| < |f(xi`)| − |f(x)|+ 1/i`. (11.63)

Letting `→∞ completes the proof since the right-hand side of (11.63) goes to zero.

Solution of Exercise 11.15. We can differentiate the expression (11.2) to get

d

dx
ωn+1(x) = 2−n

d

dx
cos((n+ 1) cos−1 x)

= − 2−n(n+ 1)

(
d

dx
cos−1 x

)
sin((n+ 1) cos−1 x)

= 2−n(n+ 1)
sin((n+ 1) cos−1 x)

sin(cos−1 x)
.

(11.64)

Draft September 23, 2016, do not distribute Page 191

11.7. SOLUTIONS CHAPTER 11. CHEBYSHEV AND HERMITE INTERPOLATION

Writing x = cos t, we have

ω′n+1(cos t) = 2−n(n+ 1)
sin((n+ 1)t)

sin(t)
. (11.65)

Therefore, l’Hôpital’s rule implies that

ω′n+1(1) = 2−n(n+ 1) lim
t→0

sin((n+ 1)t)

sin(t)

= 2−n(n+ 1) lim
t→0

(n+ 1) cos((n+ 1)t)

cos(t)

= 2−n(n+ 1)2.

(11.66)

By symmetry, ω′n+1(−1) = (−1)n2−n(n+ 1)2.

Solution of Exercise 11.19. By definition, we have

Un(x) =
1

2w(x)

(
(x+ w(x))n+1 − (x− w(x))n+1) , (11.67)

where we have substituted w(x) =
√
x2 − 1 for simplicity. Using the binomial expansion, we

have

Un(x) =
1

2w

(n+1∑
j=0

(
n+ 1
j

)
xn+1−jwj

−
n+1∑
j=0

(
n+ 1
j

)
xn+1−j(−w)j

)

=
1

2w

n+1∑
j=0

(
n+ 1
j

)
xn+1−jwj

(
1− (−1)j

)
=

1

w

(∑
0≤`≤n/2

(
n+ 1
2`+ 1

)
xn−2`w2`+1

)
,

(11.68)

where we used the fact that (1− (−1)j) is 0 for even j (and 2 for odd j) and made the
substitution j = 2`+ 1 for odd j. The limits on the summation are verified as follows: 0 ≤ j
for j odd implies that j ≥ 1, and so ` ≥ 0; for the upper limit, j ≤ n + 1 iff 2` + 1 ≤ n + 1
iff ` ≤ n/2. Thus

Un(x) =
∑

0≤`≤n/2

(
n+ 1
2`+ 1

)
xn−2`w2`

=
∑

0≤`≤n/2

(
n+ 1
2`+ 1

)
xn−2`(x2 − 1)`,

(11.69)

as claimed.

Draft September 23, 2016, do not distribute Page 192

Chapter 12

Approximation Theory

“The teaching of numerical analysis in a mathematics department poses
a peculiar problem. At a time when the prime objectives in the instruc-
tion of most mathematical disciplines are rigor and logical coherence,
many otherwise excellent textbooks in numerical analysis still convey
the impression that computation is an art rather than a science, and
that every numerical problem requires its own trick for its successful
solution. It is thus understandable that many analysts are reluctant to
take much interest in the teaching of numerical mathematics.” (Peter
Henrici in [83])

We now collect some important additional results about approximation theory. Not only
are these results interesting in their own right, but the techniques of proof utilize novel
concepts. We begin by considering the problem of finding the best approximation in the
maximum norm. This is the problem that we addressed in section 1.3.2. We will see that
the best approximation may be viewed as an adaptive interpolation process. Moreover, the
mapping from a function to its best approximation is not linear, so we are forced outside the
comfortable realm of linear operators.

We also present Bernstein’s proof of Weierstrass’ approximation theorem. The proof
introduces a linear approximation operator, but unlike the Lagrange interpolant, this oper-
ator is not a projection. We contrast this type of approximation with least squares, which
generates orthogonal polynomials. Finally, we compare all these with piecewise polynomial
approximation which forms the basis of the finite element method [21, 113].

12.1 Best approximation by polynomials

We have seen that polynomial interpolation (especially using Chebyshev interpolation points)
can be used to get good approximations of general functions, but we have yet to characterize
what the very best approximation might be. It turns out that it is possible to do so,
and it provides valuable insight into the approximation process. We will see that best
approximation is necessarily adaptive in nature and that it is necessarily a nonlinear process
(see exercise 12.1).

First, let us define what we mean by best approximation. For any f ∈ C0(I), define dn(f)

193

12.1. BEST APPROXIMATION BY POLYNOMIALSCHAPTER 12. APPROXIMATION THEORY

by
dn(f) = inf

{
‖f − P‖∞,I

∣∣ P ∈ Pn} , (12.1)

where Pn denotes polynomials of degree n.

Definition 12.1 Let f ∈ C0(I). Then P ∈ Pn is a best approximation to f provided that

‖f − P‖∞,I = dn(f). (12.2)

As always, when the interval I is clear, we drop this from the subscripts on the norm.
The existence of a best approximation is a simple matter of compactness. We always have
dn(f) ≤ ‖f‖∞ by taking P in (12.1) to be the polynomial that is identically zero. If P is a
best approximation, then it must satisfy

‖P‖∞ ≤ ‖P − f‖∞ + ‖f‖∞ = dn(f) + ‖f‖∞ ≤ 2‖f‖∞. (12.3)

Therefore, it suffices to look for best approximation polynomials among the set of polynomials
that satisfy ‖P‖∞ ≤ 2‖f‖∞. Since this set is closed and bounded, the continuous function
φ(P) := ‖P − f‖∞ takes on its minimum on this set (see exercises 12.2 and 12.3).

What is somewhat surprising is that the best polynomial approximation is unique. For
certain types of norms, this uniqueness is guaranteed, as we will see when we switch to an
integral-based norm in section 12.3. But for the maximum norm, the uniqueness follows from
a special alternation property that holds because we are working in one space dimension.
We will prove the following result.

Theorem 12.2 Let f ∈ C0(I). Then any best approximation P ∈ Pn to f satisfying (12.2)
must also satisfy the alternation condition

±(f − P)(ξj) = (−1)jdn(f) ∀j = 0, . . . , n+ 1, (12.4)

where the points ξ0 < ξ1 < · · · < ξn+1 lie in the interval I. Moreover, only one such
polynomial can exist.

The expression ±(f − P)(ξj) = (−1)jdn(f) means that either

(f − P)(ξj) = (−1)jdn(f)

for all j, or
(P − f)(ξj) = (−1)jdn(f)

for all j. That is,
|f(ξj)− P (ξj)| = dn(f) (12.5)

for all j, and the signs of (f −P)(ξj) alternate as j goes from 0 to 1 to 2, and so forth. The
number of points ξj can be more than n+ 1. For example, the best constant approximation
(n = 0) to sin πkx on [−1, 1] is zero (see exercise 12.4), and there are O(k) such points for
k large. The set of such points can even include open intervals.

The best polynomial approximation is quite different from the Lagrange interpolant for
a fixed set of interpolation points, in that the norm of the best-approximation operator
is uniformly bounded in the degree n of polynomials, whereas the norm of the Lagrange

Draft September 23, 2016, do not distribute Page 194

CHAPTER 12. APPROXIMATION THEORY12.1. BEST APPROXIMATION BY POLYNOMIALS

Q

ξj ts jj−1 j+1j+1sξ j ξt j−1 xj−1 xj

f

P

Figure 12.1: Notation for the alternation proof.

interpolant cannot be bounded, cf. (11.30). The inequality in (12.3) implies that the norm
of the best-approximation operator is not greater than 2.

On the other hand, the best approximation does interpolate. One corollary of theo-
rem 12.2 is that there exist points x0 < x1 < · · · < xn in the interval I at which f(xj) = P (xj)
(see exercise 12.5). In particular, we have

ξj < xj < ξj+1 (12.6)

for all j = 0, . . . , n. That is, the best approximation P ∈ Pn to an arbitrary function
f ∈ C0(I) interpolates f at n + 1 distinct points in the interval I. However, we have no
information about the set of points. In this sense, the best approximation is an adaptive
Lagrange interpolant. The specific interpolation points are adapted to the function being
interpolated. It is easy to see as well that the mapping f → P cannot be a linear mapping
(exercise 12.1).

Proof. To prove the property (12.4), we suppose that P ∈ Pn is any polynomial that satisfies
(12.2). Define ξ0 as

ξ0 = inf
{
x ∈ I

∣∣ |f − P |(x) = dn(f)
}
. (12.7)

The set on the right-hand side of (12.7) is not empty in view of exercise 11.11. Since both
f and P are continuous, |f − P |(ξ0) = dn(f). Define

σ0 = (f − P)(ξ0)/dn(f) (= ±1). (12.8)

Now suppose that we have defined ξ0, . . . , ξk and σ0, . . . , σk for k ≥ 0. Then we define

ξk+1 = inf
{
x ∈ I

∣∣ x > ξk and (f − P)(x) = −σkdn(f)
}
, (12.9)

provided that the set on the right-hand side is not empty. In such a case, we define σk+1 =
−σk. Thus

(f − P)(ξk+1) = −σkdn(f) = σk+1dn(f). (12.10)

With this choice of σ’s, we have

σj(f − P)(ξj) = dn(f) (12.11)

for all j.
If the set on the right-hand side of (12.9) is empty, we stop the process. If we reach

k = n+ 1 as required by theorem 12.2, we also stop. Now we must show that if the process
stops with k < n+ 1, we must have a contradiction.

Draft September 23, 2016, do not distribute Page 195

12.1. BEST APPROXIMATION BY POLYNOMIALSCHAPTER 12. APPROXIMATION THEORY

Note that (12.11) implies that

σj(f − P)(x) > dn(f)− ε

for x near ξj.

Lemma 12.3 There are points sj and tj satisfying

ξj−1 < sj < ξj < tj < ξj+1 (12.12)

such that
σj(f − P)(x) ≥ −dn(f) + εj for x ∈ [sj, tj] (12.13)

where εj > 0 for each j (see figure 12.1 and figure 12.2). Moreover, we have tj ≤ sj+1

because f − P switches signs. In between, we can be assured that

sup
{
|(f − P)(x)|

∣∣ tj ≤ x ≤ sj+1

}
≤ 1

2
dn(f). (12.14)

Proof. Since

σj−1(f − P)(ξj−1) = dn(f) = σj(f − P)(ξj) = −σj−1(f − P)(ξj),

we can choose tj−1 and sj such that

ξj−1 < tj−1 < sj < ξj (12.15)

and

(f − P)(tj−1) = 1
2
σj−1dn(f)

(f − P)(sj) = 1
2
σjdn(f) = −1

2
σj−1dn(f).

(12.16)

More precisely, we assume that tj−1 is the largest, and sj > tj−1 is the smallest, value such
that (12.16) holds. That is,

tj−1 = sup
{
x ∈ I

∣∣ ξj−1 < x < ξj and σj−1(f − P)(x) = 1
2
dn(f)

}
sj = inf

{
x ∈ I

∣∣ tj−1 < x < ξj and σj−1(f − P)(x) = −1
2
dn(f)

}
.

(12.17)

The definition of tj−1 implies that

σj−1(f − P)(x) ≤ 1
2
dn(f) for tj−1 ≤ x ≤ ξj. (12.18)

Similarly, the definition of sj implies that

σj−1(f − P)(x) ≥ −1
2
dn(f) for tj−1 ≤ x ≤ sj. (12.19)

Therefore
|(f − P)(x)| ≤ 1

2
dn(f) for tj−1 ≤ x ≤ sj. (12.20)

Thus (12.14) follows.
Multiplying (12.18) by −1 yields

σj(f − P)(x) ≥ −1
2
dn(f) for tj−1 ≤ x ≤ ξj. (12.21)

Draft September 23, 2016, do not distribute Page 196

CHAPTER 12. APPROXIMATION THEORY12.1. BEST APPROXIMATION BY POLYNOMIALS

jξj−1 tj−1 j

d/2

d

−d/2

−d

s ξ

Figure 12.2: Depiction of the error σj−1(f − P) in a typical interval [ξj−1, ξj]. Note that the
error can be arbitrarily close to −d in the interval, but it cannot reach −d until the end ξj.

On the other hand,

σj−1(f − P)(x) ≥ −dn(f) + εj−1 for ξj−1 ≤ x ≤ tj−1 (12.22)

for some εj−1 > 0 because of the definition of ξj. Thus (12.13) is proved. QED

It should be noted that for x ≤ ξ0 (if there are any such points),

σ0(f − P)(x) > ε0 − dn(f) for some ε0 > 0.

Similarly, for the largest value of k for which ξk is defined, we have

σk(f − P)(x) > εk − dn(f) for some εk > 0

for all x ≥ ξk (if there are any such points). Thus (12.13) remains valid if we define s0 = a
and tk = b where the interval in question is I = [a, b]. Let εmin = minj=0,...,k εj.

Define
xj = 1

2
(tj + sj+1) (12.23)

and define a polynomial Q ∈ Pk by

Q(x) = σ0(−1)k(x− x0)(x− x1) · · · (x− xk−1). (12.24)

For x < x0, all the monomials are negative, so σ0Q(x) is positive. Then σ0Q(x) alternates
in sign as x increases past each xj. In particular, for xj−1 < x < xj, σ0Q(x)(−1)j is
positive. But σ0(−1)j = σj for j = 1, 2, . . . , k. Thus σjQ(x) is positive for xj−1 < x < xj,
j = 1, . . . , k − 1. Therefore there is a q > 0 such that for all j

σjQ(x) ≥ q (12.25)

for sj < x < tj (see figure 12.1).
We claim that (12.25) holds also for x ≤ ξ0 and x ≥ ξk, with a possibly smaller but

still positive value of q. Since σ0Q(x) is positive for x < x0, (12.25) holds for x ≤ ξ0. For
x > xk−1, σk−1Q(x) is negative, so σkQ(x) is positive. Thus again (12.25) holds for x ≥ ξk.

Define β = ‖Q‖∞ and let ε > 0. Then (12.13) and (12.25) imply

−dn(f) + εmin − εβ ≤σj(f − P)(x)− εβ ≤ σj(f − P − εQ)(x)

≤σj(f − P)(x)− εq ≤ dn(f)− εq
(12.26)

Draft September 23, 2016, do not distribute Page 197

12.1. BEST APPROXIMATION BY POLYNOMIALSCHAPTER 12. APPROXIMATION THEORY

for sj < x < tj, for j = 0, . . . , k. Therefore, for j = 0, . . . , k,

‖f − P − εQ‖∞,[sj ,tj] ≤ dn(f)− εq, (12.27)

provided that 0 < ε ≤ εmin/(β + q).
From (12.14), we have

‖f − P − εQ‖∞,[tj−1,sj] ≤ 1
2
dn(f) + εβ. (12.28)

Reducing ε > 0 if necessary, we conclude that from (12.27) and (12.28) that

‖f − P − εQ‖∞,[a,b] ≤ dn(f)− εq, (12.29)

implying that P + εQ is a better approximation to f than P . If k = n + 1, there is no
contradiction since the degree of P + εQ is n + 1 in this case. But if k < n + 1, then
P + εQ ∈ Pn, and we have a contradiction to the optimality of P . QED

Theorem 12.4 Let f ∈ C0(I). Then the best approximation P ∈ Pn to f satisfying (12.2)
is unique.

Proof. To prove uniqueness of the best approximation, we suppose that there are two
polynomials P,Q ∈ Pn satisfying (12.2). Then so does the polynomial R = 1

2
(P + Q)

because, by the triangle inequality,

‖f −R‖∞,I = ‖f − 1
2
(P +Q)‖∞,I = ‖1

2
(f − P) + 1

2
(f −Q)‖∞,I

≤ 1
2
‖f − P‖∞,I + 1

2
‖f −Q‖∞,I = dn(f).

(12.30)

By the alternating condition (12.4), we conclude that there exist alternating σj = ±1 such
that

σj(f −R)(ξj) = dn(f) ∀j = 0, . . . , n+ 1, (12.31)

where the points ξ0 < ξ1 < · · · < ξn+1 lie in the interval I. Therefore, for each j = 0, . . . , n+1,

1
2
σj(f − P)(ξj) + 1

2
σj(f −Q)(ξj) = dn(f). (12.32)

We claim then (cf. exercise 12.6) that both

σj(f − P)(ξj) = dn(f) and σj(f −Q)(ξj) = dn(f). (12.33)

Otherwise, if, say, σj(f − P)(ξj) < dn(f), then we would have to have

σj(f −Q)(ξj) > dn(f), (12.34)

contradicting the optimality of Q. But then

σj(f − P)(ξj) = σj(f −Q)(ξj), (12.35)

which implies that P (ξj) = Q(ξj) for each j = 0, . . . , n + 1. Since P,Q ∈ Pn, their equality
at n+ 2 points implies they must be equal. QED

One application of the uniqueness of best approximation allows us to identify the best
approximation of xn+1 by polynomials of degree at most n. If we let Pn be the Lagrange
interpolant of xn+1 at the Chebyshev points, then by (10.9) and (11.2) we know that

xn+1 − Pn(x) = ωn+1(x) = 2−n cos((n+ 1) cos−1 x). (12.36)

Thus we see explicitly that xn+1−Pn(x) has the claimed oscillation property (12.4), and by
theorem 12.4, the Chebyshev-point Lagrange interpolant of xn+1 must be its best approxi-
mation.

Draft September 23, 2016, do not distribute Page 198

CHAPTER 12. APPROXIMATION THEORY12.2. WEIERSTRASS AND BERNSTEIN

12.2 Weierstrass and Bernstein

The theorem of Weierstrass (see page 159) on the approximability of continuous functions
by polynomials is often considered one of the main waypoints of basic analysis. Bernstein1

developed an approximation scheme that can be used to prove Weierstrass’ theorem con-
structively. Moreover, the Bernstein approximation introduces techniques of independent
interest.

12.2.1 Bernstein polynomials

The Bernstein polynomial Bnf is defined by

Bnf(x) =
n∑
i=0

f(i/n)βi,n(x), (12.37)

where the Bernstein basis functions are defined by

βi,n(x) =

(
n
i

)
xi(1− x)n−i. (12.38)

Note that the basis functions βi,n are always nonnegative, so the Bernstein approximation
Bn is monotone in the sense that Bnf ≥ 0 whenever f ≥ 0.

Bn is not an interpolation operator, but it does have certain special properties. For
example, Bn1 = 1; in other words,

n∑
i=0

βi,n(x) = 1 ∀x ∈ [0, 1]. (12.39)

The verification of (12.39) is just the binomial expansion:

(X + Y)n =
n∑
i=0

(
n
i

)
X iY n−i, (12.40)

applied with X = x and Y = 1− x. One consequence of (12.39) is a bound for operator Bn:

Lemma 12.5 The Bernstein operator satisfies ‖Bn‖∞ = 1.

Proof. Since the basis functions are nonnegative,

|Bnf(x)| ≤
n∑
i=0

|f(i/n)|βi,n(x)

≤‖f‖∞
n∑
i=0

βi,n(x) = ‖f‖∞
(12.41)

1Sergei Natanovich Bernstein (1880–1968), see page 67, was a student in both Paris and Göttingen and
worked with both Picard (see page 275) and David Hilbert. Subsequently, he returned to Russia where he
was required to complete additional graduate work in order to become qualified to be a professor “due to
the conditions of life in tsarist Russia” [6].

Draft September 23, 2016, do not distribute Page 199

12.2. WEIERSTRASS AND BERNSTEINCHAPTER 12. APPROXIMATION THEORY

for any x ∈ [0, 1]. Therefore ‖Bn‖∞ ≤ 1. But since Bn1 = 1, we must have equality. QED

It is also the case that Bnx = x, i.e.,

n∑
i=0

i

n
βi,n(x) = x ∀x ∈ [0, 1] (12.42)

(see exercise 12.7). However, Bn is not a projection in general. The Bernstein approximation
to x2 is x2 + x(1− x)/n, that is,

n∑
i=0

i2

n2
βi,n(x) = x2 +

x(1− x)

n
∀x ∈ [0, 1] (12.43)

(see exercise 12.7).
Although the Bernstein basis functions do not separate points in a way that allows Bn

to be an interpolant, they are nevertheless quite local. The maximum of βi,n occurs at
i/n (exercise 12.8), and the integral of βi,n is (n + 1)−1 for all i. Thus the Bernstein basis
functions play the role of scaled approximate Dirac δ-functions. That is,∫ 1

0

f(x)βi,n(x) dx ≈ 1

n+ 1
f(i/n). (12.44)

12.2.2 Modulus of continuity

We need a way to measure the smoothness of a function that is subtle enough to be useful
for any continuous function. The modulus of continuity ω(f ; δ) is such a measure.

Definition 12.6 Let f ∈ C0(I) for some interval I. Then for all δ > 0,

ωI(f ; δ) = sup
{
|f(x)− f(y)|

∣∣ x, y ∈ I and |x− y| ≤ δ
}
. (12.45)

If the interval I is understood, we will drop the reference to it in the notation for the
modulus of continuity and write ωI(f ; δ) as ω(f ; δ). We can relate the modulus of continuity
to other smoothness measures. For example, if f ∈ C1(I), then

ωI(f ; δ) ≤ δ‖f ′‖∞,I (12.46)

for any δ > 0 (exercise 12.13). But the modulus of continuity is a more sensitive measure,
as the following result shows.

Lemma 12.7 Suppose that I is a closed, bounded interval. Then

lim
δ→0

ωI(f ; δ) = 0 (12.47)

for any f ∈ C0(I).

Proof. Any continuous function on a closed, bounded interval is uniformly continuous on
that interval [146]. QED

The order of approximation for Bn is not optimal, but we do get convergence for any
continuous function.

Draft September 23, 2016, do not distribute Page 200

CHAPTER 12. APPROXIMATION THEORY12.2. WEIERSTRASS AND BERNSTEIN

Theorem 12.8 For any continuous function,

‖f −Bnf‖∞ ≤ Cω(f ; 1/
√
n). (12.48)

Proof. By (12.39), we have for any x ∈ [0, 1],

|f(x)−Bnf(x)| =
∣∣∣ n∑
i=0

(f(x)− f(i/n))βi,n(x)
∣∣∣

≤
n∑
i=0

|f(x)− f(i/n)|βi,n(x)

(12.49)

since the Bernstein basis functions are nonnegative. We now break up the sum into two
parts: one over points near x, and the other over points that are not close. Let δ > 0 and
define Jx =

{
j
∣∣ |x− j/n| ≤ δ

}
. By the definition of modulus of continuity and (12.39),∑

i∈Jx

|f(x)− f(i/n)|βi,n(x) ≤ω(f ; δ)
∑
i∈Jx

βi,n(x)

≤ω(f ; δ)
n∑
i=0

βi,n(x) = ω(f ; δ).

(12.50)

Now suppose that i is not in Jx, so that |x− i/n| > δ. For concreteness, let us suppose that
x > i/n. Let i/n = ξ0 < ξ1 < · · · < ξk = x be a set of points such that ξi − ξi−1 ≤ δ and k
is as small as possible. This means that k is the smallest integer not less than |x − i/n|/δ,
and thus k < 1 + |x− i/n|/δ. In this case,

|f(x)− f(i/n)| =
∣∣∣ k∑
j=1

f(ξi)− f(ξi−1)
∣∣∣ ≤ k∑

j=1

|f(ξi)− f(ξi−1)|

≤ kω(f ; δ) ≤ (1 + |x− i/n|/δ)ω(f ; δ).

(12.51)

If instead x < i/n, let x = ξ0 < · · · < ξk = i/n and repeat the previous argument, so that
(12.51) still holds. Therefore,∑

i/∈Jx

|f(x)− f(i/n)|βi,n(x) ≤ω(f ; δ)
∑
i/∈Jx

(1 + |x− i/n|/δ)βi,n(x)

≤ω(f ; δ)
(

1 +
∑
i/∈Jx

(|x− i/n|/δ)βi,n(x)
) (12.52)

by (12.39). To estimate the last term, we note that for i /∈ Jx, 1 < |x − i/n|/δ, so that
|x− i/n|/δ < (|x− i/n|/δ)2. Therefore,∑

i/∈Jx

(|x− i/n|/δ)βi,n(x) ≤
∑
i/∈Jx

(|x− i/n|/δ)2βi,n(x)

≤
n∑
i=1

(|x− i/n|/δ)2βi,n(x).

= δ−2

n∑
i=1

(x− i/n)2βi,n(x).

(12.53)

Draft September 23, 2016, do not distribute Page 201

12.3. LEAST SQUARES CHAPTER 12. APPROXIMATION THEORY

Using (12.39), (12.42), and (12.43), we can evaluate

n∑
i=1

(x− i/n)2βi,n(x) =x2 − 2x
n∑
i=1

(i/n)βi,n(x) +
n∑
i=1

(i/n)2βi,n(x)

=x2 − 2x2 + x2 +
x(1− x)

n
=
x(1− x)

n
.

(12.54)

Thus we have proved that

|f(x)−Bnf(x)| ≤ ω(f ; δ)

(
2 +

x(1− x)

nδ2

)
. (12.55)

Choosing δ = 1/
√
n completes the proof, with C = 9/4. QED

12.3 Least squares

Another way to define polynomial approximations is by least squares. This process is equiv-
alent to expansion in orthogonal polynomials. The definition of such polynomials utilizes
an inner-product structure on the linear space of square-integrable functions on an interval
I = [a, b]. The work has already been done in section 5.4, so we just need to translate it into
a new context. For simplicity, we continue to consider real-valued polynomials.

12.3.1 Polynomials as inner-product spaces

Define an inner product

(f, g) =

∫ b

a

f(x)g(x)w(x)dx, (12.56)

where w > 0 is some weight function. Then the associated norm is

‖f‖2 =
√

(f, f) =

(∫ b

a

f(x)2w(x)dx

)1/2

. (12.57)

The condition ∫ b

a

f(x)2w(x)dx = 0

implies f = 0 under suitable integrability conditions on f , but we avoid full consideration of
these issues. It is not hard to show that this holds (exercise 12.14) if f ∈ V = C0([a, b]), but
issues such as this provide motivation for studying the Lebesgue integral [147] in order to
make these concepts rigorous for more general f . We have already seen the need to consider
weights that vanish at the ends of the interval of integration in exercise 11.7, which shows
that the Chebyshev polynomials ωn are orthogonal with respect to the inner product (12.56)
on the interval [−1, 1] with the weight w(x) = 1/

√
1− x2.

Draft September 23, 2016, do not distribute Page 202

CHAPTER 12. APPROXIMATION THEORY 12.3. LEAST SQUARES

12.3.2 Orthogonal polynomials

We will construct polynomials that are orthonormal:

(Pi, Pj) =

∫ b

a

Pi(x)Pj(x)w(x)dx = δij, (12.58)

where Pi is a polynomial of degree i of the form

Pi(x) = aix
i + qi(x), (12.59)

where ai 6= 0 and the degree of qi(x) is i − 1. Notice that these conditions imply (exer-
cise 12.15) that the Pi’s are linearly independent. Thus the set {P0, . . . , Pn} forms a basis
for the space Pn of polynomials of degree n. For i = 0, it is trivial: P0 = 1/

√
b− a.

The construction of the orthogonal polynomials is immediate from the results in sec-
tion 5.4, where we take the starting vectors to be vk = vk(x) = xk−1. Renumbering as
necessary (starting at 0 instead of 1), the least-squares projection

LSnf =
n∑
i=0

(f, Pi)Pi (12.60)

is defined for any f ∈ V . Combining theorem 5.4 and lemma 5.4, we obtain

Theorem 12.9 Given any f ∈ V ,

(f − LSnf, q) = 0 (12.61)

for all polynomials q of degree n, and

‖f − LSnf‖2 = min
q∈Pn
‖f − q‖2. (12.62)

It is not hard to see that LSnf in (12.60) is defined for any integrable function f and that
theorem 12.9 holds for any square-integrable function f . However, we will stay with the
more limited space V = C0(I) for the discussion here.

As before, there are some immediate corollaries. Suppose that q ∈ Pn. Then q = LSnq
(LSn is a projection) because we must have ‖q − LSnq‖ = 0. Moreover,

‖f − LSnf‖2 = 0 (12.63)

if and only if f ∈ Pn.
Using the results above, the orthogonal polynomials can be defined by

Pn+1 =
1

‖xn+1 − LSnxn+1‖2

(
xn+1 − LSnxn+1

)
. (12.64)

The coefficient
an+1 = 1/‖xn+1 − LSnxn+1‖2 (12.65)

is well-defined (and nonzero) because we must have

xn+1 − LSnxn+1 6= 0

since xn+1 /∈ Pn. The scaling ensures that (Pn+1, Pn+1) = 1, and the orthogonality (Pn+1, Pj) =
0 is a consequence of (12.62).

Draft September 23, 2016, do not distribute Page 203

12.4. PIECEWISE POLYNOMIAL APPROXIMATIONCHAPTER 12. APPROXIMATION THEORY

12.3.3 Roots of orthogonal polynomials

First, we claim that the real roots of Pn are all simple. Suppose that

Pn(x) = (x− x1)2r(x), (12.66)

where r ∈ Pn−2. Then Pn(x)r(x) = (x− x1)2r(x)2, and the orthogonality of Pn implies that

0 = (Pn, r) =

∫ b

a

(x− x1)2r(x)2w(x) dx. (12.67)

But this cannot happen unless r ≡ 0, which is impossible, as this would imply that Pn ≡ 0.
Second, all the real roots of Pn are within the interior of the interval [a, b]. To see this,

enumerate all such roots in the interior of [a, b] as a < x0 < x1 < · · · < xm < b and define

q(x) = ±(x− x0)(x− x1) · · · (x− xm). (12.68)

These must all be simple, as they are real roots. Then r = Pnq is of one sign in [a, b]. To
see this, start the sign of q at the beginning (just to the left of x0) with the same sign as
Pn by adjusting the sign of q as necessary. At the next root, they both change sign, as both
have simple roots there. So they stay of the same sign. This continues for all the roots, by
induction. Thus (Pn, q) > 0. Since Pn is orthogonal to Pn−1, we must have m = n.

Thus we have proved the following result.

Theorem 12.10 The orthogonal polynomial Pn of degree n, defined equivalently by (12.64)
and (12.65) or by (12.58), has n simple roots in the interior of the interval [a, b].

Recall that the Chebyshev polynomials are orthogonal with respect to the weight
√

1− x2

on [−1, 1]. Thus it is natural to consider the roots of orthogonal polynomials as potential
interpolation points, cf. exercise 12.16.

12.4 Piecewise polynomial approximation

The concept of piecewise approximation is simple. Suppose we have a subdivision of an
interval

a = x0 < x1 < · · · < xn = b. (12.69)

We can view each subinterval [xj−1, xj] as independent and construct a particular approx-
imation on it. In principle, these approximations could all be independent, but a common
choice is to take them to be the same for each interval. For example, we might take linear
Lagrange interpolation at the endpoints.

Once the local approximation is chosen, it may or may not be feasible (or of interest)
to link them together. If we don’t link them, we get a discontinuous piecewise approxima-
tion. For example, if we consider piecewise constant approximation, it necessarily must be
discontinuous to be interesting. We can define Π0

nf as a projection onto piecewise constants
via

Π0
nf =

n−1∑
j=0

f(xj)φj, (12.70)

Draft September 23, 2016, do not distribute Page 204

CHAPTER 12. APPROXIMATION THEORY12.4. PIECEWISE POLYNOMIAL APPROXIMATION

j+1
x xx

j−1 j

Figure 12.3: A picture of a typical basis function φj for continuous, piecewise linear inter-
polation; φj is zero outside the interval [xj−1, xj+1].

where φj is the characteristic function of the interval]xj−1, xj]. Then it follows from the
definition of the modulus of continuity (12.45) that

‖f − Π0
nf‖∞,I ≤ ωI(f ; δ), (12.71)

where δ is defined by

δ = max
{
xj − xj−1

∣∣ j = 1, . . . , n
}
. (12.72)

From (12.46), we also conclude that

‖f − Π0
nf‖∞,I ≤ δ‖f ′‖∞,I , (12.73)

provided that f ∈ C1(I).
It is also possible to define continuous piecewise linear approximation. Define basis

functions φj for i = 0, . . . , n by the requirements that (see figure 12.3)

• φj ∈ C0([a, b]),

• φj is linear in each segment [xk−1, xk] for k = 1, . . . , n, and

• φj(xk) = δjk (Kronecker δ) for k = 1, . . . , n.

By definition, a continuous, piecewise linear function is any function satisfying the first two
conditions. We leave it as an exercise to see that any such function can be written as a linear
combination of the φj’s. Moreover, the φj’s are linearly independent in view of the third
condition.

The corresponding continuous, piecewise linear interpolant is defined by

Π1
nf =

n∑
j=0

f(xj)φj (12.74)

for any f ∈ C0([a, b]).
The interpolant Π1

n is a composite of Lagrange interpolants, so Π1
n is a projection since

the Lagrange interpolant is a projection on each segment [xj−1, xj] for j = 1, . . . , n. Like the
Bernstein approximation operator,

‖Π1
n‖C0→C0 = 1 (12.75)

Draft September 23, 2016, do not distribute Page 205

12.5. ADAPTIVE APPROXIMATION CHAPTER 12. APPROXIMATION THEORY

because the basis functions are positive and

n∑
j=0

φj(x) = 1 ∀x0 ≤ x ≤ xn (12.76)

(see exercise 12.17).
Error estimates may be developed by considering the error on each segment separately.

For example, it is elementary to show that for k = 0, 1, 2,

‖f − Π1
nf‖∞ ≤ ckδ

k‖f (k)‖∞, (12.77)

where δ is defined by (12.72) (the case k = 0 is (12.75), with c0 = 1; see exercise 12.19 for
k = 1 and exercise 12.20 for k = 2).

12.5 Adaptive approximation

We have seen that best approximation by polynomials can be viewed as adaptive Lagrange
interpolation. That is, the best approximant interpolates at points that depend on the
function being approximated. This raises the question of whether adaptivity can be used to
advantage with other types of approximations. The answer is decidedly yes, but the general
subject is so large that we can give only a simple example based on piecewise constant
approximation.

Observe that in all the examples considered in section 12.4, the measure of smoothness
used for the function being approximated was always global. For example, (12.77) is the
maximum norm of a derivative of f . But the modulus of continuity is also a global measure.
Many functions of interest may have a localized behavior that is different from the general
behavior. For example, consider f(x) =

√
x on the interval I = [0, 1]. The derivative of

f is not bounded, and its modulus of continuity is limited by its singularity at zero. For
these reasons, we will consider instead a measure of smoothness that allows some localized
singularities:

‖f‖1 =

∫ 1

0

|f ′(x)| dx. (12.78)

The subscript 1 denotes both that there is only one derivative and that only its first power
(cf. (12.57)) is being integrated.

The expression in (12.78) is only a seminorm (see section 5.1.3). More seriously, it is
not simple to express the right class of functions for which (12.78) is well-defined [21]. To
bypass these issues, we make the simplifying assumption that f is differentiable on the open
interval]0, 1[with (12.78) finite. This allows functions of the form f(x) = xr for any r > 0.
We can clearly generalize this concept to arbitrary finite intervals.

We propose to prove the following theorem [21].

Theorem 12.11 Suppose that f is continuous on [0, 1], that f is differentiable on the open
interval]0, 1[, and that ‖f‖1 < ∞. Then there is a subdivision 0 = x0 < x1 < · · · < xn = 1
such that

‖f − Π0
nf‖∞ ≤

1

n
‖f‖1, (12.79)

where Π0
n denotes the piecewise constant interpolation defined in (12.70).

Draft September 23, 2016, do not distribute Page 206

CHAPTER 12. APPROXIMATION THEORY 12.6. MORE READING

Proof. If ‖f‖1 = 0, then f is constant and Π0
nf = f for any n ≥ 1. So we assume that

‖f‖1 > 0. We introduce the auxiliary (continuous) function

φ(t) =
1

‖f‖1

∫ t

0

|f ′(x)| dx. (12.80)

Then φ vanishes at x = 0 and is nondecreasing; moreover, φ(1) = 1. Thus there are points
xj where φ(xj) = j/n, by the intermediate value theorem. If by chance xn < 1, so that
φ(t) ≡ 1 for t ∈ [xn, 1], we simply redefine xn = 1. By construction,

1

‖f‖1

∫ xj

xj−1

|f ′(x)| dx = φ(xj)− φ(xj−1) =
1

n
. (12.81)

Thus it suffices to prove that for all j,

‖f − Π0
nf‖∞,[xj−1,xj] ≤

∫ xj

xj−1

|f ′(x)| dx. (12.82)

But for x ∈ [xj−1, xj[,

f(x)− Π0
nf(x) = f(x)− f(xj−1) =

∫ x

xj−1

f ′(x) dx, (12.83)

so (12.82) follows (note that f(x)− Π0
nf(x) = 0 for all x = xj). QED

Similar results hold for arbitrary finite intervals and for higher-order approximation, e.g.,
for Π1

n instead of Π0
n [21].

12.6 More reading

We have now seen five distinct types of approximations involving polynomials. The main
features of these schemes are summarized in table 12.1. The significant observation is that
there is no linear projection onto polynomials that has a norm uniformly bounded for all
polynomial degrees n. This property is satisfied by piecewise linear approximation, but it
can be shown [134] that indeed there can be no linear projection onto polynomials that has
a norm uniformly bounded for all polynomial degrees n.

Approximation theory has been stimulated by a variety of influences. Polynomials are
the most basic example of a function, so it is understandable that people wanted to know
whether such simple functions could approximate general functions, as well as answers to
other fundamental questions [35, 114, 142]. In addition to approximation problems from
linear spaces, it is also possible to explore nonlinear spaces of functions [143].

12.7 Exercises

Exercise 12.1 Let f± ∈ C0([−1, 1]) be defined by f±(x) = 1
2
− |x± 1

2
| for ±x ≤ 0 and zero

for ±x ≥ 0. Show that the best constant approximations to f+, f−, and f+ + f− are all the
same, and hence that the best approximations are not additive. (Hint: use exercise 12.4.)

Draft September 23, 2016, do not distribute Page 207

12.7. EXERCISES CHAPTER 12. APPROXIMATION THEORY

Approximation type Operator norm Linear operator Projection

Lagrange/Chebyshev ≥ (1
2
π log n)− E Yes Yes

Best approximation ≤ 2 No Yes
Bernstein 1 Yes No

Piecewise linear 1 Yes Yes
Least squares 1 Yes Yes

Table 12.1: Comparison of principal features of different approximation schemes. The top
four are compared in the maximum norm; the top three involve polynomial approximation,
whereas the fourth is piecewise polynomial. The fifth relates to approximation in the L2-
norm.

Exercise 12.2 Prove that we can write

dn(f) = inf
{
‖f − P‖∞

∣∣ P ∈ Pn, ‖P‖∞ ≤ 2‖f‖∞
}
, (12.84)

where dn is defined in (12.1). (Hint: use (12.3).)

Exercise 12.3 Fill in the remaining details of the existence proof for best-approximation
polynomials. This will include answers to questions such as the following. Why can we view
the set {

P ∈ Pn
∣∣ ‖P‖∞ ≤ 2‖f‖∞

}
(12.85)

as a closed and bounded subset of Rn+1? Why is φ(P) = ‖f − P‖∞ continuous when viewed
as a function on Rn+1? If you use a representation of P ∈ Pn in terms of some vector of
coefficients a ∈ Rn+1 (e.g., the coefficients of the representation of P as a sum of monomials),
how do you relate the fact that there is an â = minφ(a) to having a polynomial P with
the desired properties? That is, how do you make sure that the representation P ↔ a is
invertible?

Exercise 12.4 Show that the best approximation of f ∈ C0(I) by a constant c is

c = 1
2

(
inf
{
f(x)

∣∣ x ∈ I}+ sup
{
f(x)

∣∣ x ∈ I}) . (12.86)

Exercise 12.5 Show that the best approximation P ∈ Pn to f ∈ C0(I) satisfies f(xj) =
P (xj), where the points xj satisfy

ξ0 < x0 < ξ1 < x1 < · · · < xn < ξn+1. (12.87)

(Hint: apply the mean value theorem.)

Exercise 12.6 Suppose that x0 and x1 are two real numbers such that |xi| ≤ 1
2

for i = 0, 1
and such that x0 + x1 = 1. Prove that x0 = x1 = 1

2
.

Exercise 12.7 Prove (12.42) and (12.43). (Hint: differentiate (12.40) once for (12.42) and
twice for (12.43) and rearrange terms.)

Draft September 23, 2016, do not distribute Page 208

CHAPTER 12. APPROXIMATION THEORY 12.7. EXERCISES

Exercise 12.8 Prove that the maximum of the functions βi,n(x) defined in (12.38) occurs
at x = i/n and determine its maximum value. (Hint: use the following formula due to
Stirling 2:

enn!/nn ≈
√

2πn (12.88)

for large n.)

Exercise 12.9 Prove that the integral of βi,n defined in (12.38) is 1/(n+ 1) for all i.

Exercise 12.10 For a Lipschitz function, show that the Bernstein approximation error
(12.48) is no bigger than

√
2λn−1/2, where λ is the Lipschitz constant on [0, 1].

Exercise 12.11 Consider piecewise constant approximation on a uniform mesh of points
i/n on [0, 1]. For a Lipschitz function, what is the best error estimate that you can give?
Contrast this with exercise 12.10.

Exercise 12.12 (Discrete least squares.) Suppose that we gather data fn associated with
parameters xn and that we want to depict these data as a function f(x) with the property
that f(xn) ≈ fn. But now suppose that some of the xn’s are the same (xn = xk for n 6= k)
but the fn’s are not the same! We can still construct a function that attempts to represent
the data in a reasonable way. Define a polynomial P that minimizes∑

n

(P (xn)− fn)2. (12.89)

Show that this minimization problem has a unique solution.

Exercise 12.13 Suppose that f ∈ C1(I) for some interval I. Prove (12.46).

Exercise 12.14 Prove that if f ∈ C0(I) and f ≥ 0 on I, then
∫
I
f(x) dx = 0 implies f ≡ 0.

(Hint: if f(x) > 0 for some, then f(y) ≥ ε > 0 for y ∈ [x− δ, x+ δ].)

Exercise 12.15 Show that the orthogonal polynomials (cf. (12.58)) are linearly independent.

Exercise 12.16 The Gauss points are the zeroes of orthogonal polynomials for the weight
w ≡ 1 (see section 12.3.3). Investigate the size of the Lebesgue function (section 11.3) for
the Gauss points for various values of n.

Exercise 12.17 Prove (12.76). (Hint: consider interpolating a constant and see what hap-
pens.)

Exercise 12.18 Prove (12.75). (Hint: compare (12.41) and then use exercise 12.17.)

Exercise 12.19 Suppose that f ∈ C0(I) and that δ is defined in (12.72). Prove that

‖f − Π1
nf‖∞,I ≤ cωI(f ; δ) (12.90)

for some constant c. Use this to prove (12.77) for k = 1. (Hint: see the piecewise constant
case (12.71); use exercise 12.13.)

2James Stirling (1692–1770) was born in Scotland, near the town of Stirling, and entered Balliol College
Oxford in 1711. He was proposed for membership of the Royal Society of London by Newton, to which he
was elected in 1726.

Draft September 23, 2016, do not distribute Page 209

12.8. SOLUTIONS CHAPTER 12. APPROXIMATION THEORY

Exercise 12.20 Prove (12.77) for k = 2. (Hint: in each interval [xj−1, xj], the error e = f−
Π1
nf vanishes at the endpoints. Note that e(2) = f (2). There must be some point ξ ∈ [xj−1, xj]

where e′(ξ) = 0 at which |e| takes on its maximum value. Do a Taylor expansion around ξ.)

Exercise 12.21 For any set of vectors v1, . . . , vn in an inner-product space, the matrix with
entries (vi, vj) is known as the Gram matrix (cf. the Gram-Schmidt process in section 5.4.3).
Consider the inner-product space consisting of polynomials with inner product (12.56) on the
interval [0, 1]. Prove that the Gram matrix in this case is the Hilbert matrix (4.14).

Exercise 12.22 Suppose that f is symmetric around 0: f(−x) = f(x). Prove that the best
approximation P to f on a symmetric interval I = [−a, a] is also symmetric around 0. Show
that this implies that P (x) =

∑k
j=1 cjx

2j.

Exercise 12.23 It is known [166] that the best approximation to |x| on [−1, 1] by polynomi-
als of degree n is O (n−1). Show that the best approximation to

√
t on [0, 1] is also O (n−1).

12.8 Solutions

Solution of Exercise 12.7. The derivative of (12.40) with respect to X is

n(X + Y)n−1 =
n∑
i=1

(
n
i

)
iX i−1Y n−i. (12.91)

Multiply by X and divide by n to get

X(X + Y)n−1 =
n∑
i=1

(
n
i

)
i

n
X iY n−i =

n∑
i=0

(
n
i

)
i

n
X iY n−i. (12.92)

Now set X = x and Y = 1− x to obtain (12.42). Now differentiate (12.91) to get

n(n− 1)(X + Y)n−2 =
n∑
i=2

(
n
i

)
i(i− 1)X i−2Y n−i. (12.93)

Multiply by X2 and divide by n2 to get

n− 1

n
X2(X + Y)n−2 =

n∑
i=2

(
n
i

)
i(i− 1)

n2
X iY n−i

=
n∑
i=0

(
n
i

)
i(i− 1)

n2
X iY n−i.

(12.94)

Setting X = x and Y = 1− x and using (12.42), we have

n− 1

n
x2 =

n∑
i=0

(
n
i

)
i2

n2
xi(1− x)n−i − x

n
. (12.95)

Draft September 23, 2016, do not distribute Page 210

CHAPTER 12. APPROXIMATION THEORY 12.8. SOLUTIONS

Therefore,
n∑
i=0

(
n
i

)
i2

n2
xi(1− x)n−i =

n− 1

n
x2 +

x

n
= x2 +

x− x2

n
, (12.96)

which verifies (12.43).

Solution of Exercise 12.8. We have βi,n(x) = cxi(1− x)n−i, so

β′i,n(x) = c
(
ixi−1(1− x)n−i − (n− 1)xi(1− x)n−i−1

)
= cxi−1(1− x)n−i−1 (i(1− x)− (n− i)x)

= cxi−1(1− x)n−i−1 (i− nx) .

(12.97)

The maximum value is thus

βi,n(i/n) =
n!

i!(n− i)!
ii(n− i)n−i

nn

=
n!

nn
ii

i!

(n− i)n−i

(n− i)!
=

φ(n)

φ(i)φ(n− i)
,

(12.98)

where φ(n) := enn!/nn. By Stirling’s formula (12.88), φ(n) ≈
√

2πn for large n. Thus if
0 < ε ≤ i/n ≤ 1− ε, then

βi,n(i/n) ≈
√

2πn√
2πi
√

2π(n− i)
=

1√
2πn(i/n)(1− i/n)

. (12.99)

Note that β0,n(0) = βn,n(1) = 1, and it appears that these are the largest values based
on numerical computation (see figure 12.4).

Define bn to be the piecewise linear function with values βi,n(i/n) at the mesh points
i/n for i = 0, . . . , n. This is the function plotted in figure 12.4 for three values of n =
10, 100, 1000. It is easy to see from figure 12.4 and the computations above that

lim
n→∞

√
nbn(x) = 1/

√
2πx(1− x)

for any 0 < x < 1. This can be expressed in terms of a limit

lim
n→∞

√
nβin,n(in/n) = 1/

√
2πx(1− x),

where xn = in/n satisfies limn→∞ xn = x with 0 < x < 1.

Solution of Exercise 12.9. The integral of the Bernstein polynomials can be computed
as follows. Suppose that 0 ≤ i < n. Then∫ 1

0

βi,n(x) dx =
n!

i!(n− i)!

∫ 1

0

xi(1− x)n−i dx

=
n!

(i+ 1)!(n− i)!

∫ 1

0

(
d

dx
xi+1

)
(1− x)n−i dx

= − n!

(i+ 1)!(n− i)!

∫ 1

0

xi+1d

dx
(1− x)n−i dx

=
n!

(i+ 1)!(n− i− 1)!

∫ 1

0

xi+1(1− x)n−i−1 dx

=

∫ 1

0

βi+1,n(x) dx.

(12.100)

Draft September 23, 2016, do not distribute Page 211

12.8. SOLUTIONS CHAPTER 12. APPROXIMATION THEORY

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 12.4: Values of βi,n as a function i for n = 10, 100, 1000. The horizontal axis is the
scaled variable i/n.

Since for i = n we have ∫ 1

0

βn,n(x) dx =

∫ 1

0

xn dx =
1

n+ 1
, (12.101)

all the integrals must have this value as well.

Solution of Exercise 12.19. In each interval [xj−1, xj], f − Π1
nf may be written as

f(x)− Π1
nf(x) = f(x)− (f(xj−1)ϕ0(x) + f(xj)ϕ1(x)) , (12.102)

where ϕi, i = 0, 1 denote the local basis functions. But since

ϕ0(x) + ϕ1(x) ≡ 1

for all x ∈ [xj−1, xj], we have

f(x)− Π1
nf(x) = f(x) (ϕ0(x) + ϕ1(x))

− (f(xj−1)ϕ0(x) + f(xj)ϕ1(x))

=ϕ0(x)(f(x)− f(xj−1)) + ϕ1(x)(f(x)− f(xj)).

(12.103)

Since each ϕi has values only between 0 and 1,

|f(x)− Π1
nf(x)| ≤ϕ0(x)|f(x)− f(xj−1)|+ ϕ1(x)|f(x)− f(xj)|

≤ (ϕ0(x) + ϕ1(x))ωI(f ; δ)

=ωI(f ; δ).

(12.104)

Since this holds for any x ∈ [xj−1, xj] and for any j,

‖f − Π1
nf‖∞,I ≤ ωI(f ; δ). (12.105)

Applying exercise 12.13 completes the proof, with c = c1 = 1.

Draft September 23, 2016, do not distribute Page 212

CHAPTER 12. APPROXIMATION THEORY 12.8. SOLUTIONS

Solution of Exercise 12.21. Define polynomials vi(x) = xi−1. Then

(vi, vj) =

∫ 1

0

xi+j−2 dx =
1

i+ j − 1
, (12.106)

in accord with (4.15).

Draft September 23, 2016, do not distribute Page 213

12.8. SOLUTIONS CHAPTER 12. APPROXIMATION THEORY

Draft September 23, 2016, do not distribute Page 214

Chapter 13

Numerical Quadrature

“We now recognize these schemes as examples of fixed-point (or func-
tional) iteration. Similar schemes were previously proposed by James
Gregory and communicated in letters to John Collins to solve the equa-
tions bnc+xn+1 = bnx (8 November 1672) and bnc+xn+1 = bn−1(b+ c)x
(2 April 1674)” [182].

The word quadrature is used in numerical analysis to denote approximate integration.
We will see that some of the ideas predate the formal notions of the calculus. The most
commonly used approaches involve polynomial interpolation as the basis.

Numerical quadrature may appear superficially as one of the simplest subjects covered
so far. But we will also see that it introduces some of the deepest notions in analysis.

13.1 Interpolatory quadrature

The idea behind interpolatory quadrature is to define the approximate integral as the integral
of an interpolant (or other approximant):

Qf =

∫ b

a

Lf(x) dx =
n∑
i=0

f(xi)

∫ b

a

φi(x) dx =
n∑
i=0

αif(xi), (13.1)

where the quadrature coefficients αi are defined by

αi :=

∫ b

a

φi(x) dx. (13.2)

Here L denotes one of the operators we have constructed:

• Lagrange or Hermite interpolation (with the points chosen according to various objec-
tives),

• piecewise polynomial interpolant (this is called a composite rule), or

• Bernstein (this is an unusual choice, but we will explore its properties briefly).

215

13.1. INTERPOLATORY QUADRATURECHAPTER 13. NUMERICAL QUADRATURE

The basis functions φi are the basis functions for the Lagrange interpolation given in (11.33).
Least-squares approximation does not lead to such a quadrature rule directly because it is
defined in terms of an integral, but we will see that there is an intimate connection with
Gaussian quadrature (section 13.1.3).

The quadrature error is easy to estimate for interpolatory quadrature:

Qf −
∫ b

a

f(x) dx =

∫ b

a

Lf(x)− f(x) dx. (13.3)

Thus we have, for example,

|Qf −
∫ b

a

f(x) dx| ≤ (b− a)‖Lf − f‖∞,[a,b], (13.4)

so that we can apply estimates previously derived. For example, if L refers to Lagrange
interpolation, then (10.9) implies that

|Qf −
∫ b

a

f(x) dx| ≤ (b− a)

(n+ 1)!
‖f (n+1)‖∞,[a,b]‖ωn+1‖∞,[a,b], (13.5)

where ωk is defined in (10.8).

13.1.1 Newton-Cotes formulas

A Newton-Cotes1 formula is based on choosing Lagrange interpolation with equally spaced
points. There are two types of Newton-Cotes quadrature rules: open and closed. With
the closed rules, the endpoints of the interval of integration are included as quadrature
(interpolation) points. For example, the closed rule with two points is called the trapezoidal
rule, ∫ b

a

f(x) dx ≈ b− a
2

(f(a) + f(b)) =: QTRf, (13.6)

and the one with three points is called Simpson’s rule2∫ b

a

f(x) dx ≈ b− a
6

(f(a) + 4f(1
2
(b+ a)) + f(b)) =: QSRf. (13.7)

The Newton-Cotes open rule with one point is known as the midpoint rule:∫ b

a

f(x) dx ≈ (b− a)f(1
2
(b+ a)) =: QMRf. (13.8)

Error estimates can be derived directly from (13.5). For example, with the trapezoidal
rule, n = 1 and ω2(x) = (x−a)(x− b) has its maximum at x = 1

2
(a+ b), so that ‖ω2‖∞,[a,b] =

1
4
(b− a)2. Therefore,

|QTRf −
∫ b

a

f(x) dx| ≤ (b− a)3

8
‖f (2)‖∞,[a,b]. (13.9)

1Roger Cotes (1682–1716) was nearly 40 years younger than Newton but became a close colleague and
“is best known for his meticulous and creative editing of the second edition of Newton’s Principia,” done
jointly with Newton [71].

2See pages 22 and 103 for information on Simpson.

Draft September 23, 2016, do not distribute Page 216

CHAPTER 13. NUMERICAL QUADRATURE13.1. INTERPOLATORY QUADRATURE

Applying the same technique to Simpson’s rule would imply an error of order (b − a)4.
However, for Simpson’s rule, a better estimate can be obtained (exercise 13.1). Similarly,
the midpoint rule has a higher-order of accuracy (the same as the trapezoidal rule) than
would be implied by (13.5) (exercise 13.2). In section 13.1.2, we show how these rules, and
others, can be treated in a uniform way. The key point is that a given quadrature rule can
be derived from different approximation schemes, and we are free to pick the approximation
scheme that produces the best error estimate. Not surprisingly, we will then see that the
error in a quadrature rule is related to the problem of best approximation (section 12.1).

For all the Newton-Cotes rules, the quadrature coefficients (13.2) are proportional to the
interval length b− a and independent of the base point a (exercise 13.3). It is of interest to
know whether the coefficients (13.2) are positive or not. For the open Newton-Cotes rules,
they are not all positive, for example, for the rules with three, five, and six points. When the
coefficients are negative, they are not suitable for certain applications. For example, it may
be a requirement that the approximate integral of a nonnegative function be nonnegative.

13.1.2 Order of exactness

In general, one is interested in quadrature rules for weighted integrals of the sort we consid-
ered in section 12.3.2:

Qf =

∫ b

a

Lf(x)w(x) dx =
n∑
i=0

f(xi)

∫ b

a

φi(x)w(x) dx =
n∑
i=0

αif(xi). (13.10)

The determining factor for error estimates for quadrature rules is not estimates for the
interpolant as in (13.5) but rather is determined by their order of exactness together with a
stability estimate.

Definition 13.1 We say that a quadrature is exact for polynomials of degree k if

Qp =

∫ b

a

p(x)w(x) dx (13.11)

for all p ∈ Pk.

Thus we see that (for w ≡ 1) Simpson’s rule is exact for cubic polynomials (exercise 13.1),
and the midpoint rule is exact for linear functions (exercise 13.2), as is trapezoidal rule.

Any quadrature rule may be viewed as a linear functional (cf. (11.31)), meaning a linear
map from a vector space to the set of scalars, more specifically (exercise 13.4),

Q(f + cg) = Qf + cQg (13.12)

for any continuous functions f and g and any scalar c. If a quadrature rule (13.10) is exact
for polynomials of degree k, then for any p ∈ Pk,∣∣∣Qf−∫ b

a

f(x)w(x) dx
∣∣∣ =

∣∣∣Q(f − p)−
∫ b

a

(f(x)− p(x))w(x) dx
∣∣∣

≤ |Q(f − p)|+
∣∣∣∫ b

a

(f(x)− p(x))w(x) dx
∣∣∣

≤
(n∑
i=1

|αi|
)
‖f − p‖∞ +

∫ b

a

w(x) dx ‖f − p‖∞ = C‖f − p‖∞.

(13.13)

Draft September 23, 2016, do not distribute Page 217

13.1. INTERPOLATORY QUADRATURECHAPTER 13. NUMERICAL QUADRATURE

Note that if all αi > 0, then

n∑
i=1

|αi| =
n∑
i=1

αi =

∫ b

a

w(x) dx, (13.14)

assuming that the quadrature rule is exact at least for constants. Thus we have proved
the following result, which reduces error estimates for quadrature to the previously studied
problem of best approximation.

Theorem 13.2 Suppose that w is a nonnegative, integrable weight function and that the
quadrature rule (13.10) is exact for polynomials of degree k. Then there is a constant C such
that for all f ∈ C0([a, b]),

∣∣∣Qf − ∫ b

a

f(x)w(x) dx
∣∣∣ ≤ C min

p∈Pk
‖f − p‖∞,[a,b]. (13.15)

If all quadrature weights αi are positive, then we may take

C = 2

∫ b

a

w(x) dx. (13.16)

13.1.3 Gaussian quadrature

In the Newton-Cotes formulas, the points are fixed at specified points. The corresponding
order of accuracy is approximately equal to the number of points, with the proviso that the
accuracy (cf. (13.9)) can increase by 1 because of symmetry, as occurs with Simpson’s rule.
One can pose the quadrature problem as finding xi’s and αi’s so that∫ b

a

p(x)w(x) dx =
n∑
i=1

αip(xi) ∀p ∈ Pk (13.17)

for k as large as possible. With the xi’s fixed, the system (13.17) is linear, and the αi’s are
just the integrals of the corresponding interpolation basis functions. But if we allow the xi’s
to be variables, we have the possibility of getting exactness in (13.17) for a larger k, but at
the expense of having a nonlinear system to solve for the xi’s.

Gaussian quadrature may be defined by taking the points xi such that we get a formula
exact for as high a degree as possible. Stated as a system of equations, it is highly nonlinear.
With n values of xi’s and n values of αi’s, we might expect to integrate a polynomial of
degree 2n− 1 exactly since the dimension of P2n−1 is 2n.

By symmetry, the midpoint rule gives the optimal solution for n = 1 when w ≡ 1. We
propose in exercise 13.5 to solve this problem for n = 2. However, proceeding in this way
for higher degrees would be tedious. Fortunately, if we take the xi’s to be the roots of
the orthogonal polynomial Pn, all is well. First, we know the roots are in the interval in
question and that they are distinct (see section 12.3.3). We will refer to these roots as the
Gauss points and let LG

n be Lagrange interpolation at these points. We denote by QG
n the

corresponding interpolatory quadrature rule.

Draft September 23, 2016, do not distribute Page 218

CHAPTER 13. NUMERICAL QUADRATURE13.1. INTERPOLATORY QUADRATURE

Suppose that f ∈ P2n−1. Then f − LG
nf vanishes at the roots of Pn, so we can write

f − LG
nf = Pnq, where q ∈ Pn−1. Therefore,

QG

nf −
∫ b

a

f(x) dx =

∫ b

a

LG

nf(x)− f(x) dx =

∫ b

a

Pn(x)q(x) dx = 0 (13.18)

because Pn is orthogonal to Pn−1.
Fortuitously, the coefficients αi are positive. Let f(x) = Pn(x)2/(x − xi)2. By (13.18),

since the degree of f is 2n− 2,

αif(xi) = QG

nf =

∫ b

a

f(x) dx > 0 (13.19)

since f is positive except at the xj’s, where it vanishes for all j 6= i. We also have f(xi) 6= 0
since Pn has only a simple zero there. But we also know that f(x) > 0 for x near xi (f is
the square of a function that is not zero near xi), so we must have f(xi) > 0 as well. Since
αi is the quotient of positive terms, it must be positive.

Thus we have proved the following result.

Theorem 13.3 Let xi be the roots of the orthogonal polynomial Pn (the Gauss points) and let
the quadrature coefficients be defined by (13.2) for the corresponding Lagrange interpolation
basis functions. Then the resulting Gaussian quadrature (13.10) is exact for polynomials of
maximum degree 2n− 1.

13.1.4 Hermite quadrature

Any approximation scheme can be used to create a quadrature rule via the recipe

Qgenf =

∫ b

a

Gnf(x)w(x) dx (13.20)

for a general approximation operator Gn of the form (11.34). Hermite interpolation (sec-
tion 11.4.2) is one example that introduces a new ingredient. In this case we have

QHf =
b− a

2
(f(a) + f(b)) +

(b− a)2

12
(f ′(a)− f ′(b)), (13.21)

where the coefficients can be verified by various means. One approach of course is to evaluate
the integrals of the basis functions in (13.2). For a = 0 and b = 1, the basis functions are
φ0(x) = 1 − 3x2 + 2x3 and φ1(x) = x(1 − x)2 for the value and derivative nodes at x = 0.
The corresponding basis functions at x = 1 are φ0(1 − x) and −φ1(1 − x). Note the QH is
again a linear functional, but now it is defined only on C1-functions.

Consider the interpolation scheme implied in lemma 11.6. This suggests that there is a
quadrature rule of the form

QEM

k f =
b− a

2
(f(a) + f(b)) +

k∑
i=1

ci(b− a)2i(f (2i−1)(a)− f (2i−1)(b)) (13.22)

that is exact for polynomials of degree 2k+1 and defined for f ∈ C2k−1([a, b]). Here c1 = 1
12

,
in keeping with the case k = 1 in which (13.22) is just the Hermite quadrature. This is basis

Draft September 23, 2016, do not distribute Page 219

13.1. INTERPOLATORY QUADRATURECHAPTER 13. NUMERICAL QUADRATURE

of the Euler-Maclaurin3 formula (13.25); we will see that the coefficients ci can be identified
in general (section 13.3).

13.1.5 Composite rules

There are two ways to think of deriving composite rules. First, we start with a subdivision
of the interval a = ξ0 < ξ1 < · · · < ξn = b. We then apply one of the previously discussed
methods to each interval [ξi−1, ξi] for i = 1, . . . , n. For example, if we apply the trapezoidal
rule to each interval, we obtain the rule

1
2
h1f(a) +

n−1∑
i=1

1
2
(hi + hi+1)f(ξi) + 1

2
hnf(b), (13.23)

where hi = ξi − ξi−1 for i = 1, . . . , n. The same quadrature rule arises from (13.1) if we
define L to be continuous piecewise linear interpolation (section 12.4) using the points ξi.

It is interesting to consider the composite trapezoidal rule on a regular subdivision:
ξj = a+ jh, where h = (b− a)/n. The quadrature rule then is

h

(
1
2
f(a) +

n−1∑
i=1

f(ξi) + 1
2
f(b)

)
. (13.24)

Except for the endpoints, this is a very simple rule, and yet it is very powerful, as we will
see shortly.

Suppose we consider the composite version of (13.22). The odd-order derivative terms
all cancel in the intermediate intervals, and we obtain the quadrature rule

h

(
1
2
f(a) +

n−1∑
i=1

f(ξi) + 1
2
f(b)

)

+
k∑
i=1

cih
2i(f (2i−1)(a)− f (2i−1)(b))

(13.25)

that is exact for polynomials of degree 2k + 1. It is again defined only on C2k−1 functions.
We can think of this as the trapezoidal rule with end-point corrections. This formula is
attributed to Euler and Maclaurin. We will provide an alternate derivation that identifies
the coefficients ci (cf. section 13.3).

We can make the composite trapezoidal rule even simpler for periodic functions. For
simplicity, let us assume that a = 0 and b = 1 and that f is 1-periodic. Then f(0) = f(1),
and all the derivative corrections cancel, so (13.25) simplifies further to

1

n

n∑
i=1

f(i/n). (13.26)

3Colin Maclaurin (1698–1746) entered the University of Glasgow in 1709 at the age of 11 and was awarded
an M.A. at age 14. By 1717 he was a professor. He was significant for his clarification of the ideas of Newton,
who supported the appointment of Maclaurin to the University of Edinburgh in 1725 [171].

Draft September 23, 2016, do not distribute Page 220

CHAPTER 13. NUMERICAL QUADRATURE 13.2. PEANO KERNEL THEOREM

n Integral Error
3 1.15384615384615 8.5× 10−4

5 1.15469613259669 4.4× 10−6

7 1.15470051566839 2.3× 10−8

9 1.15470053826218 1.2× 10−10

11 1.15470053837865 6.0× 10−13

Table 13.1: Errors in computing the integral (13.28) via the trapezoidal rule with n points.
The exact answer is 1.15470053837925, which is obtained with n = 13 and does not change
for larger n. The bold face digits are the first incorrect digits for each n.

Theorem 13.4 Suppose that f is a 1-periodic function. Then the trapezoidal rule (13.26)
is exact to any order; that is, if f ∈ C2k+2([0, 1]), then

∣∣∣∫ 1

0

f(x) dx− 1

n

n∑
i=1

f(i/n)
∣∣∣ ≤ Ckn

−2k−2‖f (2k+2)‖∞ (13.27)

for any value of n ≥ 1, where Ck is a constant that depends only on k.

We postpone the proof of this theorem, as it is a simple corollary of the Peano kernel
theorem; cf. section 13.2. As an example of the use of the trapezoidal rule for a periodic
function, we consider the integral [43]∫ 1

0

dt

1 + 1
2

sin(2πt)
. (13.28)

Computational results are shown for various values of n in table 13.1.

13.2 Peano kernel theorem

There is a general abstract result due to Peano4 that gives a representation of the error for
a wide class of numerical approximations. The error in quadrature is a typical example.
Consider the setup in theorem 13.2 and define

Ef = Qf −
∫ b

a

f(x)w(x) dx. (13.29)

Note that EP = 0 for all polynomials of degree k, where k is the order of exactness of Q,
and that E is linear,

E(f + cg) = Ef + cEg, (13.30)

as long as the same is true of Q, since this holds for the integral. In particular, Ef = E(f−P)
for any polynomial P of degree k.

4Giuseppe Peano (1858–1932) is best known for his contributions to the foundations of mathematics. But
he also did research on numerical analysis [131].

Draft September 23, 2016, do not distribute Page 221

13.2. PEANO KERNEL THEOREM CHAPTER 13. NUMERICAL QUADRATURE

Recall Taylor’s theorem with integral remainder (7.81):

f(x)− Pk(x) =
1

k!

∫ x

a

(x− t)kf (k+1)(t) dt , (13.31)

where Pk is the Taylor polynomial

Pk(x) =
k∑
j=0

f (j)(a)

j!
(x− a)j. (13.32)

Let us use the notation (X)+ to mean X if X ≥ 0 and 0 if X ≤ 0. Then we can rewrite
(13.31) as

f(x)− Pk(x) =
1

k!

∫ b

a

(x− t)k+f (k+1)(t) dt . (13.33)

Since E is linear, we have

Ef =E(f − P) =
1

k!
E

[∫ b

a

(x− t)k+f (k+1)(t) dt

]
=

1

k!

∫ b

a

E
[
(x− t)k+

]
f (k+1)(t) dt.

(13.34)

The last equality may seem like a leap of faith, and in any case the notation needs to be
made more precise. Define

φ(x) =

∫ b

a

(x− t)k+f (k+1)(t) dt (13.35)

for x ∈ [a, b]. Then (13.33) says that f − Pk = (k!)−1φ, so Ef = (k!)−1Eφ. Similarly, define
a one-parameter family of functions ψkt (x) = (x− t)k+ for x ∈ [a, b] and let

K(t) = Eψkt . (13.36)

Then we claim that

Ef =

∫ b

a

K(t)f (k+1)(t) dt. (13.37)

13.2.1 Continuity of Peano kernels

To make sense of the integral in (13.37), we need to know some regularity properties of K.
Let us assume that Qf is defined for any f ∈ Cm([a, b]) for some m ≥ 0. More precisely, we
assume that there is a positive constant CQ <∞ such that

|Qf | ≤ CQ‖f‖Cm([a,b]) (13.38)

for all f ∈ Cm([a, b]), where

‖f‖Cm([a,b]) = max
0≤i≤m

‖f (i)‖∞,[a,b]. (13.39)

Draft September 23, 2016, do not distribute Page 222

CHAPTER 13. NUMERICAL QUADRATURE 13.2. PEANO KERNEL THEOREM

In particular, we can take m = 0 for trapezoidal rule, m = 1 for the Hermite rule, and
m = 2k − 1 for the Euler-Maclaurin quadrature rule using k end corrections (k = 1 is the
Hermite case). Note that (13.38) implies that

|Ef | ≤ (CQ + (b− a))‖f‖Cm([a,b]). (13.40)

Then

|K(t+ h)−K(t)| = |Eψkt+h − Eψkt | = |E(ψkt+h − ψkt)|
≤ (CQ + (b− a))‖ψkt+h − ψkt ‖Cm([a,b]) → 0

(13.41)

as h→ 0, provided m < k. In fact, it is sufficient to show that

‖ψkt+h − ψkt ‖C0([a,b]) → 0 as h→ 0, (13.42)

for k > 0, since (ψkt)′ = kψk−1
t for k > 1. We leave the proof of (13.42) as exercise 13.22.

This shows that K is continuous.
The proof of (13.37) relies on the linearity of E and the linearity of the integration

process. For example, this can be verified by approximating the integral by Riemann sums
(exercise 13.6). Thus we have proved the following.

Theorem 13.5 Suppose that the quadrature Q is linear, exact of order k, and satisfies the
bound (13.38) for m < k. Then the error E defined by (13.29) satisfies

Ef =
1

k!

∫ b

a

K(t)f (k+1)(t) dt, (13.43)

where K is defined by (13.36).

The function K is called the Peano kernel for this error relation. We can provide an error
estimate using the Peano kernel:

|Ef | ≤ 1

k!

∫ b

a

|K(t)| dt ‖f (k+1)‖∞,[a,b], (13.44)

which can be compared with (13.5) (see exercise 13.7).
For t ≤ x, ψkt ≡ 0, and so the kth derivative of ψkt is discontinuous at x = t. However, it

is easy to see that ψkt ∈ Ck−1(R) and

K ′(t) = lim
h→0

h−1 (K(t+ h)−K(t)) = lim
h→0

h−1
(
Eψkt+h − Eψkt

)
= lim

h→0
E
(
h−1

(
ψkt+h − ψkt

))
.

(13.45)

Similar to (13.42), we can show (exercise 13.23) that

‖h−1(ψkt+h − ψkt)− kψk−1
t ‖Cm([a,b]) → 0 as h→ 0, (13.46)

for k ≥ m+ 2. Therefore by (13.40)

K ′(t) = lim
h→0

E
(
h−1

(
ψkt+h − ψkt

))
= E

(
lim
h→0

h−1
(
ψkt+h − ψkt

))
= kE

(
ψk−1
t

)
,

(13.47)

Draft September 23, 2016, do not distribute Page 223

13.2. PEANO KERNEL THEOREM CHAPTER 13. NUMERICAL QUADRATURE

provided that Q satisfies (13.38). By definition, ψ0
t (x) is the Heaviside function that is 0 for

x < t and 1 for x > t.
When t = a, ψka(x) = xk on [a, b], so we have K(a) = 0 because Q is exact of order k.

Similarly, when t = b, ψkb ≡ 0 on [a, b], so again K(b) = 0. Therefore, (13.45) implies that

K(i)(a) = K(i)(b) = 0 (13.48)

for i = 0, 1, . . . , k − 1 −m, provided that Qf is well-defined for f ∈ Cm([a, b]). In the case
of the Hermite quadrature rule (13.21), we have m = 1.

13.2.2 Examples of Peano kernels

Now let us see if we can figure out what K might look like in examples. Let us start with
Q = midpoint rule on [0, 1], which is exact for polynomials of degree k = 1. In this case, the
statement is

Ef = f(1
2
)−

∫ 1

0

f(t) dt =

∫ 1

0

KMR(t)f (2)(t) dt. (13.49)

The quadrature rule Qf = f(1
2
) is well-defined for f ∈ C0, so we conclude from (13.45) that

KMR ∈ C0 and that K ′MR is defined for x 6= 1
2

and bounded. Thus we can integrate by parts
to find

Ef = f(1
2
)−

∫ 1

0

f(t) dt = −
∫ 1

0

K
(1)
MR(t)f (1)(t) dt. (13.50)

We can integrate by parts again, but we have to be careful since KMR is not C1. However,
the only point where KMR fails to be smooth is x = 1

2
, and so we can break the integral into

two parts and integrate by parts again. To make a long story short, we find that

KMR(t) = −

{
1
2
t2 t ≤ 1

2
1
2
(t− 1)2 t ≥ 1

2
.

(13.51)

We leave as exercise 13.9 verification that this KMR satisfies (13.49) for all f ∈ C2. Similarly,
it is not hard to see (exercise 13.7) that the kernel for the trapezoidal rule is

KTR(t) = 1
2
t(1− t) (13.52)

and the kernel for Hermite quadrature (13.21) is

KH(x) = cHx
2(1− x)2 (13.53)

for some constant cH (exercise 13.8). We will consider the form of the general kernels KEM
k

for the Euler-Maclaurin quadrature subsequently.

13.2.3 Uniqueness of Peano kernels

Suppose that there were two kernels K and K̃ in C0[a, b] such that (13.43) holds. Then we

claim that we must have K = K̃. To prove this, we use (13.43) twice to see that∫ b

a

(K(t)− K̃(t))f (k+1)(t) dt = 0 (13.54)

Draft September 23, 2016, do not distribute Page 224

CHAPTER 13. NUMERICAL QUADRATURE 13.2. PEANO KERNEL THEOREM

for all f ∈ Ck+1([a, b]). For any g ∈ C0[a, b], we can write

f(x) =

∫ x

a

∫ t

a

· · ·
∫ s

a

g(s) ds, (13.55)

where there are k + 1 integrals. Then we conclude that g(x) = f (k+1)(x) for all x ∈ [a, b].
Thus (13.54) implies ∫ b

a

(K(t)− K̃(t))g(t) dt = 0 (13.56)

for any g ∈ C0[a, b]. Define e(t) = K(t) − K̃(t) for t ∈ [a, b]. Suppose that there is some
t0 ∈ [a, b] such that e(t0) 6= 0. Without loss of generality, we can assume that a < t0 < b,
because if e(a) 6= 0 then by continuity of e we must have e(t) 6= 0 for some t > a, and the
analog would hold if e(b) 6= 0. Then there are some ε > 0 and δ > 0 such that e(t0)e(t) ≥ δ
for all t ∈ [t0 − ε, t0 + ε] ⊂ [a, b]. Define g ∈ C0[a, b] by

g(t) =

{
e(t0)(ε2 − (t− t0)2) |t− t0| ≤ ε

0 |t− t0| ≥ ε
. (13.57)

Then ∫ b

a

(K(t)− K̃(t))g(t) dt =

∫ t0+ε

t0−ε
e(t) g(t) dt

≥ δ

∫ t0+ε

t0−ε
(ε2 − (t− t0)2) dt > 0,

(13.58)

contradicting (13.56). Thus we must have K(t) = K̃(t) for all t ∈ [a, b].

13.2.4 Composite Peano kernels

If we make a simple change of variables in the integration, the Peano kernel changes in a
predictable way. Suppose that K̂ denotes the Peano kernel for the interval [0, 1]. Then the
kernel for the interval [a, a+ h] is

K(a+ ht) = hkK̂(t), (13.59)

where k is the order of exactness.
To see why this is so, we need to perform the corresponding transformations for both the

integral and the quadrature rule. Define g(x) = a+ hx. Then for f : [a, a+ h]→ R∫ 1

0

f ◦ g(x) dx = h

∫ a+h

a

f(t) dt (13.60)

Suppose that
Q[0,1](f ◦ g(x)) = hQ[a,a+h](f). (13.61)

Then

hk+1

k!

∫ 1

0

K̂(t)(f (k+1) ◦ g)(t) dt =
1

k!

∫ 1

0

K̂(t)(f ◦ g)(k+1)(t) dt

= E[0,1](f ◦ g(x)) = hE[a,a+h](f)

=
h

k!

∫ a+h

a

K(t)f (k+1)(t) dt,

(13.62)

Draft September 23, 2016, do not distribute Page 225

13.3. GREGORIE-EULER-MACLAURIN FORMULASCHAPTER 13. NUMERICAL QUADRATURE

for any f ∈ Ck+1([a, a+ h], proving (13.59).
For the Euler-Maclaurin formula (13.25), we have

h

(
1
2
f(a) +

n−1∑
i=1

f(ξi) + 1
2
f(b)

)
+

k∑
i=1

cih
2i(f (2i−1)(a)− f (2i−1)(b))

=

∫ b

a

f(x) dx+
h2k+3

(2k + 1)!

n−1∑
i=0

∫ 1

0

KEM

k (x)f (2k+2)(a+ h(i+ x)) dx.

(13.63)

This completes the proof of theorem 13.4. The kernels KEM
k are related to the Bernoulli

polynomials [43, 103].

13.3 Gregorie-Euler-Maclaurin formulas

Gregorie5 developed a formula for numerical integration that predated, or at least was con-
temporary with, the work of Newton on calculus. This formula is also related to the formula
(13.25) attributed later to Euler and Maclaurin. The Gregorie formula has been utilized in
codes for solving partial differential equations [16]. The following derivation of these formulas
provides an application of operator calculus.

13.3.1 More operator calculus

In order to compute the coefficients arising in the Euler-Maclaurin formula (13.25), we make
a small detour to develop further the technology regarding operators on function spaces that
we began in section 9.3.1. We have seen many such operators so far, but we now treat them
as abstractions in which we will view them much like a point in the complex plane. We
make a formal analogy between functions of a complex variable and corresponding functions
of operators. We begin with an example.

Let h > 0 be fixed. We define the difference operator ∆ by

∆f(x) = f(x+ h)− f(x). (13.64)

This operator makes sense for any f ∈ C0(R), but we will often restrict the operators in
this discussion to the set of polynomials (a dense subset of C0 at least on finite intervals;
cf. section 12.2). We have also used the notation D for the derivative operator (7.17), i.e.,

Df(x) = f ′(x) (13.65)

in the one-dimensional case. This operator is no longer defined on all of C0, so we restrict it
always to polynomials. More precisely, we define the vector space (exercise 13.12) P∞ by

P∞ = ∪∞k=0Pk. (13.66)

Then both ∆ and D map P∞ → P∞. Note that although P∞ is infinite-dimensional, each
P ∈ P∞ has a finite degree.

5James Gregorie (1638–1675), a.k.a. James Gregory, a Scottish mathematician and astronomer, was
successively professor at the University of St. Andrews and the University of Edinburgh. He had “a reputation
among his peers second only to that of Newton” [170].

Draft September 23, 2016, do not distribute Page 226

CHAPTER 13. NUMERICAL QUADRATURE13.3. GREGORIE-EULER-MACLAURIN FORMULAS

It is not surprising that we could find a formal relationship between D and ∆. The Taylor
expansion (see exercise 7.4)

f(x+ h) =
∞∑
k=0

hkf (k)(x)

k!
=
∞∑
k=0

(hD)kf(x)

k!
(13.67)

(valid for any polynomial f) leads to the relationship

∆f(x) =
∞∑
k=1

(hD)kf(x)

k!
=
∞∑
k=1

(hD)k

k!
f(x) ∀f ∈ P∞. (13.68)

For any polynomial f , the sum in (13.68) is finite, so there are no convergence issues. The
function represented by the series in (13.68) is familiar since we can write

ζ(z) =
∞∑
k=1

zk

k!
= ez − 1. (13.69)

Replacing z by hD formally, we obtain

∆f(x) = ζ(hD)f(x). (13.70)

We now explain how to make this rigorous.
We now generalize the operator calculus derived in section 9.3.1 for matrices, especially

(9.48), to operators on polynomials. Of course, this is not exactly a generalization since any
operator on a finite-dimensional vector space can be written as a matrix. But we want to use
the calculus for operators on P∞ which is infinite-dimensional, so it makes sense to approach
the theory more abstractly.

We know that for any linear operator T , it makes sense to talk about powers of T , e.g.,
T 2f = T (Tf), and T kf = T (T k−1f) is defined by induction. We again define T 0 = I, where
I denotes the identity operator If = f for all f . Thus any polynomial p(z) =

∑n
k=1 ciz

i

can be applied to T to get p(T) by summing all the monomials T k with appropriate scalar
coefficients:

p(T)f =
n∑
k=1

ciT
if. (13.71)

It also makes sense to talk about the infinite sum ζ(D)f for any polynomial f since it involves
only finitely many terms in the sum in (13.69). Thus we have proved the following result.

Lemma 13.6 For any polynomial f ∈ P∞, we have

∆f(x) = ζ(hD)f(x) = ehDf(x)− f(x) ∀x ∈ R, (13.72)

where ζ(z) = ez − 1.

lemma 13.6 provides an explicit relationship between ∆ and D:

∆ = ehD − I, (13.73)

Draft September 23, 2016, do not distribute Page 227

13.3. GREGORIE-EULER-MACLAURIN FORMULASCHAPTER 13. NUMERICAL QUADRATURE

where I is the identity operator (and h is the parameter in the definition of ∆). This uses
the following fact that we leave as exercise 13.13:

∞∑
k=0

(ck + bk)T
kf =

∞∑
k=0

ckT
kf +

∞∑
k=0

bkT
kf ∀f ∈ P∞. (13.74)

To make this a bit more formal, we need to say what operators T are allowed and show at
least that T = hD is one of them. Note that both T = D and T = ∆ have the property
that the degree of Tf is 1 less than the degree of f for any polynomial f . Thus both D and
∆ are in the following set of operators:

T =
{
T : P∞ → P∞

∣∣ ∀f ∈ P∞ ∃k̂ <∞ such that T k̂f ≡ 0
}
. (13.75)

Note that if T k̂f ≡ 0, then T kf ≡ 0 for all k > k̂ as well. Thus the set T comprises the
operators for which infinite expressions like (13.74) always reduce to finite expressions for
any given f ∈ P∞. Restricting to this set greatly simplifies convergence arguments.

13.3.2 Product formula

The summation rule (13.74) for functions of operators is elementary, but the corresponding
rule for products is more subtle. Suppose that µ(z) =

∑∞
k=0 ckz

k and ν(z) =
∑∞

k=0 bkz
k are

power series that converge for |z| < ε for some ε > 0. Define υ(z) = µ(z)ν(z), which has the
power series υ(z) =

∑∞
k=0 akz

k, where

ak =
k∑
i=0

cibk−i (13.76)

(see exercise 13.14).

Lemma 13.7 Let T ∈ T . If µ and ν are power series as above and υ(z) = µ(z)ν(z), then
υ(T)f = µ(T)(ν(T)f) for any polynomial f .

Proof. Let g = ν(T)f =
∑k̂

k=0 bkT
kf , where k̂ is chosen depending on f ∈ P∞ according to

the defining property of (13.75). In particular, we conclude that g ∈ P∞, and we can then
write

µ(T)g =
k̂∑
k=0

ckT
kg, (13.77)

where we have increased the value of k̂ using (13.75) as necessary. Multiplying the two
expressions gives the desired result. QED

Draft September 23, 2016, do not distribute Page 228

CHAPTER 13. NUMERICAL QUADRATURE13.3. GREGORIE-EULER-MACLAURIN FORMULAS

13.3.3 Inverse operators

Now we consider finding inverses in the operator calculus. There is a new ingredient in that
in addition to power series, we need to add the symbol 1/z to the set of functions that we
can apply to an operator T ∈ T . Since 1 is the symbol for the identity operator and z
is the symbol for the operator itself, then 1/z should be the symbol for the inverse since
z(1/z) = 1, which is consistent with our calculus for products of power series. We already
saw this when we applied the expression

(1− z)−1 =
∞∑
k=0

zk (13.78)

to write the inverse of the matrix I −M as

(I −M)−1 =
∞∑
k=0

Mk (13.79)

for a convergent matrix M (section 8.1). We now apply this idea to compute an expansion
for η(z) = 1/ζ(z), where ζ was defined in (13.69).

First, note that (see exercise 13.15)

η(z) = 1/ζ(z) = 1
2
(−1 + coth 1

2
z) (13.80)

and recall that the hyperbolic cotangent has the expansion

1
2

coth 1
2
z =

∞∑
k=0

B2k

(2k)!
z2k−1

= (1/z) + 1
12
z − 1

720
z3 + · · · ,

(13.81)

where Bn is the nth Bernoulli6 number (cf. exercises 3.12 and 13.17). We will show that
η(hD) is the inverse of ζ(hD), in the sense that for any polynomial f , we have f =
ζ(hD)η(hD)f .

Lemma 13.8 Suppose that ζ(z) =
∑∞

k=1 ckz
k and that

ζ(z)−1 = 1/z +
∞∑
k=0

bkz
k,

in the sense that both series converge for |z| < ε and

ζ(z)
(

1/z +
∞∑
k=0

bkz
k
)

= 1 (13.82)

for all z in 0 < |z| < ε. Suppose that T ∈ T has a right inverse R: TRf = f for all f ∈ P∞.
Then the operator U defined by U = R+

∑∞
k=0 bkT

k satisfies ζ(T)Uf = f for any polynomial
f .

6See page 50.

Draft September 23, 2016, do not distribute Page 229

13.3. GREGORIE-EULER-MACLAURIN FORMULASCHAPTER 13. NUMERICAL QUADRATURE

Note that we require that the operator R : P∞ → P∞, but we do not require that R ∈ T .

Proof. The expression ζ(z)
(
1/z +

∑∞
k=0 bkz

k
)

= 1 means that

ζ(z)ν(z) = 1− µ(z), (13.83)

where µ(z) =
∑∞

k=1 ckz
k−1 and ν(z) =

∑∞
k=0 bkz

k. In particular, Uf = Rf + ν(T)f .
We have ζ(z) = µ(z)z, so that

ζ(T)(Uf) = µ(T)(TUf) = µ(T)(f + Tν(T)f) (13.84)

for any f ∈ P∞. But rewriting (13.83) gives 1 − µ(z) = ζ(z)ν(z) = µ(z)zν(z), so that
1 = µ(z)(1 + zν(z)), as required. QED

Combining lemmas 13.6 and 13.8 shows that the following holds.

Corollary 13.9 For any polynomial f ∈ P∞, we have

f(x) = ∆η(hD)f(x), (13.85)

where η(z) = 1/ζ(z) = (ez − 1)−1 = 1
2
(−1 + coth 1

2
z).

13.3.4 The Euler-Maclaurin formula

To understand corollary 13.9, we need to interpret the meaning of the term 1/z when D is
substituted for z. The inverse of differentiation is integration:

D−1f(x) =

∫ x

f(s) ds, (13.86)

but the inverse is not uniquely defined. That is, define

Icf(x) =

∫ x

c

f(s) ds (13.87)

for any constant c, and then we have DIcf = f for any polynomial f . What this means
is that Ic is a right inverse for D for any c, and thus we can write I = ζ(D)η(D), but the
interpretation of η(D)ζ(D) is problematic. The formal interpretation of η(hD) is then

η(hD) = h−1Ic − 1
2
I + 1

12
hD − 1

720
(hD)3 + · · · . (13.88)

Fortunately,

∆Icf(x) =

∫ x+h

x

f(s) ds, (13.89)

which is independent of the value of c, so we have

f(x) = h−1

∫ x+h

x

f(s) ds− 1
2
∆f(x) + 1

12
h∆Df(x)− 1

720
h3∆D3f(x) + · · · . (13.90)

Reorganizing (13.90), we find∫ x+h

x

f(s) ds = 1
2
h(f(x+ h) + f(x))− 1

12
h2∆Df(x) + 1

720
h4∆D3f(x) + · · · . (13.91)

Draft September 23, 2016, do not distribute Page 230

CHAPTER 13. NUMERICAL QUADRATURE13.3. GREGORIE-EULER-MACLAURIN FORMULAS

m k = 0 k = 2 k = 4
10 0.576383160974208 0.577215660974208 0.577215664900795
20 0.577007383589691 0.577215664839691 0.577215664901532
100 0.577207331651528 0.577215664901528 0.577215664901532
1000 0.577215581568205 0.577215664901530 0.577215664901530

Table 13.2: Computation of the Euler constant γ using (13.100) for various values of k and
m. The first incorrect digit is shown in boldface. The cases k = 4 and m = 20, 100 agree
with the exact value to the digits shown.

Summing this as we do for a composite quadrature rule, we find∫ b

a

f(s) ds =h

n−1∑
i=1

f(a+ ih) + 1
2
h(f(a) + f(b))

− 1
12
h2 (f ′(b)− f ′(a)) + 1

720
h4
(
f (3)(b)− f (3)(a)

)
+ · · · .

(13.92)

where b = a + nh. Note the appearance of the trapezoidal rule (cf. (13.27)) in the middle
of (13.92), which is the Euler-Maclaurin formula (13.25). The coefficients ci in (13.25) are
those in the power series expansion of zη(z) = z/(ez − 1), i.e.,

z

ez − 1
=
z

2
(−1 + coth 1

2
z) = 1− 1

2
z −

∞∑
i=1

ciz
2i. (13.93)

The numbers B2i = (2i)!ci are known as the Bernoulli numbers (cf. (13.81)): c1 = 1/12,
c2 = −1/720, c3 = 1/30240, c4 = −1/1209600, and so forth.

13.3.5 Euler’s constant γ

Let us derive the result that

An =
n∑
i=1

1

i
≈ γ + log n, (13.94)

where γ = 0.57721 · · · is Euler’s constant. We see that An is very close to the trapezoidal
rule for the integral

log n =

∫ n

1

dx

x
≈ 1

2
+

1

2n
+

n−1∑
i=2

1

i
. (13.95)

Set f(x) = 1/x. Then (by induction) f (k)(x) = (−1)kk!x−k−1. In particular, f (2i−1)(x) =
−(2i− 1)!x−2i. Therefore, the Euler-Maclaurin formula gives

log(n/m) =

∫ n

m

dx

x
≈

n∑
i=m

1

i
− 1

2m
− 1

2n

−
k∑
i=1

B2i

2i
(m−2i − n−2i) +O

(
m−2k−2

)
,

(13.96)

Draft September 23, 2016, do not distribute Page 231

13.3. GREGORIE-EULER-MACLAURIN FORMULASCHAPTER 13. NUMERICAL QUADRATURE

n 3 5 7 9 11
en 1.5× 10−01 1.9× 10−03 2.6× 10−06 4.0× 10−10 6.9× 10−15

Table 13.3: Trapezoidal rule applied to the integral (13.101), truncated as in (13.102) to the
interval [0, 6]. Listed are the errors en as a function of the number n of composite intervals
(the number of quadrature points is n+ 1).

where the numbers B2i are the Bernoulli numbers (exercises 3.12 and 13.17). More precisely,
we have

log(n/m) =
n∑

i=m

1

i
− 1

2m
− 1

2n
−

k∑
i=1

B2i

2i
(m−2i − n−2i)

− (2k + 2)

∫ n

m

KEM

k (t)t−2k−3 dt,

(13.97)

where we have extended the Peano kernel KEM
k to be 1-periodic. The error term at the end

of (13.97) can be estimated by∣∣∣∣(2k + 2)

∫ n

m

KEM

k (t)t−2k−3 dt

∣∣∣∣ ≤ ‖KEM

k ‖∞(2k + 2)

∫ n

m

t−2k−3

= ‖KEM

k ‖∞
(
m−2k−2 − n−2k−2

)
.

(13.98)

Thus we can write

n∑
i=1

1

i
=

m−1∑
i=1

1

i
+

n∑
i=m

1

i
=

m−1∑
i=1

1

i
+ log(n/m)

+
1

2m
+

1

2n
+

k∑
i=1

B2i

2i
(m−2i − n−2i) +O

(
m−2k−2

)
.

(13.99)

Thus we find (e.g., by letting n→∞) that

γ =
m−1∑
i=1

1

i
− logm+

1

2m
+

k∑
i=1

B2i

2i
m−2i +O

(
m−2k−2

)
. (13.100)

In table 13.2, we give the results of applying this algorithm for various values of k and m
computed using floating-point arithmetic. Note the effect of round-off error for m = 1000
and k = 4 (see section 18.1.1).

13.3.6 Integrating a Gaussian

It is well known that ∫ ∞
0

e−x
2

dx =

√
π

2
. (13.101)

We can apply the Euler-Maclaurin formula to this integral and use the known value to test
its accuracy.

Draft September 23, 2016, do not distribute Page 232

CHAPTER 13. NUMERICAL QUADRATURE13.3. GREGORIE-EULER-MACLAURIN FORMULAS

Due to the symmetry properties of the Gaussian function g(x) = e−x
2
, all the odd order

derivative terms vanish at x = 0. On the other hand, terms at the other end are exponentially
small. More precisely, we make the approximation

√
π

2
≈
∫ r

0

e−x
2

dx. (13.102)

The error satisfies ∫ ∞
r

e−x
2

dx ≤ 1

2r
e−r

2

, (13.103)

for the following reason: ∫ ∞
r

e−x
2

r dx ≤
∫ ∞
r

e−x
2

x dx =
1

2
e−r

2

. (13.104)

For example, if we take r = 6, the error (13.103) is less than round-off error in double
precision. Taking trapezoidal rule with 12 intervals (h = 1

2
) to approximate the integral in

(13.102), we get a numerical error on the order of round-off error. In table 13.3, we list the
errors for various numbers of composite quadrature intervals.

The derivative correction terms at x = r in the Euler-Maclaurin expansion are also
exponentially small, so we are not surprised at the accuracy of trapezoidal rule in this case.
However, we might have thought that the interior points in trapezoidal rule might also not
matter. That is, the derivative correction terms at x = r in the Euler-Maclaurin expansion
are the same except for scaling by the mesh size h. But clearly they do matter: trapezoidal
rule for r = 6 with two points gives the answer 3 (to within rounding error). The first
Euler-Maclaurin correction term has magnitude

h

12
|g′(r)| = hr

6
e−r

2

. (13.105)

With only one interval, h = 6 for r = 6, but 6e−62 ≈ 1.3917 × 10−15, so having just one
correction term would not change the answer very much. The next few terms would be
somewhat larger, but not enough to account for the discrepancy. It would appear that the
Euler-Maclaurin interpolation scheme described in lemma 11.6 is not very effective at least
for modest values of k, if it converges at all as k →∞.

By constrast, decreasing h by a factor of 12 makes the error decrease by a factor of more
than 1016. The exponential decrease of the error seen in table 13.3 is well understood [168],
but it requires complex analysis to explain.

13.3.7 Gregorie’s quadrature

The quadrature rule of Gregorie can now be realized as a simple application of the Euler-
Maclaurin formula [177]. The derivatives at the ends of the intervals are replaced by suitable
difference quotients that approximate the derivatives [68]; cf. section 11.4.3. Because the first
few Bernoulli numbers are quite small, and the trapezoidal rule is very efficient to compute
(since the coefficients are all the same), the Gregorie rules can be quite useful in applications
[16].

Draft September 23, 2016, do not distribute Page 233

13.4. OTHER QUADRATURE RULES CHAPTER 13. NUMERICAL QUADRATURE

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1 10 100 1000 10000

Figure 13.1: Errors (vertical axis) in computing the integral of x4 on [0, 1] via the Gregorie
rule (13.106) with n points (horizontal axis).

For example, if we take the approximation (11.46) (which we have to scale by a factor of
2 to account for the interval size), for the derivative in (13.22) for k = 1, we get∫ b

a

p(s) ds ≈ QGEM =h
n−1∑
i=1

p(a+ ih) + 1
2
h(p(a) + p(b))

+ 1
12
h
(
−3

2
p(a) + 2p(a+ h)− 1

2
p(a+ 2h)

−
(

3
2
p(b)− 2p(b− h) + 1

2
p(b− 2h)

))
.

(13.106)

For n = 1, we obtain Simpson’s rule. Thus the quadrature rule is exact for cubics in this
case. For larger n, it is clear that the quadrature rule is exact for quadratics because the
difference approximation (11.46) is exact for quadratics. The symmetry of the quadrature
rule around the midpoint m = 1

2
(a+ b) implies that QGEM(x−m)3 = 0, the exact result for

the integral. Thus QGEM is exact for cubics for all n.
In figure 13.1, the use of (13.106) to approximate the integral of x4 on [0, 1] is depicted.

The slope of the error curve confirms that the approximation error is proportional to n−4,
as would be expected from the Peano kernel theorem, cf. the error expression for the Euler-
Maclaurin formula (13.63). For the periodic function in (13.28), the errors for QGEM are
similar and therefore much larger than would be obtained using the trapezoidal rule QTR

given in (13.36) without any endpoint corrections, as is reflected in table 13.1. Thus for
periodic functions, the simple trapezoidal rule QTR given in (13.36) is more accurate than
the formally more accurate rule QGEM defined in (13.106).

13.4 Other quadrature rules

Any type of approximation naturally leads to a quadrature rule. Here we briefly discuss two
that are related to approximation techniques studied earlier.

Draft September 23, 2016, do not distribute Page 234

CHAPTER 13. NUMERICAL QUADRATURE 13.5. MORE READING

13.4.1 Chebyshev quadrature

A natural quadrature rule can be associated with interpolation at the Chebyshev points
(11.1). This quadrature is called the “first rule” of Fejér7 whereas Fejér’s “second rule” uses
instead the interior extrema of the Chebyshev polynomials,

xj = cos(jπ/n), 0 < j < n. (13.107)

The closely related rule, which includes the points in (13.107) for j = 0 and j = n (that
is, x = ±1), is known as the Clenshaw-Curtis rule. The latter rule is popular for several
reasons, including the fact that it is often as accurate as Gaussian quadrature with the same
number of points as well as the availability of an algorithm that, in effect, computes the
quadrature weights very efficiently [165].

13.4.2 Bernstein quadrature

We have seen that any linear approximation scheme can generate an interesting quadrature
rule. The same holds for the Bernstein approximation. However, this does not yield a
new quadrature rule but rather an interpretation of a variant of the trapezoidal rule. In
particular, the Bernstein quadrature is of the form

QB

nf :=
n∑
j=0

(∫ 1

0

Bj,n(x) dx

)
f(j/n) =

1

n+ 1

n∑
j=0

f(j/n). (13.108)

What is striking is that theorem 12.8 implies that

lim
n→∞

QB

nf =

∫ 1

0

f(x) dx, (13.109)

for any f ∈ C0([0, 1]). It is easy to compare the quadrature rule (13.108) with the trapezoidal
rule: the coefficients at the end differ by O (n−1) and the coefficients in the middle differ
by O (n−2), but the quadrature points are the same. In particular, this allows us to show
that the (composite) trapezoidal rule also converges to the integral, as in (13.109) for any
f ∈ C0([0, 1]) (see exercise 13.20).

13.5 More reading

The book [43] provides a comprehensive introduction to numerical quadrature. See [103] as
well for information on the Bernoulli polynomials which play the role of Peano kernels in the
Euler-Maclaurin formula, as well as other applications. See [168] for a study of conditions
that determine the exponential convergence of trapezoidal rule.

7Leopold (Lipót) Fejér (1880–1959) was a student of Schwarz (see page 74) and had a remarkable list of
advisees including Paul Erdös, George Pólya, Marcel Riesz, Gabor Szegö, and John von Neumann.

Draft September 23, 2016, do not distribute Page 235

13.6. EXERCISES CHAPTER 13. NUMERICAL QUADRATURE

13.6 Exercises

Exercise 13.1 Prove that Simpson’s rule is exact for cubics (hint: use symmetry). Ex-
plain how to modify (13.3) to reflect the extra accuracy of Simpson’s rule. (Hint: consider a
Hermite-type interpolation involving the derivative at the midpoint and show that the corre-
sponding basis function has integral zero, so that there is no corresponding α.)

Exercise 13.2 Prove that the midpoint rule is exact for linear polynomials (hint: use sym-
metry). Explain how to modify (13.3) to reflect the extra accuracy of the midpoint rule. (Hint:
consider a Hermite-type interpolation involving the derivative at the midpoint and show that
the corresponding basis function has integral zero, so that there is no corresponding α.)

Exercise 13.3 Show that the coefficients αi in (13.2) for the Newton-Cotes quadrature are
linearly proportional to the interval length b− a:

αi = (b− a)α1
i , (13.110)

where the the coefficients α1
i correspond to the integration rules with a = 0 and b = 1. (Hint:

show that the corresponding Lagrange basis functions satisfy a similar type of scaling when
you map [a, b]→ [0, 1].)

Exercise 13.4 Prove that any quadrature rule Qf of the form (13.10), i.e., Qf =
∑n

i=0 αif(xi),
is a linear functional on continuous functions.

Exercise 13.5 Suppose that a = −1 and b = 1. Consider the problem (13.17) for n = 2.
Determine the optimal points xi = ±ξ by solving the 4 × 4 system of equations. (Hint: use
symmetry, the representation (13.2), and the observation in exercise 13.1 to eliminate as
many variables as possible.)

Exercise 13.6 Give conditions on K such that (13.37) is valid. (Hint: write the integral
as a limit of finite sums, e.g., (13.109), and show how E applied to the sum is the sum of E
applied to the individual terms.)

Exercise 13.7 Prove that the error for the trapezoidal rule on [−1, 1] satisfies∫ 1

−1

f(t) dt− 1
2

(f(−1) + f(1)) =

∫ 1

0

1
2
(t2 − 1)f (2)(t) dt. (13.111)

Use this to determine if the error estimate (13.9) is sharp.

Exercise 13.8 Prove that the kernel for Hermite quadrature (13.21) is of the form given in
(13.53) for some constant cH (evaluate the constant).

Exercise 13.9 Verify that the K defined in (13.51) satisfies (13.49) for all f ∈ C2.

Exercise 13.10 Verify that the rule (13.23) arises as an example of interpolatory quadrature
(13.1) if we define L to be continuous piecewise linear interpolation (section 12.4) using the
points ξi.

Draft September 23, 2016, do not distribute Page 236

CHAPTER 13. NUMERICAL QUADRATURE 13.6. EXERCISES

Exercise 13.11 Derive the composite midpoint rule by summing the midpoint rule for each
interval and show that it corresponds to interpolatory quadrature (13.1) if we define L to be
piecewise constant interpolation (section 12.4) at the midpoints of each interval [ξi−1, ξi] for
i = 1, . . . , n.

Exercise 13.12 Show that P∞ defined in (13.66) is a vector space. Show that it also has a
ring structure defined by pointwise multiplication.

Exercise 13.13 Prove that (13.74) is valid for any T ∈ T (see (13.75)). Apply (13.74) to
justify the expression (13.73) by showing that the additive decomposition rule is valid:

ζ(hD) = ehD − hD. (13.112)

Verify that the operator ehD is well-defined on P∞. (Hint: use Taylor’s theorem; cf. exer-
cise 7.4.)

Exercise 13.14 Prove that (13.76) defines a power series υ that is convergent for |z| < ε
provided this holds for µ and ν.

Exercise 13.15 Prove (13.80). (Hint: write the definition of the hyperbolic cotangent and
simplify.)

Exercise 13.16 Prove that the power series in (13.93) converges for |z| < 2π. (Hint:
ignoring the removable singularity z = 0, the smallest zeros of the denominator ez − 1 are
z = ±2πi.)

Exercise 13.17 The generating function for the Bernoulli numbers is the function

χ(z) = z/(ez − 1), (13.113)

in the sense that

χ(z) =
∞∑
k=0

Bk

k!
zk. (13.114)

Show that the power series (13.114) has no odd-order terms of degree 3 and higher. (Hint:
consider the function

φ(z) = (z/(ez − 1))− 1 + 1
2
z (13.115)

and show that φ(−z) = φ(z) for all z.)

Exercise 13.18 Prove the following analog of the Euler-Maclaurin formula in which the
trapezoidal rule is replaced by the midpoint rule: for any polynomial p,∫ b

a

p(s) ds =h

n−1∑
i=0

p(a+ (i+ 1
2
)h)

+
∞∑
i=1

ĉih
2i
(
p(2i−1)(b)− p(2i−1)(a)

)
,

(13.116)

where h = (b− a)/n and the coefficients ĉi are also related to the Bernoulli numbers [171].

Draft September 23, 2016, do not distribute Page 237

13.7. SOLUTIONS CHAPTER 13. NUMERICAL QUADRATURE

Exercise 13.19 Determine the Peano kernel K2 for the Euler-Maclaurin quadrature for-
mula for k = 2 on the interval [−1, 1]. (Hint: write

K2(x) = (6!)−1(1 + x)3(1− x)3 + α(1 + x)2(1− x)2

and determine the value of α that ensures that K
(3)
2 (±1) = 0. Integrate by parts to verify the

required formula.)

Exercise 13.20 Prove that the trapezoidal rule

1

n

(
1
2
f(0) + 1

2
f(1) +

n−1∑
j=1

f(j/n)

)
(13.117)

converges to
∫ 1

0
f(x) dx as n→∞ for any f ∈ C0([0, 1]). Determine the rate of convergence

in terms of the modulus of continuity of f . (Hint: compare exercise 12.19).

Exercise 13.21 Define

γn =
n∑
i=1

1

i
− log n.

Prove that γn+1 < γn for all n ≥ 1 and that γn ≥ 0 for all n. Explain why this proves that
there is a limit γ = limn→∞ γn.

Exercise 13.22 Prove that (13.42) holds for k > 0.

Exercise 13.23 Prove that (13.46) holds for k ≥ m+ 2. (Hint: start with m = 0 and then
apply this result to successive derivatives.)

Exercise 13.24 Examine the behavior of the sequence

an = log(n)− 1

n

n∑
i=1

(
2n

i
−
⌈n
i

⌉)
. (13.118)

Can you show that an → 0 as n→∞? Can you show that

|an|n→∞ (13.119)

as n→∞?

13.7 Solutions

Solution of Exercise 13.1. In view of exercise 13.3, it suffices to take a = 0 and b = 1.
By symmetry,

φ0(x) = φ2(1− x) = 2(x− 1
2
)(x− 1) = 2x2 − 3x+ 1, (13.120)

and thus

α2 = α0 =

∫ 1

0

2(x− 1
2
)(x− 1) dx = 2

3
− 3

2
+ 1 = 1

6
. (13.121)

Draft September 23, 2016, do not distribute Page 238

CHAPTER 13. NUMERICAL QUADRATURE 13.7. SOLUTIONS

Similarly, φ1(x) = 4x(1− x) = −4x2 + 4x, and

α1 =

∫ 1

0

−4x2 + 4x dx = −4
3

+ 2 = 2
3
. (13.122)

To see that this rule is exact for cubics, observe that the cubic

φ3(x) = x(x− 1
2
)(x− 1) (13.123)

is antisymmetric around x = 1
2
, and thus

∫ 1

0
φ3(x) dx = 0.

Since any cubic may be written as βφ3 +q, where q is quadratic, Simpson’s rule computes
its integral exactly. If we define a Hermite-type interpolation involving Lagrange interpola-
tion at 0, 1

2
, 1 and derivative interpolation at 1

2
, then the corresponding basis functions will

just involve simple additions of φ3 and not change the quadrature coefficients α. However,
the interpolation error (13.3) will involve an interpolant that is exact for cubics.

Solution of Exercise 13.17. Consider the difference

φ(−z)− φ(z) =
−z

e−z − 1
− 1− 1

2
z − z

ez − 1
+ 1− 1

2
z

=
−z

e−z − 1
− z

ez − 1
− z

= − z
(

1

e−z − 1
+

1

ez − 1
+ 1

)
.

(13.124)

But a common denominator yields (cf. exercise 2.12)

1

e−z − 1
+

1

ez − 1
=
ez − 1 + e−z − 1

(e−z − 1)(ez − 1)

=
ez + e−z − 2

1− e−z − ez + 1
= −1.

(13.125)

Therefore, φ(−z)− φ(z) = 0 for all z.

Draft September 23, 2016, do not distribute Page 239

13.7. SOLUTIONS CHAPTER 13. NUMERICAL QUADRATURE

Draft September 23, 2016, do not distribute Page 240

Chapter 14

Eigenvalue Problems

“For his work on acceleration of the PageRank algorithm Gene [Golub]
received Google stock; he donated most of these funds to found the
Paul and Cindy Saylor Chair at the University of Illinois”–from Gene
H. Golub Biography by Chen Greif. Gene Howard Golub (1932–2007)
passed away shortly before his 19th (leap year) birthday, 29 February
2008, which was celebrated as the Gene Golub Around the World Day.

Eigenvalues and eigenvectors arise in many situations. We have seen the fundamental
role of the spectral radius (6.8) in determining the convergence rate of iterative methods
(chapter 8). Similarly, the convergence properties of the conjugate gradient method (cf. the-
orem 9.9) are encoded in the eigenvalues. These give only two hints of the crucial role of
eigenvalues and why it is natural to seek efficient algorithms to compute the eigenvalues of
matrices.

We begin by giving some further examples of eigenproblems for motivation. Then we
present results that allow estimation of the location of eigenvalues by simple computations.
We then explain fundamental limitations of the eigenvalue problem which show that, in
general, only approximate algorithms are feasible, unlike the problem of solution of linear
systems for which “exact” algorithms like Gaussian elimination and conjugate gradients are
available. Finally, we discuss the Hessenberg factorization, which simplifies the eigenproblem
substantially.

14.1 Eigenvalue examples

We have seen several examples of families of matrices, e.g., (4.20) and (8.2), for which the
eigenvalues may be of interest. We explain in one case why this is so. We also give other
examples to provide some additional motivation.

14.1.1 Mechanical resonance

Many physical models are described by differential equations. For a two-point boundary
value problem, a finite difference approximation produces a linear system of the form (4.20).
The model (4.20) is a reasonable approximation to the deflection of a string under modest
loading. Thus the frequency of sounds can be determined as the eigenvalues of mechanical
systems [127].

241

14.1. EIGENVALUE EXAMPLES CHAPTER 14. EIGENVALUE PROBLEMS

But far more complex physical systems, approximated by either finite difference or finite
element methods, are modeled by matrices with structures very similar to (4.20), with the
matrix size n limited only by the size of computer memory. Finding the deflection x of a
bridge subject to a force f would require solving Ax = f for such a system. But finding the
frequencies of vibration [14] require the eigenvalues of A.

14.1.2 Quality rankings

Suppose you want to quantify connectivity of related objects based on the quality of the re-
lationships among the objects. For example, we might want to measure personal connections
so that we can target advertising to people who influence influential people. To see how this
might be done, suppose we had access to all cell phone data. We can rank people based on
whether their numbers are kept in another person’s cell phones for “one-touch” dialing.

It is reasonable to say that you are more connected if the people who keep your number
are also highly connected. One way to implement this is to define your connectivity rating
to be a fixed multiple of the sum of all the ratings of the people who list you. Since this
definition is circular, we have to write an equation.

Let µ > 0 denote a parameter to be picked later. Let A = (aij) denote the matrix with
the property that aij = 1 if and only if the jth person keeps the ith person’s phone number,
and zero otherwise. Then the connectivity ratings xi of the ith person can be determined
from other connectivity ratings (xj) by the relationship

xi = µ
∑

{j|aij 6=0}

xj. (14.1)

This just says that the ith rating is proportional to the sum of the ratings of the people that
connect to the ith person, with a constant of proportionality given by µ. By the definition
of the matrix A = (aij), we find for all i that

λxi =
∑

{j|aij 6=0}

xj =
∑
j

aijxj = (AX)i , (14.2)

where λ = 1/µ. This says that x and λ form an eigenpair: Ax = λx.
If A is irreducible (section 8.3.4), then there is a nonnegative eigenpair (theorem 8.19), so

that the ratings are all of the same sign. In many cases, only relative, not absolute, ratings
are of interest. In this case ratings, like eigenvectors, can be subjected to arbitrary scalings
by a constant factor.

The above example is similar to the problem of determining link relevance for search
engines for the World Wide Web. Instead of phone numbers, links between web pages
generate A, and a similar model can be derived. Current web search engines1 compute the
corresponding eigenvalue problem for the entire web periodically, with several billions of
web pages ranked currently. For such a matrix size, it is significant that the matrices are
quite sparse. A typical web page might link to only a few dozen other web pages. However,
the location of the nonzero entries is quite arbitrary in this case, not leading to an obvious
banded structure.

1The PageRank algorithm of Google is similar but more involved, cf. [25, 93, 121].

Draft September 23, 2016, do not distribute Page 242

CHAPTER 14. EIGENVALUE PROBLEMS 14.2. GERSHGORIN’S THEOREM

14.1.3 Not so sparse eigenvalue problems

So far, all the examples given have sparse matrices. To avoid the impression that this is the
main application area, we note that iterative eigenvalue methods are often employed with
success on nonsparse matrices as well. For example, the Lanczos algorithm has been used to
solve the eigenvalue problem associated with electronic structure prediction for large atoms
[51].

14.2 Gershgorin’s theorem

Although computing eigenvalues of a matrix is quite difficult, getting useful bounds on
their location is sometimes quite easy. As we have seen (corollary 3.3), the eigenvalues of
a triangular matrix are displayed on the diagonal. A theorem of Gershgorin2 extends this
observation using a type of perturbation argument known as a homotopy method.

To start the discussion, let us imagine describing where eigenvalues are not to be found.
The set of λ that are not eigenvalues of a matrix A are those for which A− λI is invertible.
We know that a matrix that is diagonally dominant is invertible, by corollary 8.9. Thus if

|aii − λ| >
n∑

i 6=j=1

|aij| (14.3)

for all j = 1, . . . , n, then λ is not an eigenvalue of A. In other words, each eigenvalue λ of A
must satisfy

|aii − λ| ≤
n∑

i 6=j=1

|aij| (14.4)

for some j ∈ {1, . . . , n}. This says that each eigenvalue must be in a disk of radius

ri =
n∑

i 6=j=1

|aij| (14.5)

in the complex plane that is centered at the diagonal entry aii. We can call such a disk
D(aii, ri). Therefore, all the eigenvalues are in ∪ni=1D(aii, ri). This is the main gist of
Gershgorin’s theorem, but if the disks do not all overlap, we can say something more.

Theorem 14.1 Suppose that ∪ni=1D(aii, ri) consists of k distinct connected components Cj,
where Cj ∩ Cj′ = ∅ if j 6= j′ and

∪ni=1D(aii, ri) = C1 ∪ · · · ∪ Ck, (14.6)

where each Cj is the union of lj disks. Then there are exactly lj eigenvalues (counting
multiplicity) in each connected component Cj.

2Semyon Aranovich Gershgorin (1901–1933) is credited with being the first to state the theorem in print,
but it is said that the result, and its connection to diagonal dominance, was known earlier: “It seems that
the circles theorem was known to Schur” [148] (see page 83 for more on Schur).

Draft September 23, 2016, do not distribute Page 243

14.2. GERSHGORIN’S THEOREM CHAPTER 14. EIGENVALUE PROBLEMS

Proof. We just need to establish the number of eigenvalues in each component. Define a
one-parameter family of matrices

As = (1− s) diag(A) + sA, (14.7)

where s ∈ [0, 1] and diag(A) denotes the diagonal matrix with diagonal entries matching
those of A. When s = 0, As = diag(A) and the eigenvalues are aii; when s = 1, As = A.
Note that diag(As) = diag(A) for all s. By the first part of the theorem, the eigenvalues of
As lie in the disks

∪ni=1D(aii, sri) = Cs
1 ∪ · · · ∪ Cs

ks . (14.8)

When s = 0, the number of components k0 is the number of distinct coefficients aii, and
each C0

i = {ajj} for some j since the centers of the disks do not change with s. The number
of distinct components can decrease as disks merge, but it cannot increase.

The matrix coefficients of As are continuous in s, and this means that the eigenvalues λsi
depend continuously on s, because of the following lemma.

Lemma 14.2 The eigenvalues of a matrix depend continuously on the coefficients.

We will prove this result in section 14.2.2.
There is a set of discrete points 0 = s0 < s1 < · · · < sr ≤ 1 with the property that

the number ks of components in (14.8) does not vary in the intervals si−1 ≤ s < si for
i = 1, . . . , r. That is, the values si denote the merge points of the monotonically growing
components. Fix i for the moment. Suppose that for some s < si, an eigenvalue that started
in one of the components C

si−1

j reaches the exterior of the component. Reducing the value of
s if necessary, we can ensure that the eigenvalue is in the complement of all the components
since they are separated by a finite distance, in contradiction to the first part of Gershgorin’s
theorem. So if there are mj eigenvalues in C

si−1

j , then there must be mj eigenvalues in Cs
j

for all s < si. If two components merge at si, all we can say is that the eigenvalues in each
separate component for s < si are in the union at s = si, again by continuity. QED

Since we use the notion of diagonal dominance to define the Gershgorin disks, we could
also use the notion of generalized diagonal dominance (section 8.3.1) and obtain more general
results [175]. Instead, we leave such ideas to exercise 14.1, and we consider more complex
geometric estimates.

14.2.1 Ovals of Cassini

It is possible to locate eigenvalues even more precisely than by using the Gershgorin disks.
Define the Cassini ovals

Cij =
{
λ ∈ C

∣∣ |λ− aii||λ− ajj| ≤ rirj
}

(14.9)

for i, j = 1, . . . , n, where the ri’s are defined by (14.5). The following is a theorem of
A. Brauer.3

Theorem 14.3 The eigenvalues of A are contained in ∪ni,j=1Cij.
3Alfred Theodor Brauer (1894–1985) was a student of Issai Schur and Erhard Schmidt, as was his younger

brother Richard Dagobert Brauer (1901–1977).

Draft September 23, 2016, do not distribute Page 244

CHAPTER 14. EIGENVALUE PROBLEMS 14.2. GERSHGORIN’S THEOREM

Proof. Consider an eigenpair Ax = λx with x 6= 0. For any index j, we find

(λ− ajj)xj =
∑
l 6=j

ajlxl. (14.10)

Let i be an index such that
|xi| = ‖x‖∞, (14.11)

so that applying (14.10) for any j we have

|λ− ajj||xj| =
∣∣∑
l 6=j

ajlxl
∣∣ ≤∑

l 6=j

|ajl||xi| = rj|xi|, (14.12)

by using (14.11). Then (14.12) yields for all j,

|λ− ajj| ≤ rj|xi|/|xj|. (14.13)

Now let j 6= i be an index such that

|xj| ≥ |xk| for all k 6= i. (14.14)

There are two cases to consider. It might be that xj = 0, which means that xk = 0 for all
k 6= i. Computing, we find for k 6= i that

0 = λxk = (Ax)k =
n∑
l=1

aklxl = akixi. (14.15)

Thus aki = 0 for all k 6= i, so a repeat of the calculation (14.15) with k = i says that λ = aii.
This trivially implies that λ ∈ Cik for all k.

Now suppose that xj 6= 0. Estimating (14.10) using (14.14), we find

|λ− aii||xi| ≤
∑
l 6=i

|ail||xj| = ri|xj|, (14.16)

yielding the inequality
|λ− aii| ≤ ri|xj|/|xi|. (14.17)

Multiplying (14.13) and (14.17), we conclude that λ ∈ Cij. QED

The location of eigenvalues via Cassini ovals is at least as precise as using the Gershgorin
disks, that is,

∪ni,j=1Cij ⊂ ∪ni=1D(aii, ri). (14.18)

To prove this, suppose that λ 6∈ D(aii, ri) ∪D(ajj, rj). Then

|λ− aii| > ri and |λ− ajj| > rj, (14.19)

so that |λ − aii| |λ − ajj| > rirj and λ 6∈ Cij. Thus if λ 6∈ ∪ni=1D(aii, ri), then λ 6∈ ∪ni,j=1Cij,
which is just the set-theoretic complement of (14.18).

To compare the two predictions of Cassini and Gershgorin, consider the family of matrices(
1 −t
t −1

)
(14.20)

Draft September 23, 2016, do not distribute Page 245

14.2. GERSHGORIN’S THEOREM CHAPTER 14. EIGENVALUE PROBLEMS

whose eigenvalues are λ± = ±
√

1− t2 ≈ ±(1− 1
2
t2). The Gershgorin estimate would predict

only that |λ± ∓ 1| ≤ t, whereas the Cassini estimate is more accurate:

|1∓ λ±| ≤ t2/|1± λ±|, (14.21)

which can be used to show that the Cassini ovals have a diameter that isO(t2) (exercise 14.2).
The Cassini ovals are known to be optimal in the sense that for a given set of numbers aii

and ri, there is a matrix A with these diagonals and off-diagonal absolute row sums having
an eigenvalue λ for any λ ∈ ∪ni,j=1Cij [175, 176].

Locating eigenvalues is related to proving invertibility, in the sense that the latter is
equivalent to λ = 0 not being an eigenvalue. Thus the following corollary holds.

Corollary 14.4 An n× n matrix A is invertible if

|aiiajj| > rirj (14.22)

for all i, j = 1, . . . , n, where the ri’s are defined by (14.5).

14.2.2 Eigenvalue continuity

The continuity of the eigenvalues of a matrix, as a function of the entries, can be proved
by brute force. First, we can write the characteristic polynomial in terms of the coefficients
(exercise 14.3), and this polynomial is clearly continuous with respect to the coefficients.
Then we can show that the zeros of a polynomial are continuous functions of the coefficients
of the polynomial. This is the content of appendices A, B, and K in [126]. However, this
dependence is not very smooth. Consider the roots of p(x) = xn + a. One of them is the
real root x = n

√
a (for a > 0), which is only Hölder-continuous of order 1/n at a = 0; see

exercise 14.5 and appendix K in [126].
Instead of reproducing the proof in [126], we take a completely different approach advo-

cated recently [120]. It relies on the Schur decomposition and the fact that unitary matrices
form a compact set. This is easy to see since ‖U‖2 = 1 for any unitary matrix (exercise 6.5).
Thus, in whatever norm you like (theorem 5.3), the unitary matrices form a bounded set
in Cn2

. The limit of unitary matrices is also unitary (exercise 14.6), so that the unitary
matrices form a compact set in Cn2

.
When we identify the eigenvalues of a matrix with the diagonal entries of the triangular

factor in the Schur decomposition, there is a great deal of possible ambiguity due to simple
permutations of indices since a permutation is itself a unitary matrix (exercise 14.7). We
need a way to talk about eigenvalues that reflects their basic properties. The diagonal of
a matrix is naturally a vector, but since the order of the eigenvalues does not matter, the
concept of vector is not right. On the other hand, a discrete set correctly eliminates the
ambiguity of permutations of indices, but it eliminates too much, namely, the multiplicity of
the eigenvalues. So we introduce a new space Ln to encapsulate the right properties. First,
we define a relation R on Cn as follows:

xRy iff x = Πy for some permutation Π. (14.23)

Define Ln to be the set of equivalence classes (exercise 14.8) of R in Cn.
We also need a way to measure closeness for sets of eigenvalues to deal with this ambiguity.

Draft September 23, 2016, do not distribute Page 246

CHAPTER 14. EIGENVALUE PROBLEMS 14.2. GERSHGORIN’S THEOREM

Definition 14.5 Define a nonnegative function D(x, y) on Cn × Cn by

D(x, y) = min
{
‖x− Πy‖∞

∣∣ Π is a permutation matrix
}
. (14.24)

Note that, for any n, there is a finite set of permutations, so we can assert that the
minimum is attained in (14.24); that is, there is a permutation matrix Π such that D(x, y) =
‖x−Πy‖∞. The function d is symmetric (D(x, y) = D(y, x)) and satisfies a triangle inequality

D(x, y) ≤ D(x,w) +D(w, y) (14.25)

for all w, x, y ∈ Cn (exercise 14.9). But for [x] ∈ Ln, D(x, y) = 0 for all y ∈ [x]. In fact, xRy
iff D(x, y) = 0.

There is a natural extension of the function D to the space Ln:

D([x], [y]) = D(x, y) (14.26)

(but you have to check that this is well-defined, exercise 14.10). Thus (Ln,D) forms a metric
space [146]. The following result makes lemma 14.2 precise.

Lemma 14.6 Suppose that Ak → A as k → ∞. Apply the Schur decomposition to each
matrix:

(Uk)?AkUk = T k and U?AU = T, (14.27)

where T and each T k are upper-triangular. Then

D(diag(T k), diag(T))→ 0 as k →∞,

where diag(M) denotes the vector corresponding to the diagonal of M .

Proof. Since the unitary matrices are compact, we can pick a subset of the indices k such
that (after renaming this subsequence k again) Uk → Û as k → ∞, where Û is unitary.
With this subsequence, we have

T k = (Uk)?AkUk → Û?AÛ. (14.28)

The limit of upper-triangular matrices is necessarily upper-triangular; thus we can write

T k → T̂ = Û?AÛ, (14.29)

where T̂ is upper-triangular. Since the eigenvalues of Ak are the diagonal entries of T k,
(14.29) implies that the eigenvalues of Ak converge to the diagonal entries of T̂ . But since
T̂ = Û?AÛ , these are eigenvalues of A (with some ordering). That is, D(diag(T̂), diag(T)) =
0.

This would be the end of the proof of continuity, except for the fact that we have estab-
lished this only for a subsequence of the original sequence. However, we can also establish
this more generally. If we take any subsequence of the original sequence Ak, we can pick a
subsequence of this subsequence for which convergence of eigenvalues occurs. In each case,
the ordering of the eigenvalues on the diagonal of the limiting triangular matrix may be
different, but the set of values must be the same: the eigenvalues of A. As a result, we have
proved convergence of the original sequence (exercise 14.11).

QED

Draft September 23, 2016, do not distribute Page 247

14.3. SOLVING SEPARATELY CHAPTER 14. EIGENVALUE PROBLEMS

14.3 Solving separately

We have viewed the eigenproblem as a nonlinear system (section 7.2.4) in the variables (x, λ).
But it is a special one, in that the expression Ax − λx is bilinear. Thus, if we know the
eigenvalue λ, we just have to solve the linear system (A− λI)x = 0 for some nonzero x. We
showed in section 3.4.4 that this can be carried out with LU factorization using appropriate
pivoting, at least when the kernel of A−λI is one-dimensional. (The case when the dimension
is higher can be handled similarly; cf. section 3.4.3.)

On the other hand, if by chance we have an eigenvector x, we can also determine the
eigenvalue easily. There are several ways to do this, but a convenient one is based on the
Rayleigh4 quotient

λR(x) =
x?Ax

x?x
, (14.30)

defined for any 0 6= x ∈ Cn. Thus if Ax = λx, then

λR(x) =
x?Ax

x?x
=
x?λx

x?x
= λ. (14.31)

We will look at the Rayleigh quotient in more detail in section 15.1.1.

14.4 How not to eigen

The eigenproblem sounds simple, at least for small matrix sizes: just find the roots of the
characteristic equation. For the 2× 2 case, we have

p2(λ) = det (A− λI)

= det

(
a11 − λ a12

a21 a22 − λ

)
= (a11 − λ)(a22 − λ)− a12a21

=λ2 − λ(a11 + a22) + a11a22 − a12a21.

(14.32)

The roots of a quadratic are also easy to determine:

λ = 1
2

(
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

)
= 1

2

(
a11 + a22 ±

√
a2

11 + a2
22 − 2a11a22 + 4a12a21

)
= 1

2

(
a11 + a22 ±

√
(a11 − a22)2 + 4a12a21

)
.

(14.33)

It is a bit more cumbersome to write down the characteristic polynomial of a 3 × 3 matrix
and then the equation for the roots of a cubic. Similarly, we can still imagine writing the
characteristic polynomial of a 4× 4 matrix and then the equations for the roots of a quartic,
but only in a smaller font.

But there the process stops, not just because the formulas get too messy or unstable.
For some polynomials of degree 5 and higher, there is no general formula for their roots in

4John William Strutt, 3rd Baron Rayleigh (1842–1919) received the Nobel prize in physics in 1904 for
his study of gases and the discovery of argon. He was a student of Stokes (page 125).

Draft September 23, 2016, do not distribute Page 248

CHAPTER 14. EIGENVALUE PROBLEMS14.5. REDUCTION TO HESSENBERG FORM

terms of a finite sequence of steps involving radicals and ordinary algebraic operations. This
result, due originally to Abel,5 can be seen [155] by considering the equation

λ5 − aλ+ b = 0. (14.34)

Some polynomial roots can be written in terms of such formulas (e.g., if they can be fac-
tored into lower-order polynomials whose roots would be determined by simple formulas),
but Galois6 characterized the polynomials whose roots cannot be written in terms of such
formulas.

On the other hand, one has to temper this discussion by what it means to compute a
“radical” since this is still a complicated computational issue. We saw in (1.2) an effective
way to compute square roots, but it requires some attention. Similarly, a solution to

λ5 − λ+ b = 0 (14.35)

is called a Bring radical 7 (or ultraradical), and one could easily develop algorithms to solve
for λ = λ(b) (exercise 2.17). If the ultraradical is allowed as a basic step, then there is a
formula for quintic roots in general [2]. We leave as exercise 14.12 verification in the case
that the quintic takes the form (14.34).

However, in addition to the difficulty of finding a formula for the roots of a polynomial,
there is also the complexity of determining the coefficients of pn(λ) = det(A − λI), which
can be factorial in n if we choose the wrong approach (exercise 14.3). So we cannot simply
form the characteristic polynomial in a näıve way and then find its roots, at least for large
n.

One solution to this problem is to first reduce the matrix via algebraic operations similar
to Gaussian elimination to a form where the determinant can be evaluated efficiently. Such
a form is the Hessenberg8 form (section 14.5).

14.5 Reduction to Hessenberg form

We know from the work of Abel and Galois (section 14.4) that we cannot expect to find an
algorithm that can, by a finite sequence of operations, reduce a matrix to triangular form
via similarity transformations. Likewise, we know that every matrix cannot be diagonalized.
If we take the Jordan canonical form as guide, we might guess that it would be possible
to achieve a relaxed goal, to reduce a matrix to nearly triangular form, with, say, just one
extra subdiagonal. Such a form is called the Hessenberg form. More precisely, consider the
following definition analogous to definition 3.1.

5See the beginning of chapter 8.
6The short life of Évariste Galois (1811–1832) “stands as a symbol of precocious mathematical genius,

misunderstood, disturbed, an object of persecution by the authorities of the time and particularly by the
principal French mathematicians, who did not appreciate the depth and value of his work” [161]. The work
leading to what we now call Galois theory was repeatedly rejected for publication in his lifetime.

7Erland Samuel Bring (1736–1798) was a Swedish mathematician who discovered a way to reduce a
general quintic to the form (14.34).

8Karl Hessenberg (1904–1959) demonstrated the decomposition in his thesis [128] and worked for most of
his career as an engineer for A.E.G., the German “general electric” company. He applied for a U.S. patent
on “electric valve circuits” on 1 July 1939 (just two months before the invasion of Poland), which was issued
(#2,356,589) on 22 August 1944 during the liberation of Paris.

Draft September 23, 2016, do not distribute Page 249

14.5. REDUCTION TO HESSENBERG FORMCHAPTER 14. EIGENVALUE PROBLEMS

Definition 14.7 A matrix B = (bij) is called upper-Hessenberg (respectively, lower-Hessenberg)
if bij = 0 for all j > i+ 1 (respectively, i > j + 1).

We have seen before how to perform matrix decompositions to produce zeros in required
places. Both the Schur decomposition and the triangular factorization produced by Gaussian
elimination are of this type. In this case, we will see that an algorithm can be applied that
is very similar to the Gram-Schmidt process (5.45). The original algorithm was proposed
by Lanczos9 for Hermitian matrices and then generalized by Arnoldi10 to arbitrary matrices.
Since the general algorithm applies as well to the special case and gives the same result,
we prefer to refer to the two cases as the Lanczos-Arnoldi algorithm. Note, however, that
a Hermitian Hessenberg matrix is tridiagonal, so there can be a substantial computational
simplification in the Hermitian case.

14.5.1 Lanczos-Arnoldi algorithm

The full Hessenberg decomposition takes the form

Q?AQ = H, (14.36)

where Q is unitary and H is upper-Hessenberg. We derive the Hessenberg form iteratively
as follows:

AQk = Qk+1Hk, (14.37)

where Qi is an n× i matrix and Hk is a k + 1× k matrix. Let us write

Qk =
(
q1 · · · qk

)
. (14.38)

For Q to be unitary, we need the q’s to be orthonormal:

‖qi‖2 = 1 for all i and (qi)?qj = 0 for i 6= j. (14.39)

The kth column of (14.37) can be written

Aqk =
k+1∑
j=1

hjkq
j. (14.40)

The Lanczos-Arnoldi algorithm allows an arbitrary (normalized) initial vector q1 satisfying
‖q1‖2 = 1. We will see later how this choice affects the quality of the decomposition. For
k = 1, we need to construct q2 and scalars h11 and h21 such that

Aq1 = h11q
1 + h21q

2. (14.41)

9Cornelius Lanczos (1893–1974) studied with Fejér (page 235) in Budapest but then wrote a thesis in
mathematical physics and later was Einstein’s assistant in Berlin. Lanczos moved to Purdue University in
1932, and in the United States his interests turned computational. Prompted by McCarthy’s investigations
of political sympathies, Lanczos moved to Ireland in 1954 [122].

10Walter Edwin Arnoldi (1917–1995) was employed throughout his career at United Aircraft Corporation
(later United Technologies) where he obtained several patents including U.S. Patent #3,144,317 for a freezing
process to remove carbon dioxide from the air.

Draft September 23, 2016, do not distribute Page 250

CHAPTER 14. EIGENVALUE PROBLEMS14.5. REDUCTION TO HESSENBERG FORM

To create a unitary matrix, we need (q1)?q2 = 0, and if we multiply (14.42) by (q1)?, we see
that this means h11 = (q1)?Aq1. If by chance q1 is an eigenvector (the choice in the Schur
decomposition; cf. section 6.2.3), then h11 is the eigenvalue and we set h12 = 0 and choose
q2 arbitrarily such that ‖q2‖2 = 1. In this case, the algorithm essentially starts over.

If Aq1 and q1 are not collinear, we define h21 = ‖Aq1 − h11q
1‖2 (necessarily, h21 > 0,

cf. exercise 14.15) and

q2 = h−1
21 (Aq1 − h11q

1), (14.42)

which satisfies ‖q2‖2 = 1.

In general, (14.40) provides an algorithm to generate the q’s and h’s inductively. Suppose
we have defined orthonormal vectors q1, . . . , qk. Define

hjk = (qj)?Aqk, j = 1, . . . , k. (14.43)

Rewrite (14.40) as

rk = Aqk −
k∑
j=1

hjkq
j = hk+1,kq

k+1. (14.44)

In view of (14.43), (qi)?rk = 0 for i = 1, . . . , k. With rk defined in this way, we define

hk+1,k = ‖rk‖2 and qk+1 = h−1
k+1,kr

k. (14.45)

If by chance rk = 0, then we have AQk = ĤkQk, where Ĥk is the k × k matrix where we
omit the last row of Hk. In this case, we can restart the process by choosing qk+1 to be an
arbitrary vector of norm 1 that is orthogonal to q1, . . . , qk. Of course, when we reach k = n,
we must have rk = 0 because the q’s form an orthonormal basis.

14.5.2 Optimality of Lanczos-Arnoldi

The quality of the Hessenberg matrix H in (14.36) depends on how small the off-diagonal
terms hk+1,k are. We show that the Lanczos-Arnoldi algorithm minimizes these values among
certain choices.

Suppose (as is the generic case) that q1 is not an eigenvector of A and that the residual
r in (14.44) does not vanish. Then by (14.42) and (14.44) (and induction), qk+1 is a linear
combination of the first k + 1 Krylov vectors (see exercise 14.16)

q1, Aq1, . . . Akq1. (14.46)

That is, we can write qk+1 = Pk(A)q1 for some polynomial Pk of degree k. More precisely,
provided that hk+1,k 6= 0, we can write

hk+1,kq
k+1 = Pk(A)q1 = Akq1 + P̂k−1(A)q1, (14.47)

where P̂k−1 is a polynomial of degree k − 1 or less. Thus Pk is a monic polynomial (i.e., the
coefficient of the term of order k is 1). Define PMk to be the set of monic polynomials of
degree k.

Draft September 23, 2016, do not distribute Page 251

14.5. REDUCTION TO HESSENBERG FORMCHAPTER 14. EIGENVALUE PROBLEMS

Lemma 14.8 Suppose that q1 is not an eigenvector of A and that the residuals r1, . . . , rk

in (14.44) do not vanish. Let Pk be the monic polynomial (14.47) generated by the Lanczos-
Arnoldi process. Then

(Pk(A)q1, Q(A)q1)I = 0 (14.48)

for all polynomials Q of degree k − 1. Thus

hk+1,k = ‖Pk(A)q1‖2 = min
{
‖Q(A)q1‖2

∣∣ Q ∈ PMk } (14.49)

for k = 1, . . . , n.

Proof. From (14.47), we see that

qk+1 =
k∑
i=0

ciA
iq1 ∈ [q1, Aq1, . . . , Akq1],

where the square bracket notation means the subspace spanned by the indicated vectors.
Thus by induction we have

[q1, q2, . . . , qk+1] ⊂ [q1, Aq1, . . . , Akq1].

But since q1, . . . , qk+1 are orthonormal, these two sets must be equal. That is, the k + 1
Krylov vectors (14.46) have to span a (k + 1)-dimensional space, that is, the one spanned
by q1, . . . , qk+1 (exercise 14.17). Therefore, we conclude that (Ajq1)?Pk(A)q1 = 0 for all j =
1, . . . , k. This proves (14.48). To prove (14.49), expand the expression ‖ (Pk(A) + tQ(A)) q1‖2

2

for any scalar t and polynomial Q of degree k− 1; cf. section 12.3 and in particular (12.62).
QED

Suppose that A has a complete set of eigenvectors X1, . . . , Xn. Write q1 =
∑n

j=1 ajX
j,

where X1, . . . , Xn. Then by (9.63), the orthogonality (14.48) becomes

0 = (Pn(A)q1, Q(A)q1)I =
n∑
j=1

Pn(λj)Q(λj)a
2
j (14.50)

for any polynomial Q of degree less than n. Choosing Qi such that Qi(λj) = δij for i, j =
1, . . . , n, we see that Pn(λj) = 0 for all j provided that none of the coefficients aj vanish.
Thus Pn is a constant multiple of the characteristic polynomial of A. Since Pn is monic, they
must be equal.

Similarly, (9.63) implies that

h2
k+1,k =

n∑
j=1

P (λj)
2a2
j = ‖Pk(A)q1‖2

2

= min
{
‖Q(A)q1‖2

2

∣∣ Q ∈ PMk }
= min

{ n∑
j=1

Q(λj)
2a2
j

∣∣ Q ∈ PMk }.
(14.51)

In the case where A is Hermitian, the eigenvalues lie in an interval

I = [λmin, λmin + 2Λ]

Draft September 23, 2016, do not distribute Page 252

CHAPTER 14. EIGENVALUE PROBLEMS 14.6. MORE READING

for some Λ > 0. Thus (14.51) implies

h2
k+1,k ≤ ‖Q‖2

∞,I

n∑
j=1

a2
j = ‖Q‖2

∞,I‖q1‖2
2 (14.52)

for any Q ∈ PMk . For example, we can take Q(x) = xn − Ln−1(xn), and Ln−1 denotes
Chebyshev interpolation on I. Thus (exercise 11.18) we have

hk+1,k ≤ 2

(
Λ

2

)n
. (14.53)

We leave as exercise 14.18 formulation and proof of a version of lemma 14.8 that covers
the case where the residual r in (14.44) vanishes and the algorithm is restarted.

14.6 More reading

The classic text [126] was referenced in section 14.2.2 but is also of general interest, as is
the monograph [180]. There are several more recent texts as well, cf. [122]. See [40] for a
different approach to proving the continuity of roots of a polynomial as a function of the
polynomial coefficients.

14.7 Exercises

Exercise 14.1 Use the notion of generalized diagonal dominance (see section 8.3.1) to de-
fine generalized Gershgorin disks of the form [175, page 7] D(aii, r

x
i), where rxi is the weighted

sum

rxi =
n∑

i 6=j=1

|aij|xj/xi (14.54)

for any vector x with positive entries. Show that any eigenvalue of A must be in one of the
disks D(aii, r

x
i) for some i.

Exercise 14.2 Prove that the Cassini ovals have a diameter that is O(t2) for the matrices
(14.20). (Hint: first use Gershgorin’s theorem to get the bound |λ± ∓ 1| ≤ t and use this to
bound the denominator in (14.21) from below via the triangle inequality.)

Exercise 14.3 Write a code to determine the values of the characteristic polynomial of
a general n × n matrix A for a given value of λ using induction on n. That is, define
p(A, n, λ) = A11 − λ for n = 1 and for n ≥ 2,

p(A, n, λ) =
n∑
i=1

(Aii − λ)p(e(A, i), n− 1, λ), (14.55)

where the matrix function e(A, i) eliminates the ith row and column of A. Test this code for
various matrices A for which the characteristic polynomial is known and study its perfor-
mance as a function of n.

Draft September 23, 2016, do not distribute Page 253

14.7. EXERCISES CHAPTER 14. EIGENVALUE PROBLEMS

Exercise 14.4 Write a code to determine the coefficients of the characteristic polynomial
of a general n × n matrix as a polynomial in the variable λ using induction on n. That is,
define c(a, n, λ) = [a,−1] for n = 1, corresponding to the representation of p1(λ) = a − λ.
Determine the data structures needed to form the required iteration. Test this code for various
matrices a for which the characteristic polynomial is known and study its performance as a
function of n.

Exercise 14.5 The notion of Hölder continuity of order α > 0 generalizes Lipschitz conti-
nuity (2.9):

|g(x)− g(y)| ≤ λ|x− y|α. (14.56)

In particular, Hölder continuity of order α = 1 is the same as Lipschitz continuity. Prove
that the zeros of a polynomial of degree n are Hölder-continuous of order α = 1/n [26].

Exercise 14.6 Prove that the limit of unitary matrices is also unitary. (Hint: just prove
that U?U = lim(Uk)?Uk if U = limUk.)

Exercise 14.7 A permutation matrix Π is a matrix such that Πi,σ(j) = δi,j (Kronecker δ) for
a permutation σ of {1, . . . , n}. Prove that a permutation matrix Π is unitary (orthogonal)
and that ‖Π‖∞ = 1.

Exercise 14.8 Show that the relation R in (14.23) is reflexive, symmetric, and transitive.
(Hint: use the facts that a product of permutations is a permutation and that the inverse of
a permutation is a permutation; cf. exercise 14.7).

Exercise 14.9 Prove that the function D defined in (14.24) is symmetric (D(x, y) = D(y, x))
and satisfies the triangle inequality (14.25) for all w, x, y ∈ Cn.

Exercise 14.10 Consider the equivalence relation R in (14.23), with the corresponding
equivalence classes denoted by [x]. Suppose that x1, x2 ∈ [x]. Prove that D(x1, y) = D(x2, y)
for any y ∈ Cn. (Hint: write x2 = Πx1 and explain and exploit the expression D(x2, y) ≤
‖x2 − ΠPy‖∞ for any permutation P to show that D(x2, y) ≤ D(x1, y).)

Exercise 14.11 Suppose that there is a real number x and a sequence of real numbers xn with
the property that for any subsequence xnj , there is a further subsequence xnjk that converges
to x. Prove that the full sequence must converge to x. (Hint: lack of convergence of the full
sequence would imply that there is a subsequence that avoids an open ball around x. But if
this subsequence has a subsequence converging to x, we have a contradiction.)

Exercise 14.12 Suppose that λ = β(b) denotes a solution to (14.35). Show that the roots
of equation (14.34) can be written in the form

λ = a1/4β
(
a−5/4b

)
. (14.57)

For simplicity, assume that a > 0.

Draft September 23, 2016, do not distribute Page 254

CHAPTER 14. EIGENVALUE PROBLEMS 14.7. EXERCISES

Exercise 14.13 Write a code to determine the values of the characteristic polynomial of
an n × n Hessenberg matrix A for a given value of λ using induction on n. That is, define
p(A, n, λ) = A11 − λ for n = 1 and for n ≥ 2,

p(A, n, λ) =
n∑
i=1

(Aii − λ)p(e(A, i), n− 1, λ), (14.58)

where the matrix function e(A, i) eliminates the ith row and column of A. Test this code for
various matrices A for which the characteristic polynomial is known and study its perfor-
mance as a function of n.

Exercise 14.14 Write a code to determine the coefficients of the characteristic polynomial
of an n× n Hessenberg matrix as a polynomial in the variable λ using induction on n. That
is, define c(a, n, λ) = [a,−1] for n = 1, corresponding to the representation of p1(λ) = a−λ.
Determine the data structures needed to form the required iteration. Test this code for various
matrices a for which the characteristic polynomial is known and study its performance as a
function of n.

Exercise 14.15 Suppose that x is a nonzero vector that is not an eigenvector of A. Show
that ‖Ax− tx‖2 6= 0 for any scalar t.

Exercise 14.16 Prove by induction on k that qk+1 can be written in terms of the vectors in
(14.46).

Exercise 14.17 Suppose that n vectors x1, . . . , xn are orthonormal and are spanned by the
n vectors y1, . . . , yn. Prove that the vectors y1, . . . , yn have to be linearly independent.

Exercise 14.18 Formulate and prove a version of lemma 14.8 that covers the case where
the residual r in (14.44) vanishes and the algorithm is restarted. (Hint: write H in block
form and show that lemma 14.8 holds for each block.)

Exercise 14.19 Prove that the roots of a monic polynomial are continuous functions of their
coefficents by using the continuity of eigenvalues as functions of the matrix entries. (Hint:
consider the n× n companion matrix C(p) defined by

C(p) =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
−c0 −c1 −c2 · · · −cn−1

 (14.59)

for the polynomial p(t) = c0 + c1t + · · · + cn−1t
n−1 + tn. Show that the roots of p are the

eigenvalues of C(p).)

Exercise 14.20 Prove that the set Cij defined in (14.9) is connected provided that |aii−ajj| ≤
2
√
rirj. (Hint: consider what is required for the point m = 1

2
(aii − ajj) to be in Cij.)

Draft September 23, 2016, do not distribute Page 255

14.8. SOLUTIONS CHAPTER 14. EIGENVALUE PROBLEMS

Exercise 14.21 Suppose that λ ∈ Cij, where Cij is the Cassini oval defined in (14.9), with
centers aii and ajj and radii ri, rj given in (14.5). Suppose that λ is not in the Gershgorin
disk D(aii, ri). Prove that λ ∈ D(ajj, rj). Show that this means that Cij ⊂ D(aii, ri) ∪
D(ajj, rj).

Exercise 14.22 Suppose that we choose the first vector q1 in the Lanczos-Arnoldi process
to be of the form q1 = x + εy where x 6= 0 is an eigenvector with eigenvalue λ (Ax = λx).
Show that h21 = O (ε).

Exercise 14.23 Assume that x1, . . . , xk are eigenvectors of an n×n matrix A having distinct
eigenvalues. Suppose that we choose the first vector q1 in the Lanczos-Arnoldi process to be
of the form q1 =

∑k
i=1 cix

i for coefficients ci ∈ C. Show that rk in (14.44) must be zero.
(Hint: show that all of the qi’s stay in the space spanned by x1, . . . , xk.)

Exercise 14.24 Assume that x1, . . . , xk are orthogonal eigenvectors of an n × n matrix A
associated with an eigenvalue of A of multiplicity k. Suppose that we choose the first vector
q1 in the Lanczos-Arnoldi process to be of the form q1 =

∑k
i=1 cix

i for coefficients ci ∈ C.
Show that rk in (14.44) must be zero. (Hint: show that all of the qi’s stay in the space
spanned by x1, . . . , xk.)

14.8 Solutions

Solution of Exercise 14.9. To prove symmetry, write D(y, x) = ‖y − Πx‖∞ and de-
fine a new permutation P = Π−1, which is well-defined because permutations are unitary
(exercise 14.7). Then by the definition (14.24),

D(x, y) ≤ ‖x− Py‖∞ = ‖P (Πx− y)‖∞ ≤ ‖Πx− y‖∞ = D(y, x) (14.60)

since the norm of a permutation matrix is 1 (exercise 14.7). Reversing the roles of x and y
yields the reverse inequality, so they must be equal.

To prove (14.25), write D(x,w) = ‖x−Πw‖∞ and D(w, y) = ‖w −Qy‖∞. Define a new
permutation P = ΠQ. By definition,

D(x, y) ≤‖x− Py‖∞ ≤ ‖x− Πw‖∞ + ‖Πw − Py‖∞
=D(x,w) + ‖Π(w −Qy)‖∞
≤D(x,w) + ‖w −Qy‖∞ = D(x,w) +D(w, y)

(14.61)

since the norm of a permutation matrix is 1 (exercise 14.7).

Solution of Exercise 14.12. Let B = a−5/4b. If λ is defined by (14.57), we have λ =
a1/4β (B), and thus

λ5 − aλ+ b = a5/4β (B)5 − aa1/4β (B) + b

= a5/4
(
β(B)5 − β (B)

)
+ b

= a5/4 (−B) + b = 0

(14.62)

because (14.35) implies that β(B)5 − β(B) = −B.

Draft September 23, 2016, do not distribute Page 256

Chapter 15

Eigenvalue Algorithms

“Perhaps situations exist where highly sensitive eigenvalues of nonnor-
mal operators are of genuine physical significance, but they are outnum-
bered by situations where eigenvalues are mistakenly investigated when
a deeper analysis is properly called for.” [167]

The number of different algorithms for computing eigenvalues and eigenvectors is exten-
sive [84]. Here we will focus on one technique that is at once simple and fundamental, the
power method. We will see that the power method is primarily a method for approximating
eigenvectors, with various ways of generating associated eigenvalue approximations. One
of these, using the Rayleigh quotient, has special properties. We also consider an impor-
tant variant of the power method, called inverse iteration. Combining inverse iteration with
the Rayleigh quotient for computing the eigenvalue approximation gives an algorithm called
Rayleigh quotient iteration. This has a surprising (third-order) rate of convergence.

We also consider the singular value decomposition in this chapter, and we compare it
with other factorizations we have seen before.

15.1 Power method

The power method approximates a single eigenpair by an iterative technique similar to fixed-
point iteration. The basic idea is already encoded in theorem 6.12, which states that An → 0
iff the eigenvalues of A are less than 1 in modulus. Thus we already have a way to test the
size of the eigenvalues. Suppose that Ax = λx and that we scale A by a fixed factor:
B = αA. Then

Bx = αAx = αλx, (15.1)

so that αλ is an eigenvalue of the scaled matrix. So if Bn → 0, then |αλ| < 1. By scaling in
the right way, we could obtain an algorithm for determining the size of the largest eigenvalue
of A; cf. exercise 15.1. Note that an additive shift B = A + αI also has a simple effect on
the eigenvalues (exercise 15.2).

What is not obvious from theorem 6.12 is that the basic iterations in chapter 8 also provide
information on an eigenvector as well as an eigenvalue. We modify (8.8) by dropping f , and
we consider an iterative process of the form

x(k+1) = Ax(k), (15.2)

257

15.1. POWER METHOD CHAPTER 15. EIGENVALUE ALGORITHMS

where we will discuss later the effect of the choice of the starting vector x(0). We know that
x(k) may blow up if ρ(A) > 1, and it will tend to zero if ρ(A) < 1.

More generally, we can predict the expected behavior of the iteration (15.2) by starting
with x(0) = x, where x 6= 0 is an eigenvector with eigenvalue λ = reiθ. Then (by induction)

x(k) = λkx = rkeikθx. (15.3)

Thus the iterates grow (or decay) like rk, and they change direction because of the multipli-
cation by eikθ. Thus there are two types of scaling we need to do. One of them is to moderate
the growth (or decay) of the vector sizes, but in addition, we need to be attentive to the
directional change. For example, if θ = π and r = 1, then the vectors satisfy x(k) = (−1)kx.
Only if θ = 0 can we ignore the direction.

Fortunately, we will see that we need to worry only about the “size” scaling as an integral
part of the algorithm. The directional scaling can be added later. Thus we modify (15.2) by
introducing a scaling:

y(k) =Ax(k),

x(k+1) =
1

‖y(k)‖2

y(k).
(15.4)

The choice of the norm in the definition of xk+1 is somewhat arbitrary, but we have made a
convenient choice that both simplifies the discussion and is computationally beneficial. The
main point is that the normalization ensures that ‖x(k+1)‖2 = 1. Note that since we have
not included any directional information about the vectors, we do not expect the vectors x(k)

themselves to converge in general. However, we can use the vectors x(k) and y(k) to generate
convergent eigenvalues. There are different ways to do this, but a convenient one is based
on the Rayleigh quotient (14.30):

λk = λR(x(k)). (15.5)

15.1.1 Rayleigh quotient

To begin with, let us investigate some properties of the Rayleigh quotient (14.30), namely,

λR(x) =
x?Ax

x?x
, (15.6)

defined for any 0 6= x ∈ Cn.

First, (14.31) says that the Rayleigh quotient is a fixed-point operator, in the sense that
if Ax = αx for x 6= 0, then λR(x) = α. Second, the Rayleigh quotient is independent of
scaling,

λR(αx) =
(αx)?A(αx)

(αx)?(αx)
=
|α|2x?Ax
|α|2x?x

= λR(x), (15.7)

for any complex number α 6= 0. Third, the Rayleigh quotient is bounded. If we define
α = max

{
|aij|

∣∣ i, j = 1, . . . , n
}

, then we see that |λR(x)| ≤ α. Therefore, all the iterates
λk defined in (15.5) are also bounded: |λk| ≤ α. Thus at least a subsequence of the λ’s will
converge. Finally, let us establish the continuity of the Rayleigh quotient.

Draft September 23, 2016, do not distribute Page 258

CHAPTER 15. EIGENVALUE ALGORITHMS 15.1. POWER METHOD

Lemma 15.1 Suppose that x and ε are two vectors in Cn such that ‖x‖2 > ‖ε‖2. Then

|λR(x+ ε)− λR(x)| ≤ 6‖A‖2‖x‖2‖ε‖2

(‖x‖2 − ‖ε‖2)2 . (15.8)

In particular, λR is Lipschitz-continuous on
{
x ∈ Cn

∣∣ ‖x‖2 > 0
}

.

Proof. We write

λR(x+ ε)− λR(x) =
1

‖x+ ε‖2
2

(
(x+ ε)?A(x+ ε)− ‖x+ ε‖2

2

‖x‖2
2

x?Ax

)
=

1

‖x+ ε‖2
2

(
ε?Ax+ x?Aε+ ε?Aε+

(
1− ‖x+ ε‖2

2

‖x‖2
2

)
x?Ax

)
=

1

‖x+ ε‖2
2

(
ε?Ax+ x?Aε+ ε?Aε−

(
x?ε+ ε?x+ ε?ε

‖x‖2
2

)
x?Ax

)
.

(15.9)

Observe that for all y, w ∈ Cn,

|y?Aw| ≤ ‖y‖2‖Aw‖2 ≤ ‖y‖2‖w‖2‖A‖2, (15.10)

by (5.12) and (6.2). Therefore,

|λR(x+ ε)− λR(x)| ≤ ‖A‖2 (4‖x‖2‖ε‖2 + 2‖ε‖2
2)

‖x+ ε‖2
2

≤ 6‖A‖2‖x‖2‖ε‖2

‖x+ ε‖2
2

(15.11)

since ‖ε‖2 < ‖x‖2. But by exercise 5.16, we have

1

‖x+ ε‖2

≤ 1

‖x‖2 − ‖ε‖2

. (15.12)

Combining (15.12) with (15.11) completes the proof. QED

15.1.2 Back to the power method

In the power method, we defined xk and yk by (15.4) and λk by (15.5). Thus

λk = λR(xk) =
(xk)?Axk

(xk)?xk
=

(xk)?yk

(xk)?xk
= (xk)?yk, (15.13)

where λR(x) denotes the Rayleigh quotient (15.6). Here we have dropped the parentheses
around the iteration indices (superscripts) on the x’s and y’s to simplify the notation. Note
that we have allowed for the possibility that the vectors xk may be complex, and we must
check that xk 6= 0, or rather that yk−1 6= 0. Of course, this algorithm continues only if
yk−1 6= 0. If by chance we find yk−1 = 0 at some point, we have found a null vector (xk−1)
for A and thus an eigenpair with λ = 0. On the other hand, it may happen that λk = 0
at some stage, i.e., that (xk)?Axk = 0. If A is symmetric and positive definite, this cannot
happen at all (exercise 15.3), and if xk is close to an eigenvector x whose eigenvalue λ is not
zero, it also will not happen since λR(xk) ≈ λR(x) = λ, as we will see.

Draft September 23, 2016, do not distribute Page 259

15.1. POWER METHOD CHAPTER 15. EIGENVALUE ALGORITHMS

15.1.3 Eigenvector convergence

Regarding convergence of the xk’s, we return to (15.3). We can see that at best we would
expect convergence of the sequence (λ/|λ|)kxk. Let us state a basic convergence result
analogous to exercise 2.1.

Lemma 15.2 Suppose that the power method iteration (15.4) proceeds, with Axk 6= 0 and
λk 6= 0, and converges, that is,

λk → λ 6= 0, (λ/|λ|)kxk → x, (15.14)

as k →∞. Then Ax = λx.

Proof. First, we see by using (15.7) that

λ = lim
k→∞

λk = lim
k→∞

λR(xk) = lim
k→∞

λR((λ/|λ|)kxk) = λR(x) (15.15)

because the Rayleigh quotient (15.6) is continuous (lemma 15.1) on the unit sphere{
y ∈ Cn

∣∣ ‖y‖2 = 1
}
. (15.16)

Since ‖xk‖2 = 1 for each k, ‖x‖2 = 1 (cf. exercise 15.5). It suffices to show that Ax = αx
for some complex α because (14.31) then implies that λ = λR(x) = α.

Note that the scaled convergence of xk implies scaled convergence of yk:

lim
k→∞

(λ/|λ|)kyk = lim
k→∞

(λ/|λ|)kAxk = A lim
k→∞

(λ/|λ|)kxk = Ax. (15.17)

In particular, we find that (cf. exercise 15.5)

lim
k→∞
‖yk‖2 = lim

k→∞
‖(λ/|λ|)kyk‖2 = ‖Ax‖2. (15.18)

But now recalling the definition of xk+1 in terms of yk, we find

Ax = lim
k→∞

(λ/|λ|)kyk = lim
k→∞

(λ/|λ|)k‖yk‖2x
k+1

= lim
k→∞
‖yk‖2

(
|λ|/λ

) (
λ/|λ|

)k+1
xk+1

= ‖Ax‖2

(
|λ|/λ

)
x = ‖Ax‖2 (λ/|λ|)x = αx,

(15.19)

where we used exercise 15.5 regarding the limit of products. QED

This result says that it is always a reasonable idea to apply the power method because
if it converges, it converges to an eigenpair. This also leads us to a special case of the
Perron-Frobenius theorem (section 8.3.4).

Theorem 15.3 Suppose that M is a nonnegative matrix and that the power method con-
verges to an eigenpair (x, λ) satisfying Mx = λx, starting with a nonnegative initial vector
x0. Then λ ≥ 0 and x ≥ 0.

The result is obvious because all the iterates xk are nonnegative. Since x is nonnega-
tive, so is Mx, and thus λ must be also. We address convergence of the power method in
section 15.1.4, and those results combined with theorem 15.3 give a proof of theorem 8.19
under certain conditions. We leave the proof of the general form of theorem 8.19 to further
reading [13, 176].

Draft September 23, 2016, do not distribute Page 260

CHAPTER 15. EIGENVALUE ALGORITHMS 15.1. POWER METHOD

15.1.4 Power method convergence

We now turn to the question of when we can anticipate that the power method will converge.
Suppose that A is diagonalizable, that is, A = B−1MB, where M is diagonal with diagonal
entries µ1, . . . , µn. Suppose, moreover, that there is an eigenvalue that is largest in modulus
and renumber the indices so that it is µn:

|µn| > |µi| ∀i 6= n. (15.20)

Define

x = B−1En, (15.21)

where En is the unit vector with zeros in each entry except the nth. Note that MEn = µnEn
and

Ax = (B−1MB)(B−1En) = B−1MEn

=B−1µnEn = µnB
−1En = µnx.

(15.22)

To see how the power method converges, we return to the original concept (15.2) and
define

Xk = AXk−1 ∀k ≥ 1, (15.23)

where we take X0 = x0. Then by induction we have

Xk = Akx0 ∀k ≥ 0. (15.24)

We claim that we can write

xk = ‖Xk‖−1
2 Xk (15.25)

for all k, where xk is generated by the algorithm (15.4). It is true for k = 0, so we proceed
by induction:

xk+1 = ‖Axk‖−1
2 Axk [by (15.4)]

= ‖A(‖Xk‖−1
2 Xk)‖−1

2 A(‖Xk‖−1
2 Xk) [by (15.25) for k]

= ‖Xk‖2‖A(Xk)‖−1
2 ‖Xk‖−1

2 A(Xk)

= ‖AXk‖−1
2 AXk = ‖Xk+1‖−1

2 Xk+1,

(15.26)

which verifies (15.25) for k + 1. Therefore, by (15.7), we conclude that

λk = λR(xk) = λR(Xk). (15.27)

Now we consider the asymptotics of the sequence Xk. First, we note the fact that

Ak = B−1MkB, (15.28)

which can be proved by induction, see (6.47) and exercise 15.6. Because of our assumption

Draft September 23, 2016, do not distribute Page 261

15.1. POWER METHOD CHAPTER 15. EIGENVALUE ALGORITHMS

(15.20) about the eigenvalues of A (which are the diagonal entries of M) we see that

lim
k→∞

(µn)−kMk = lim
k→∞

(µ1/µn)k 0 · · · 0 0

...
0 0 · · · (µn−1/µn)k 0
0 0 · · · 0 1

=

0 0 · · · 0 0

...
0 0 · · · 0 0
0 0 · · · 0 1

 = EnEn
?.

(15.29)

But (15.24), (15.28), and (15.21) imply that

(µn)−kXk = (µn)−kAkx0 = B−1(µn)−kMkBx0

→ B−1EnEn
?Bx0 = (En

?Bx0)x = ((Bx)?Bx0)x = αx
(15.30)

as k →∞, where α = (Bx)?Bx0 = x?B?Bx0 = (x, x0)B?B.
In addition to convergence, we can also establish a rate. Define

ρ̂ = max
{
|µi|/|µn|

∣∣ i 6= n
}
< 1. (15.31)

Then
‖(µn)−kMk − EnEn?‖∞ ≤ ρ̂k, (15.32)

where ‖D‖∞ denotes the operator norm associated with the maximum norm, which happens
to be the same as the maximum absolute entry for a diagonal matrix D (see exercise 8.2).
Therefore,

‖(µn)−kXk − αx‖∞ ≤ ‖B−1‖∞‖B‖∞‖x0‖∞ρ̂k. (15.33)

The product κ∞(B) := ‖B−1‖∞‖B‖∞ is often called the condition number of the matrix B
(with respect to the maximum norm); cf. (9.74).

Suppose that α = x?B?Bx0 = (x, x0)B?B. By (15.6), (15.7), and (15.27), we know that

λk = λR(µ−kn Xk)→ λR(αx) = λR(x) = µn. (15.34)

Applying (15.33) and (15.8), we find that

|λk − µn| ≤ Cρ̂k, (15.35)

provided that k is sufficiently large. More precisely, there are constants k0 and C such that
(15.35) holds for all k ≥ k0. First, pick k0 large enough that

‖B−1‖∞‖B‖∞‖x0‖∞ρ̂k0 ≤ 1
2
‖αx‖∞. (15.36)

This allows us to erase the denominator on the right-hand side of (15.8), replacing the factor
6 in the numerator by 24. Determining the remaining ingredients in C is left as an exercise.

Write µn = Reiθ with R > 0. Then

lim
k→∞

R−k‖Xk‖2 = lim
k→∞
‖µ−kn Xk‖2 = ‖αx‖2. (15.37)

Draft September 23, 2016, do not distribute Page 262

CHAPTER 15. EIGENVALUE ALGORITHMS 15.1. POWER METHOD

Therefore, by (15.25),

e−ikθxk = e−ikθ‖Xk‖−1
2 Xk

=µ−kn (Rk/‖Xk‖2)Xk → ‖αx‖−1
2 αx.

(15.38)

Therefore, we have proved the following result.

Theorem 15.4 Suppose that A = B−1MB is a diagonalizable n×n matrix whose eigenval-
ues µi satisfy (15.20). Suppose that the starting vector x0 satisfies

α = x?B?Bx0 = (x, x0)B?B 6= 0, (15.39)

where x is the eigenvector (15.21) of A corresponding to µn. Then (15.35) holds for the
eigenvalue convergence, where ρ̂ is defined in (15.31), and∥∥(|µn|/µn)kxk − ‖αx‖−1

2 αx
∥∥ ≤ Cρ̂k (15.40)

for k sufficiently large, where x is the eigenvector of A corresponding to µn.

15.1.5 Power method limitations

Unfortunately, the power method does not work universally. If the eigenvalues largest in
complex modulus occur as a conjugate pair, which happens frequently for a real matrix,
then the power method will oscillate, as seen by considering the matrix

A =

(
0 1
−1 0

)
, (15.41)

which has the property that A4n+j = Aj for j = 1, 2, 3, 4 and n any positive integer. In
particular, A2 = −I, A3 = −A, A4 = I, A5 = A, etc. If we define X(n) = AkX(0), we have
X(4n+2) = −X(0) for all n, whereas X(4n) = X(0). Note that if X(0) is normalized, then so
are all the subsequent vectors. Thus convergence does not occur. We leave as exercise 15.7
characterization of what happens when we apply the Rayleigh quotient to the vectors X(n).

15.1.6 Defective matrices

When A is defective, the behavior is more complex, but the power method still converges
when there is a single largest eigenvalue. We recall the matrix M defined in (6.63), which
satisfies

Mk =

(
λ 1
0 λ

)k
= λk−1

(
λ k
0 λ

)
(15.42)

for any positive integer k. Thus if we apply the power method starting with the vector

X(0) =

(
0
1

)
, (15.43)

we get the sequence of vectors

X(k) = λk−1

(
k
λ

)
= kλk−1

(
1
λ
k

)
. (15.44)

Draft September 23, 2016, do not distribute Page 263

15.1. POWER METHOD CHAPTER 15. EIGENVALUE ALGORITHMS

Thus we get convergence of the normalized xk to the eigenvector

(
1
0

)
at a rate of λ/k. On

the other hand (
λ 1
0 λ

)k (
1
0

)
= λk

(
1
0

)
(15.45)

for all k. Thus it is easy to see that the power method converges to the correct eigenvector for
any starting vector (exercise 15.8), but the convergence is no longer exponential in general.

The matrix M defined in (6.63), which appears in (15.42), is an example of what we might
call a Jordan matrix A which is equal to λ on the diagonal, equal to 1 on the superdiagonal
(ai,i+1 = 1), and 0 elsewhere:

λ 1 0 · · · 0 0 0
0 λ 1 · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · 0 λ 1
0 0 0 · · · 0 0 λ

 . (15.46)

The general form of the powers of a Jordan matrix A of order n has the form

(Ak)i,i+j = λk−j
(
k
j

)
(15.47)

for all i = 1, . . . , n and j = 0, . . . ,min{n− i, k} (exercise 15.11). Thus Akx can be computed
as follows. Let m be the smallest index such that xj = 0 for all j > m. If xn 6= 0, then set
m = n.

If m = 1, then x is an eigenvector of A (exercise 15.21), so Akx = λkx for all k. So
suppose that m ≥ 2. Then for k > 2n,

(Akx)1 =
m−1∑
j=0

λk−j
(
k
j

)
xj+1

=λk−m+1

(
k

m− 1

)(
xm +

m−2∑
j=0

ε
(k)
j xj+1

)
,

(15.48)

where the error terms ε
(k)
j are given by

ε
(k)
j =λm−j−1

(
k
j

)/(
k

m− 1

)
= λm−j−1 (m− 1)!(k −m+ 1)!

j!(k − j)!

=λm−j−1 (m− 1) · · · (j + 1)

(k − j) · · · (k −m+ 2)
=

m−j−1∏
i=1

λ
j + i

k + 1− j − i
.

(15.49)

Estimating the terms in the fractions, we find

|ε(k)
j | ≤

(
λ(m− 1)

k −m+ 2

)m−1−j

→ 0 (15.50)

as k →∞ since m− 1− j ≥ 1. Therefore,

λm−j−1

(
k

m− 1

)−1

(Akx)1 → xm as k →∞. (15.51)

Draft September 23, 2016, do not distribute Page 264

CHAPTER 15. EIGENVALUE ALGORITHMS 15.2. INVERSE ITERATION

Similarly, for i ≥ 2,

(Akx)i =
m−i∑
j=0

λk−j
(
k
j

)
xj+i

=λ−k+m−1

(
k

m− 1

)(m−i∑
j=0

ε
(k)
j xj+1

)
.

(15.52)

Therefore, for i ≥ 2,

λ−k+m−1

(
k

m− 1

)−1

(Akx)i → 0 as k →∞. (15.53)

Lemma 15.5 Suppose that A is the n × n Jordan matrix shown in (15.46) and let x 6= 0
be an arbitrary initial vector. Let m be the smallest index such that xj = 0 for all j > m.
If xn 6= 0, then set m = n. If m = 1, then Akx = λkx for all k. If m ≥ 2, the power
method starting with the initial vector x converges to the eigenvector E = (1, 0, . . . , 0)T, and
the error satisfies∣∣∣∣∣λ−k+m−1

(
k

m− 1

)−1

Akx− xmE

∣∣∣∣∣ ≤ ‖x‖∞
m−2∑
j=0

(
|λ|(m− 1)

k −m+ 2

)m−1−j

(15.54)

for k > 2n. If also k > (1 + |λ|)n, then∣∣∣∣∣λ−k+m−1

(
k

m− 1

)−1

Akx− xmE

∣∣∣∣∣ ≤ ‖x‖∞Ck−1, (15.55)

where C is a constant that depends only on n and λ.

A general matrix resulting from the Jordan decomposition has several Jordan blocks, but
the analysis is similar. As long as there is a single µr with largest complex modulus, that is,
the eigenvalues satisfy the following analog of (15.20),

|µr| > |µi| ∀i 6= r, (15.56)

then the power method converges provided there is a suitable starting vector (exercise 15.14).
The convergence behavior is determined by the Jordan block having the eigenvalue largest
in magnitude.

15.2 Inverse iteration

The power method is effective in determining the largest eigenvalue of a matrix, but with a
slight variation it can be used to find any eigenvalue. If we want to find an eigenvalue close
to some value µ ∈ C, we can apply the power method to B = (A− µI)−1. If Bx = λx, then
(A−µI)x = λ−1x, so that µ+λ−1 is an eigenvalue of A (see exercise 15.2). If λ is the largest
eigenvalue of (A − µI)−1, then µ + λ−1 is the eigenvalue of A closest to µ. In particular,
if µ = 0 then λ will be the eigenvalue with the smallest modulus. Of course, applying the

Draft September 23, 2016, do not distribute Page 265

15.2. INVERSE ITERATION CHAPTER 15. EIGENVALUE ALGORITHMS

power method to B requires solving systems (A − µI)x = y successively. For this reason,
the algorithm is called inverse iteration, and is defined as follows:

(A− µI)yk =xk,

xk+1 =
1

‖yk‖2

yk, and

λk+1 =λR(xk+1).

(15.57)

We can imagine applying inverse iteration at any stage in the process of approximating
eigenvalues. Even if we seek the largest eigenvalue of A, if we have found a good guess µ = λk,
then we can apply inverse iteration, that is, the power method for B = (A−λkI)−1, to refine
our estimate. We will pursue this idea in detail in section 15.2.2. But what is disconcerting
about this process is that, as λk becomes a better approximation to an eigenvalue, A− λkI
becomes more nearly singular.

We have seen that the eigenvalue problem for an n×n matrix can be viewed as a system
of nonlinear equations in n + 1 variables (7.53). In that case, we saw that the system was
equivalent to (7.59) and (7.60), with a different scaling relating xk and yk. These equations
are very similar to those in inverse iteration (15.57), and we saw that the linear system was
nonsingular provided the eigenvalue was simple. But we can look at inverse iteration more
directly, as follows.

15.2.1 The nearly singular system

Suppose for simplicity that the eigenvalue of interest is λ = 0, so that the eigenvector x is a
null vector of A. Inverse iteration involves solving an equation of the form

(A+ εI)xε = f, (15.58)

where we take f ≈ x and hope that xε is an even better approximation to x. It may seem
a strange choice to take f ≈ x to look for a null vector, but in fact xε = ε−1x is an exact
solution to

(A+ εI)xε = x (15.59)

since Ax = 0. Thus inverse iteration tends to amplify the null vector. It would be reasonable
to expect that for f = x+ e, where x?e = 0, the solution to (15.58) would satisfy

xε = ε−1x+ w +O (ε) (15.60)

for some w. We can prove (15.60) in the case where A = A? as follows.
Let V =

{
y ∈ Cn

∣∣ x?y = 0
}

. Then A maps V → V and is invertible when restricted to
V . The reason that the range of A is again V corresponds to the fact that A?x = Ax = 0
(see section 3.4.4). Note that A+ εI also maps V → V invertibly for ε small. Define

wε = (A+ εI)−1e. (15.61)

Then set xε = ε−1x+ wε and compute

(A+ εI)xε = x+ (A+ εI)wε = x+ e. (15.62)

Thus (15.60) holds, with w ∈ V determined uniquely by Aw = e.

Draft September 23, 2016, do not distribute Page 266

CHAPTER 15. EIGENVALUE ALGORITHMS 15.2. INVERSE ITERATION

15.2.2 Rayleigh quotient iteration

Rayleigh quotient iteration (RQI) is simply inverse iteration together with an adaptive up-
date of the parameter µ in (15.57), that is, µ = λk. Thus

(A− λkI)yk = xk

xk+1 = ‖yk‖−1
2 yk

λk+1 = λR(xk+1).

(15.63)

This is very similar to Newton’s method applied to the eigensystem as described in sec-
tion 7.2.4, except for the use of the Rayleigh quotient instead of (7.60). We know that
Newton’s method is quadratically convergent, so we might wonder why we would use (15.63)
instead. It turns out that Rayleigh quotient iteration is even faster: it converges cubicly (at
least for normal matrices [127]).

We will not attempt to prove the cubic convergence in full detail but instead give a
simple example that demonstrates this. Suppose that x and y are normalized eigenvectors
of A with eigenvalues λ and µ, respectively, with x?y = 0. By normalized, we mean that
x?x = y?y = 1. Suppose that for some k, the iterate in (15.63) satisfies

xk = αkx+ βky, (15.64)

with |αk|2 + |βk|2 = 1, so that xk?xk = 1. We also assume that

λk =λR(xk) = xk?Axk = (αkx+ βky)?A(αkx+ βky)

= (αkx+ βky)?(αkλx+ βkµy) = |αk|2λ+ |βk|2µ.
(15.65)

Note that

λ− λk = (1− |αk|2)λ− |βk|2µ = |βk|2(λ− µ) (15.66)

and

µ− λk = −|αk|2λ+ (1− |βk|2)µ = |αk|2(µ− λ). (15.67)

If 0 < |αk| < 1 and λ 6= µ, as we now assume, then λk 6= λ and λk 6= µ. Then yk is defined
by solving

(A− λkI)yk = xk = αkx+ βky. (15.68)

But the solution satisfies yk = α̂kx+ β̂ky, where

(λ− λk)α̂k = αk and (µ− λk)β̂k = βk. (15.69)

In particular, yk 6= 0. Therefore,

α̂k =
αk

λ− λk
=

αk
|βk|2(λ− µ)

and

β̂k =
βk

µ− λk
=

βk
|αk|2(µ− λ)

.
(15.70)

Draft September 23, 2016, do not distribute Page 267

15.3. SINGULAR VALUE DECOMPOSITIONCHAPTER 15. EIGENVALUE ALGORITHMS

Finally, xk+1 = syk, where s = 1/‖yk‖2 > 0. Thus (αk+1, βk+1) = s(α̂k, β̂k). The value of s
can be determined via

s−2 = ‖yk‖2
2 = |α̂k|2 + |β̂k|2 =

1

|λ− µ|2

(
|αk|2

|βk|4
+
|βk|2

|αk|4

)
=

|αk|6 + |βk|6

|λ− µ|2|αk|4|βk|4
=

(1− |βk|2)3 + |βk|6

|λ− µ|2|αk|4|βk|4

=
1− 3|βk|2 + 3|βk|4

|λ− µ|2|αk|4|βk|4
=

1− 3|βk|2 + 3|βk|4

|λ− µ|2(1− |βk|2)2|βk|4
.

(15.71)

Now let us think about the component of the eigenvector y as the error. Thus we assume
that βk is small, and we can approximate (15.71) to give

s =
|λ− µ|(1− |βk|2)|βk|2√

1− 3|βk|2 + 3|βk|4
≈ |λ− µ||βk|2. (15.72)

Thus we find that

|βk+1| = s|β̂k| =
s|βk|

|αk|2|λ− µ|
≈ |βk|3. (15.73)

Thus the error is decreasing cubicly.
Note the symmetry between α and β in (15.70). Thus if we start closer to y than to x,

RQI converges to (µ, y) instead of (λ, x). Moreover, if we start exactly in the middle, that
is, α0 = β0 = 1/

√
2, then xk = x0 and λk = 1

2
(λ+ µ) (and s = 1

2
|λ− µ|) for all k.

15.3 Singular value decomposition

The singular value decomposition of a matrix A is closely related to the eigenvalue decom-
position of B = A?A. Since B is Hermitian and positive semidefinite, we have B = U?ΛU ,
where U is unitary and Λ is a diagonal matrix with nonnegative entries. Thus we can define

Σ =
√

Λ, (15.74)

that is, Σ is the diagonal matrix with diagonal entries given by the (nonnegative) square
roots of the diagonal entries of Λ. Note that this holds even if A is not square. The diagonal
entries of Σ are called the singular values of A.

The singular value decomposition is the representation

A = V ΣU?, (15.75)

where V is also unitary. Suppose that A is an m × n matrix. Then B = A?A is n × n and
thus so are U and Σ, as we have defined them above. However, in (15.75) the matrix Σ is
m × n, and V is m ×m. Thus we need a new way to see what Σ is since (15.74) does not
suffice in the case where m 6= n. Since we do not need this case for further developments,
we will leave the details to further reading [167].

So we now suppose that m = n, and then assume that all the singular values are positive.
Then Σ is unambiguously defined by (15.74) and is invertible, and the representation (15.75)
is equivalent to

V = AUΣ−1. (15.76)

Draft September 23, 2016, do not distribute Page 268

CHAPTER 15. EIGENVALUE ALGORITHMS15.4. COMPARING FACTORIZATIONS

Let us take (15.76) as the definition of V . We just need to check that it is unitary:

V ?V = (Σ−1U?A?)AUΣ−1 = Σ−1U?A?AUΣ−1

= Σ−1U?BUΣ−1 = Σ−1ΛΣ−1 = I.
(15.77)

Let us ask the question of how the singular values relate to eigenvalues of A in the case
where A is diagonalizable. Suppose that A = W−1DW , where D is a diagonal matrix (whose
diagonal elements are thus the eigenvalues of A). Then

B =A?A = (W−1DW)?W−1DW = (W ?D(W−1)?)W ?DW

=W ?DDW = W ?|D|2W,
(15.78)

where |D| is the diagonal matrix whose entries are the complex modulus of the entries of D.
Therefore, the eigenvalues of B are the same as the entries of |D|2 (up to some ordering),
and hence the singular values of A are just the complex modulus of the eigenvalues of A.
Thus the singular values provide a natural generalization of eigenvalues, provided we are
interested only in magnitude and not in phase. But they are also well-defined in the case
where A is not diagonalizable and even when A is not square [167].

15.4 Comparing factorizations

We have seen three factorizations involving unitary matrix factors, and it may be useful
to see how they are related. The factorization A = QR (5.54) gives the Cholesky factor of
A?A = R?R, as noted in (5.55). Similarly, we have seen that the singular value decomposition
(15.75) of A can be related to the eigen decomposition of A?A. On the other hand, we
contrasted the Schur decomposition with QR in section 6.2. Of course, for Hermitian A, the
Schur decomposition is the eigen decomposition.

15.5 More reading

We have left the full proof of the general form of the Perron-Frobenius theorem 8.19 to further
reading [13, 176]. The text [167] was mentioned in section 15.3 and should be consulted more
generally. The classic monograph [180] is still of primary interest. For the interpretation of
inverse iteration as Newton’s method, see [132]. The QR decomposition is commonly used
to solve eigenproblems [158]. See [127] for more on Rayleigh quotient iteration.

15.6 Exercises

Exercise 15.1 Use (6.43) to compute ρ(A) via

ρ(A) = lim
k→∞
‖Ak‖1/k

∞ . (15.79)

Prove that this works for diagonal A.

Exercise 15.2 Suppose that Ax = λx and B = A+ αI. Show that Bx = (λ+ α)x.

Draft September 23, 2016, do not distribute Page 269

15.6. EXERCISES CHAPTER 15. EIGENVALUE ALGORITHMS

Exercise 15.3 Prove that the Rayleigh quotient (15.6) cannot vanish for x 6= 0 for a sym-
metric, positive definite matrix A. (Hint: if xTAx = 0, then (Ux)TΛ(Ux) = 0, where
A = UTΛU and U is orthogonal.)

Exercise 15.4 Prove that the Rayleigh quotient (15.6) is continuous on the unit sphere{
y ∈ Cn

∣∣ ‖y‖ = 1
}

for any norm.

Exercise 15.5 Suppose that xk is a sequence of vectors in Cn such that limk→∞ x
k = x and

that αk is a sequence of scalars such that limk→∞ αk = α. Prove that limk→∞ αkx
k = αx.

Prove also that limk→∞ ‖xk‖ = ‖x‖. If yk is another sequence of vectors in Cn such that
limk→∞ y

k = y, prove that limk→∞(xk)?yk = x?y.

Exercise 15.6 Suppose that A = B−1CB. Prove that for any integer k ≥ 1, Ak = B−1CkB.
What are the minimal assumptions required of the matrix C for this to be true? (Hint: use
induction on k.)

Exercise 15.7 Consider the matrix A defined in (15.41) and the vectors X(n) generated by
the power method. Characterize what happens when the Rayleigh quotient is applied to the
vectors X(n).

Exercise 15.8 Prove that the power method for the matrix

(
1 1
0 1

)
will converge for any

starting vector to the eigenvector

(
1
0

)
for any starting vector. (Hint: compute(

1 1
0 1

)n(
a
b

)
=

(
a+ nb
b

)
= n

(
a
n

+ b
b
n

)
(15.80)

and let n→∞.)

Exercise 15.9 Suppose that A is Hermitian (A? = A). Show that the Rayleigh quotient
(15.6) is a real number. Define

λ = sup
06=x∈Cn

λR(x) = sup
06=x∈Cn

x?Ax

x?x
. (15.81)

Prove that λ is an eigenvalue of A. Do the same for sup replaced by inf.

Exercise 15.10 Prove (15.42).

Exercise 15.11 Prove (15.47). (Hint: write A = λI + J and use the binomial theorem to
expand Ak. Here J is the matrix with 1’s on the superdiagonal and 0’s elsewhere.)

Exercise 15.12 Consider the matrix

A =

0 1 0 0
−1 0 0 0
0 0 1 1
0 0 0 1

 . (15.82)

Show that this matrix has three eigenvalues which all have complex modulus equal to 1.
Describe how the power method for this matrix behaves for different starting vectors. (Hint:
consider what happens with starting vectors x, where (1) x1 = x2 = 0, (2) x3 = x4 = 0, and
(3) x1 = x2 = x3 = 0. What is the special role of having x4 nonzero?)

Draft September 23, 2016, do not distribute Page 270

CHAPTER 15. EIGENVALUE ALGORITHMS 15.6. EXERCISES

Exercise 15.13 An alternate version of the power method is given by

(1) yk = Axk, (2) λk = λR(xk), (3) xk+1 = (‖yk‖2λk/|λk|)−1yk. (15.83)

Note that λk can be computed via λk = λR(xk) = (xk)?yk/(xk)?xk. Prove that if xk → x,
then x is an eigenvector with eigenvalue λ = λR(x). Compare this algorithm with (15.4) for
the matrix

A =

(
−3 1
2 1

)
. (15.84)

Exercise 15.14 Suppose that A is any matrix whose eigenvalues satisfy (15.20). Prove that
the power method will converge to the largest eigenvalue for a suitable starting vector. Give
a characterization of the conditions required for the starting vector to guarantee convergence.
(Hint: use the Jordan decomposition for A and apply lemma 15.5.)

Exercise 15.15 Let A be a real, symmetric matrix and number its eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn. Let G denote the set of all subspaces of Rn. For S ∈ G, we say x ⊥ S if xTy = 0
for all y ∈ S. Prove that

λi = sup
S∈G,dimS=i−1

(
inf

06=x⊥S
λR(x)

)
= inf

S∈G,dimS=n−i

(
sup

0 6=x⊥S
λR(x)

)
, (15.85)

where λR(x) denotes the Rayleigh quotient (15.6). This is known as the Courant-Fischer
theorem. (Hint: see exercise 15.9.)

Exercise 15.16 Show that RQI (15.63) can be written as fixed-point iteration yk+1 = g(yk),
where

g(y) =
1

‖y‖2

(
A− λR(y)I

)−1
y. (15.86)

Would you expect this to converge to a fixed-point y = g(y). Why or why not?

Exercise 15.17 Let A be an arbitrary complex matrix and define B = 1
2
(A + A?), the

Hermitian part of A. Prove that the Rayleigh quotient for B is the real part of the Rayleigh
quotient for A. (Hint: show that x?Bx = Re (x?Ax).)

Exercise 15.18 Prove that any matrix A can be written as the limit of diagonalizable matri-
ces, i.e., that the set of diagonalizable matrices is dense. (Hint: write A = U?TU using the
Schur decomposition and perturb the diagonal entries of T to make the eigenvalues unique.)

Exercise 15.19 Prove a sharper form of lemma 15.2. Assume that t ∈ C has modulus 1:
|t| = 1 (i.e., t = eiθ) and that the sequence xk generated by the power method (15.4) satisfies
tkxk → x as k →∞. Prove that x is an eigenvector of A (i.e., Ax = µx for some µ). Make
no assumption about computing λk’s or their convergence.

Exercise 15.20 Let Km denote the n× n matrix with ones on the m-th superdiagonal and
zeros elsewhere, and define Km = 0 for m ≥ n + 1. Thus (Km)ij = δ(i+m),j where δ is the
usual Kronecker symbol. Note that Km has shift index m; see the proof of lemma 6.14. Prove
that K`Km = K`+m for all `,m ≥ 0.

Draft September 23, 2016, do not distribute Page 271

15.7. SOLUTIONS CHAPTER 15. EIGENVALUE ALGORITHMS

Exercise 15.21 Let J denote the n× n Jordan matrix with λ on the diagonal and ones on
the first superdiagonal as shown in (15.46). Prove that x = (1, 0, . . . , 0)T is an eigenvector
of J with eigenvalue λ (Jx = λx).

Exercise 15.22 Suppose that A is an n × n matrix with λn as the largest eigenvalue but
that λn has multiplicity k > 1 but with k distinct eigenvectors. That is, suppose that |λ1| ≤
· · · ≤ |λn−k| < |λn|, and the Jordan decomposition of A has k copies of λn on the diagonal
with no 1’s above them. Investigate how the power method performs in this case.

Exercise 15.23 Suppose that g : Rn → Rn is a C2 function such that α = g(α) and with
the property that ρ(Jg(α)) < 1. Give conditions on Jg(α) such that fixed-point iteration (2.5)
converges asymptotically according to

lim sup
n→∞

|xn − α|
ρ(Jg(α))n

<∞, (15.87)

at least for an initial guess x0 ∈ Rn sufficiently close to α (compare exercise 2.4). (Hint:
consult the theory for the power method.)

15.7 Solutions

Solution of Exercise 15.11. We have

Ak = (λI + J)k =
k∑
j=0

(
k
j

)
λk−jJ j. (15.88)

But J j is 1 on the jth superdiagonal (indices kl such that l = k + j) and 0 elsewhere.

Solution of Exercise 15.13. First, if xk → x, then yk = Axk → Ax := y. Since
yk = ‖yk‖2x

k+1, we have

Ax = y = lim
k→∞

yk = lim
k→∞
‖yk‖2x

k+1 = ‖y‖2x (15.89)

(see exercise 15.5 for the last step).

Draft September 23, 2016, do not distribute Page 272

Chapter 16

Ordinary Differential Equations

Bode’s Law of planetary distances says that the distance dn of the nth
planet from its star behaves like dn = a + bcn for n = 1, 2, For our
solar system, a = 0.4, b = 0.3, and c = 2, and the model is remarkably
accurate for all the major planets except Neptune and with the addition
of the asteroid Ceres [133].

Ordinary differential equations (ODEs) can be used to model a remarkable range of nat-
ural phenomena [94]. For example, they can be used to predict the movement of celestial
bodies [174]. They are used to model the evolution of our planetary system [72] and poten-
tially could shed light on the validity of Bode’s Law (see the introductory comment above).
However, there are significant mathematical challenges to performing simulations of such
systems on the required time scales. We provide a brief introduction to these issues in this
and the following chapter.

An indefinite integral is the simplest form of ordinary differential equation. If u(x) =∫ x
a
f(y) dy, then u′(x) = f(x) for all x where the integral makes sense. Differential equations

become more complex when f is allowed to depend on u as well as x (cf. (16.3)). In this
case, a simple integral no longer suffices, but it is not surprising that techniques developed
for numerical quadrature play a role in numerical methods for solving differential equations.

We develop the basic theory of ordinary differential equations here for two reasons. For
one, it keeps the book self-contained. But the more important reason is that the techniques
used are constructive and similar to ones we have used for numerical algorithms.

16.1 Basic theory of ODEs

The simplest differential equation to solve is an ordinary differential equation

du

dt
= f(u, t) (16.1)

with initial value
u(0) = u0, (16.2)

where we are interested in solving on some interval [0, T]. Equations (16.1) and (16.2) can
be cast as a single integral equation

u(x) = u0 +

∫ x

0

f(u(t), t) dt. (16.3)

273

16.1. BASIC THEORY OF ODESCHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

–1

–0.8

–0.6

–0.4

–0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

Figure 16.1: Two solutions to (16.5) for different initial values.

Most of what we develop will be insensitive to the “type” of u, so we could think of this
as having vector values in general, i.e., u : [0, T] → Rn, in which case f : Rn+1 → Rn. We
could let | · | be a fixed norm on Rn, so that |u| and |f(u, t)| indicate norms of the quantities
u ∈ Rn and f(u, t) ∈ Rn. However, nothing of what we pursue here changes in this case, and
it requires some additional care in the notation (e.g., in integrating vector functions and the
definitions of function spaces), so we prefer to stick with the case n = 1.

The theory for the existence and uniqueness of solutions for systems (16.1) is still a subject
of research, but the basic results are classical. Suppose that the function f ∈ C0(R× [0, T])
satisfies a Lipschitz condition

|f(u, t)− f(v, t)| ≤ L|u− v| for all u, v ∈ R and t ∈ [0, T]. (16.4)

Then (16.1) has a unique solution u whose first derivative is continuous. We will derive this
result as theorem 16.2 for completeness.

Let us consider a simple example that provides some insight into the range of behaviors
to expect. Let f(u, t) = −u2, so that f is independent of t. Then by differentiation, we can
verify that the corresponding solution to (16.1) is

u(t) =
1

u−1
0 + t

=
u0

1 + tu0

(16.5)

since u′(t) = −(u−1
0 + t)−2 = −u2. There are two distinct regimes of behavior. If u0 > 0,

then u decreases algebraically to zero as t→∞, but if u0 < 0, then u blows up in finite time,
at t = −1/u0. These two different behaviors are depicted in figure 16.1. Thus in general,
solutions to (nonlinear) ordinary differential equations may not exist for all time.

Draft September 23, 2016, do not distribute Page 274

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS16.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

16.2 Existence and uniqueness of solutions

There are several ways to prove the existence of smooth solutions to (16.1). We will present
the Picard1 method, which uses (16.3) as the basis for a fixed-point iteration to define a
sequence of functions that converge to a solution u. The function for which the fixed-point
is being sought is a mapping Φ from the function space C0([0, T]) to itself, defined by

Φ(v)(x) = u0 +

∫ x

0

f(v(t), t) dt. (16.6)

Thus u is a solution to (16.3), and, equivalently, to (16.1) if and only if u = Φ(u).

Lemma 16.1 Suppose that f ∈ C0(R × [0, T]) satisfies the Lipschitz condition (16.4) with
Lipschitz constant L. Then the expression (16.6) defines a Lipschitz mapping Φ from the
function space C0([0, T]) to itself where

‖Φ(v)− Φ(w)‖∞,[0,T] ≤ LT‖v − w‖∞,[0,T]. (16.7)

An immediate corollary of lemma 16.1 is the uniqueness of solutions of (16.3) and (equiv-
alently) (16.1). If there were two solutions u = Φ(u) and v = Φ(v), then we conclude
that

‖u− v‖∞,[0,T] = ‖Φ(u)− Φ(v)‖∞,[0,T] ≤ LT‖u− v‖∞,[0,T] (16.8)

for any T . But (16.8) implies that ‖u − v‖∞,[0,T] = 0 if LT < 1. Of course, this shows
uniqueness only on the interval [0, 1/L], but we can iterate this process to obtain uniqueness
on the intervals [kL, (k + 1)L] for any k ≥ 0 by induction. That is, we can view u and v as
solutions of a new problem starting at t = kL with initial values u(kL) = v(kL). This is
often called the semigroup property of (16.1). Thus uniqueness holds on any interval [0, T].

Proof. A result slightly stronger than (16.7) is true, as follows. For all x ∈ [0, T],

|Φ(v)(x)− Φ(w)(x)| =
∣∣∣∣∫ x

0

f(v(t), t)− f(w(t), t) dt

∣∣∣∣
≤
∫ x

0

|f(v(t), t)− f(w(t), t)| dt

≤L
∫ x

0

|v(t)− w(t)| dt.

(16.9)

This says that Φ is a Lipschitz mapping from L1 to C0. Bounding the last integrand in
(16.9), we find

|Φ(v)(x)− Φ(w)(x)| ≤ Lx‖v − w‖∞,[0,x] ≤ Lx‖v − w‖∞,[0,T] (16.10)

for all x ∈ [0, T]. Taking the supremum of (16.10) over x ∈ [0, T] completes the proof. QED

The inequality (16.8) shows that Φ is a contraction for T < 1/L. This property can be
used to establish the existence of solutions (exercise 16.1) as well. However, we use a slightly
different approach to establish existence.

1Charles Emile Picard (1856–1941) was a mentor of Bernstein (see page 199), as well as Jacques
Hadamard, Paul Painlevé (who, like Lagrange, is interred in the Pantheon), and André Weil, among others.

Draft September 23, 2016, do not distribute Page 275

16.2. EXISTENCE AND UNIQUENESS OF SOLUTIONSCHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

Suppose that we have an initial function u0, e.g., u0(t) = u0 for all t ≥ 0. Given un,
define un+1 = Φ(un), that is,

un+1(x) = u0 +

∫ x

0

f(un(t), t) dt. (16.11)

For n = 0, (16.11) implies that

|u1(x)− u0(x)| =
∣∣∣∣∫ x

0

f(u0, t) dt

∣∣∣∣ ≤Mx ∀x ∈ [0, T], (16.12)

where the constant M is defined by

M = sup
{
|f(u0, t)|

∣∣ t ∈ [0, T]
}
. (16.13)

Applying (16.9), we find

|un+1(x)− un(x)| ≤L
∫ x

0

∣∣un(t)− un−1(t)
∣∣ dt (16.14)

for n ≥ 1. Using (16.12) and (16.14), we conclude that

|u2(x)− u1(x)| ≤
∫ x

0

LMt dt = 1
2
LMx2 ∀x ∈ [0, T]. (16.15)

Proceeding by induction, (16.14) implies that

|un(x)− un−1(x)| ≤ MLn−1xn

n!
∀x ∈ [0, T] (16.16)

for all n ≥ 1. Using a telescoping sum, we can write

|un(x)− u0| =

∣∣∣∣∣
n∑
i=1

ui(x)− ui−1(x)

∣∣∣∣∣
≤

n∑
i=1

MLi−1xi

i!
≤ M

L

(
eLx − 1

)
.

(16.17)

Thus the infinite series

u(x) = u0 +
∞∑
i=1

ui(x)− ui−1(x) (16.18)

converges absolutely for all x ∈ [0, T] and satisfies

|u(x)− u0| ≤
M

L

(
eLx − 1

)
. (16.19)

Each ui is a C1-function by definition (16.11) (and by induction). The uniform conver-
gence of (16.18) implies that u is continuous (exercise 16.2). The differentiability of u is
more complex to establish. We could establish bounds on the derivatives of the ui’s and
show that they converge. Or we could simply show that u solves (16.3), which we need to
do in any case.

Draft September 23, 2016, do not distribute Page 276

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS16.3. BASIC DISCRETIZATION METHODS

We can use (16.16) to establish a rate of convergence:

|u(x)− un(x)| =

∣∣∣∣∣
∞∑

i=n+1

ui(x)− ui−1(x)

∣∣∣∣∣ ≤ M

L

∞∑
i=n+1

(Lx)i

i!

≤M
L

(Lx)n+1

(n+ 1)!

∞∑
i=0

(Lx)i

i!
≤ M

L
εn+1e

Lx

(16.20)

for any x ∈ [0, T], where

εn =
(LT)n

n!
. (16.21)

For any γ > 0, there is a Cγ <∞ such that

εn ≤ Cγγ
n (16.22)

(see exercise 16.3). Therefore, by the Lipschitz condition (16.4),∣∣∣∣u(x)− u0−
∫ x

0

f(u(t), t) dt

∣∣∣∣= ∣∣∣∣u(x)− un+1(x)

+

∫ x

0

f(un(t), t) dt−
∫ x

0

f(u(t), t) dt

∣∣∣∣
≤
∣∣u(x)− un+1(x)

∣∣+ L

∫ x

0

∣∣un(t)− u(t)
∣∣ dt

≤Cγ(M/L)eLx
(
γn+2 + LTγn+1

)
(16.23)

for all x ∈ [0, T]. Choosing γ < 1 and letting n → ∞ proves that u solves (16.3). Thus we
have proved the following.

Theorem 16.2 Suppose that f ∈ C0([0, T] × R) satisfies the Lipschitz condition (16.4).
Then there is a unique solution u ∈ C1([0, T]) to (16.1) (and equivalently to (16.3)) that
satisfies the bound

|u(x)− u0| ≤
M

L

(
eLx − 1

)
∀x ∈ [0, T], (16.24)

where M is defined by (16.13): M = sup
{
|f(u0, t)|

∣∣ t ∈ [0, T]
}

.

Theorem 16.2 is the best possible in a sense, in that non-Lipschitz functions f yield
pathological situations. For example, the equation u′ =

√
u has two solutions with the

initial data u(0) = 0, namely, u ≡ 0 and u(x) = 1
4
x2. Moreover, we know from the example

u′ = −u2 that solutions need not remain bounded for all T , as indicated in (16.5); here
f(u) = −u2 is only locally Lipschitz (cf. exercise 16.4).

16.3 Basic discretization methods

The definition of the derivative as a limit of difference quotients suggests a method of dis-
cretization:

du

dt
(t) ≈ u(t+ ∆t)− u(t)

∆t
, (16.25)

Draft September 23, 2016, do not distribute Page 277

16.3. BASIC DISCRETIZATION METHODSCHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1

Figure 16.2: Relative errors in computing eπ by the explicit Euler method (16.26) (×’s) and
the implicit Euler method (16.27) (+’s). The horizontal axis is ∆t, and the vertical axis is
the relative error at T = 1.

where ∆t is a small, positive parameter. This suggests algorithms for generating a sequence
of values un ≈ u(n∆t) given by (for example)

un = un−1 + ∆tf(un−1, tn−1) (16.26)

or by

un = un−1 + ∆tf(un, tn), (16.27)

where tn = n∆t.
The algorithm (16.26) is called the explicit Euler method, and the algorithm (16.27) is

called the implicit Euler method. It can be shown (see section 16.4) that both generate a
sequence with the property that

|u(tn)− un| ≤ Cf,T∆t ∀tn ≤ T (16.28)

(at least provided that we solve the implicit equation (16.27) for un exactly). This is illus-
trated in figure 16.2, which plots the relative errors as a function of ∆t for the simple case
f(u, x) = πu and T = 1 for both schemes. The errors for the explicit Euler scheme (16.26)
are represented by ×’s.

Although both methods (16.26) and (16.27) appear to be equally successful for our simple
test problem, they are not so accurate. In chapter 17, we consider methods that produce
much more accuracy with a comparable amount of work. However, we will see that it is not
easy to find such methods.

The issue of solving the nonlinear equation in the implicit Euler method (16.27) at each
step is important but not a show stopper; one uses the methods we have studied in chapter 2
(or chapter 7 in higher dimensions) for solving nonlinear equations. Moreover, we are in a
situation where we have a very accurate approximation to the solution, e.g., one given by the

Draft September 23, 2016, do not distribute Page 278

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS16.3. BASIC DISCRETIZATION METHODS

explicit Euler method (16.26). More precisely, (16.27) is written in the form of a fixed-point
iteration, so as long as ∆t|f,u| remains small, fixed-point iteration will converge.

On the other hand, we might want to use a method that converges more rapidly than
fixed-point iteration, or we might want to take a larger time step than the size of |f,u| would
allow. Thus we consider an example to see what issues may arise.

16.3.1 Nonuniqueness of the time step

If we consider the implicit Euler approximation (16.27) for (16.1) with f = −κu2, we have
to solve the quadratic equation

un + τu2
n = un−1 (16.29)

at each time step, where

τ = κ∆t (16.30)

and ∆t is the size of the time step. Thus we find (cf. (2.77))

u±n =
−1±

√
1 + 4τun−1

2τ

≈
−1±

(
1 + 2τun−1 − 2(τun−1)2 +O ((τun−1)3)

)
2τ

=

{
un−1(1− τun−1) +O

(
τ 2u3

n−1

)
(+)

un−1 (−1− τun−1 + (τun−1)2) /(τun−1) +O
(
τ 2u3

n−1

)
(−)

≈

{
un−1(1− ξ) (+)

un−1(−ξ−1 − 1 + ξ) (−),

(16.31)

where ξ = τun−1 = κ∆tun−1.

If ξ is small, it is not hard to identify the appropriate solution

u+
n ≈ un−1(1− ξ) = un−1 − κ∆tu2

n−1. (16.32)

This solution is much closer to un−1 than the other solution. In particular,

u+
n (∆t)→ un−1 (16.33)

as ∆t→ 0, whereas u−n (∆t) diverges as ∆t→ 0. However, there is always a second solution,
as depicted in figure 16.3, and as un gets small, the solution (16.5) does not change very
quickly. We may then become greedy and want to take τ larger. If by mistake we pick un
negative, there is the danger that subsequent steps will remain negative, and the computation
will blow up in finite time. In other problems, the unwanted behavior may be less spectacular
[50] and thus more unlikely to be detected.

We might hope that a simple criterion would eliminate spurious solutions to (16.29). We
can write (exercise 16.5)

un−1 − u±n
un−1

= 1− −1±
√

1 + 4ξ

2ξ
→ 1 as ξ →∞. (16.34)

Draft September 23, 2016, do not distribute Page 279

16.3. BASIC DISCRETIZATION METHODSCHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

 0

 0.02

 0 100 200 300 400 500 600 700 800 900 1000

Figure 16.3: The two solutions to (16.29) as a function of τ , defined in (16.30), for un−1 =
0.01. The horizontal axis is τ .

In figure 16.4, we depict the values of the expressions in (16.34) for various values of ξ. A
natural constraint on the solution process might be to require∣∣∣∣un − un−1

un−1

∣∣∣∣ ≤ K (16.35)

for some constant K. As indicated in figure 16.4, this is satisfied for both solutions u±n for
reasonable values of K and ξ; cf. exercise 16.6.

16.3.2 Near uniqueness of the time step

The time-stepping equation for the implicit Euler method applied to the equation (16.1)
takes the general form

g(u, τ) = u− τf(u, τ)− v = 0. (16.36)

We can think of this as defining a curve in R2 given by solving for un = u(τ) as a function of
τ , where v = un−1. In section 16.3.1, the solution u+

n corresponds to u(τ), in view of (16.33).
The derivative of u with respect to τ gives a sense of where u lies with respect to v.

Differentiating (16.36) gives

0 = u′(τ)− f(u(τ), τ)− τ
(
u′(τ)f,u(u(τ), τ) + f,t(u(τ), τ)

)
. (16.37)

Rewriting, this becomes

(1− τf,u(u(τ), τ))u′(τ) = f(u(τ), τ)− τf,t(u(τ), τ). (16.38)

In particular,
u′(0) = f(v, 0). (16.39)

On the other hand, Newton’s method for solving (16.36), starting with v as an initial
guess, generates as the first step (here τ is fixed)

g,u(v, τ)(u− v) = −g(v, τ). (16.40)

Draft September 23, 2016, do not distribute Page 280

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS16.4. CONVERGENCE OF DISCRETIZATION METHODS

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 16.4: The expressions (16.34) as a function of ξ.

Rewriting, (16.40) becomes

(1− τf,u(v, τ)) (u− v) = τf(v, τ). (16.41)

For simplicity, suppose that f is independent of t. Then (16.38) simplifies to

(1− τf,u(u(τ)))u′(τ) = f(u(τ)), (16.42)

and (16.41) becomes

(1− τf,u(v)) (u− v) = τf(v). (16.43)

Define w = τ−1(u− v). Then

(1− τf,u(v))w = f(v). (16.44)

Thus we conclude that Newton’s method moves in the direction tangent to the solution curve
(16.36). If the steps are taken small enough, then it is reasonable to hope that we will stay
close to this curve and not jump to another branch as described in section 16.3.1.

16.4 Convergence of discretization methods

We now prove the convergence result (16.28) for the explicit Euler discretization (16.26).
We make a slight generalization to allow variable time steps in the spirit of the adaptive
approximation in section 12.5:

un = un−1 + ∆tnf(un−1, tn−1), (16.45)

where now the nth time point is

tn =
n∑
i=1

∆ti. (16.46)

Draft September 23, 2016, do not distribute Page 281

16.4. CONVERGENCE OF DISCRETIZATION METHODSCHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

Let us write g(t) = f(u(t), t) and set

Mn = ‖g′‖∞,[tn−1,tn]. (16.47)

We will see that the local error is bounded by

εn = ∆t2nMn (16.48)

for all n ≥ 1. We now show how this local error is related to global error.

16.4.1 Global error estimates

The main objective of the section will be to prove the following result.

Theorem 16.3 Suppose that the Lipschitz estimate (16.4) holds. Then

|u(tn)− un| ≤
n∑
j=1

εje
L(tn−tj) (16.49)

for all n ≥ 1, where εn is defined in (16.48) and Mn is defined in (16.47).

Proof. We can write

u(tn) =u(tn−1) +

∫ tn

tn−1

f(u(t), t) dt

=u(tn−1) + ∆tnf(u(tn−1), tn−1) + qn,

(16.50)

where qn is the quadrature error

qn =

∫ tn

tn−1

f(u(t), t) dt−∆tf(u(tn−1), tn−1). (16.51)

The techniques of chapter 13 can be applied to prove that

|qn| ≤ c∆t2nMn (16.52)

for some constant c < 1 (exercise 16.7). Define en = u(tn) − un. Subtracting (16.45) from
(16.50), we have

en = en−1 + ∆tn (f(u(tn−1), tn−1)− f(un−1, tn−1)) + qn. (16.53)

Using the Lipschitz estimate (16.4), we find

|en| ≤ |en−1|(1 + ∆tnL) + εn. (16.54)

Note that u0 = u(0), so
|e1| ≤ |q1| ≤ ∆t21M = ε1. (16.55)

We apply the elementary inequality

1 + µ ≤ eµ (16.56)

Draft September 23, 2016, do not distribute Page 282

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS16.4. CONVERGENCE OF DISCRETIZATION METHODS

(see exercise 16.10) to (16.54) to get

|en| ≤ |en−1|e∆tnL + εn (16.57)

for all n ≥ 1. By induction, we will show that this implies

|en| ≤
n∑
j=1

εje
L(tn−tj) (16.58)

for all n ≥ 1, which is the same as (16.49). Note that (16.55) implies (16.58) for n = 1. So
assume (16.58) holds for some n ≥ 1. Applying (16.57) to (16.58), we find

|en+1| ≤ |en|e∆tn+1L + εn+1

≤ e∆tn+1L

n∑
j=1

εje
L(tn−tj) + εn+1

=
n∑
j=1

εje
L(tn+∆tn+1−tj) + εn+1

=
n∑
j=1

εje
L(tn+1−tj) + εn+1

=
n+1∑
j=1

εje
L(tn+1−tj),

(16.59)

which verifies the induction step, completing the proof of (16.58) and thus the theorem.
QED

16.4.2 Interpretation of error estimates

We interpret the right-hand side of (16.49) as follows. It says that the error at time tn
is influenced by all the discretization errors εj = ∆t2jMj. But the recent errors are less
important than the earlier errors. This is because the earlier errors can be amplified over
time. We can make this more precise as follows. Suppose we assume that

∆tnMn ≤ φ(tn) (16.60)

for all n for some function φ. Thus the error terms εn defined in (16.48) satisfy εn ≤ φ(tn)∆tn.
Then we may view the right-hand side of (16.49) as bounded by a quadrature rule applied
to an integral:

n∑
j=1

εje
L(tn−tj) ≤

n∑
j=1

φ(tj)∆tje
L(tn−tj) ≈

∫ tn

0

φ(t)eL(tn−t) dt. (16.61)

In fact, if φ is nonincreasing, we can prove (exercise 16.11) that

n∑
j=1

φ(tj)∆tje
L(tn−tj) ≤

n∑
j=1

∫ tj

tj−1

φ(t)eL(tn−t) dt

= eLtn
∫ tn

0

φ(t)e−Lt dt

(16.62)

Draft September 23, 2016, do not distribute Page 283

16.5. MORE READING CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

for all n ≥ 1. Thus we could define

φ(t) = sup
{

∆tnMn

∣∣ tn ≥ t
}
. (16.63)

However, the case of interest is when φ is increasing. If φ is a smooth function, then the
approximation

|u(tn)− un| ≤
n∑
j=1

φ(tj)∆tje
L(tn−tj) ≈ eLtn

∫ tn

0

φ(t)e−Lt dt (16.64)

remains a good guide. We see that φ could be exponentially increasing without having any
serious impact. For example, suppose we take φ(t) = δeLt for some δ > 0. As long as

∆tnMn ≤ φ(tn) = δeLtn ,

(16.64) implies
|u(tn)− un| ≤ δtne

Ltn . (16.65)

16.4.3 Discretization error example

Let us consider an example. Suppose f(u, t) = u, so the equation is u′ = u and u(t) = et

(we take u(0) = 1). Then the discrete solution is given by

un = un−1 + ∆tun−1 = (1 + ∆t)un−1 = (1 + ∆t)n (16.66)

for all n ≥ 0. Similarly, Mn ≈ et, so we take φ(t) = ∆tet (note that L = 1 here). Thus
(16.65) predicts that

un − u(tn) ≈ tne
tn∆t.

This is easily verified (exercise 16.14). Note that this says that the relative error in the
approximation

en =
|u(tn)− un|
|u(tn)|

=
|u(tn)− un|

etn
(16.67)

is bounded by tn∆t and thus grows only linearly in time.

16.5 More reading

There are many books on the theory of ordinary differential equations, but two more recent
ones which cover modern ideas of dynamical systems are [10, 107].

16.6 Exercises

Exercise 16.1 The contraction mapping principle says that any Lipschitz function Φ with
Lipschitz constant less than 1 must have a fixed point. Verify this by using (16.8) to construct
a fixed point for Φ defined by (16.6). (Hint: show that for any x, the sequence un(x) defined
by fixed-point iteration (16.11) forms a Cauchy sequence.) Prove that the limit function u
is in C0([0, t]) for t sufficiently small. As in the proof of existence, extend the solution to
C0([0, T]).

Draft September 23, 2016, do not distribute Page 284

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS 16.6. EXERCISES

Exercise 16.2 Suppose that the infinite sum

v(x) =
∞∑
i=1

vi(x)

converges uniformly for x ∈ [0, T] and that each vi ∈ C0([0, T]). Prove that v ∈ C0([0, T]).
(See the footnote on Seidel on page 125.)

Exercise 16.3 Show that εn as defined in (16.21) satisfies εn ≤ Cγγ
n for any γ > 0.

Exercise 16.4 Show that there is a unique solution to (16.1) for some T > 0 for a locally
Lipschitz function f . Use this to prove existence and uniqueness for f(u) = u2 +sinu. (Hint:
f is locally Lipschitz if it is Lipschitz on any bounded set of u’s.)

Exercise 16.5 Prove the equality in (16.34).

Exercise 16.6 Suppose that K > 2 and (K − 2)−1 ≤ ξ = τun−1, cf. (16.34). Prove that
(16.35) holds for both solutions in (16.31).

Exercise 16.7 Consider the quadrature rule∫ b

a

f(x) dx ≈ Qf = (b− a)f(a). (16.68)

Prove that ∣∣∣∣∫ b

a

f(x) dx− (b− a)f(a)

∣∣∣∣ ≤ c(b− a)2‖f ′‖∞,[a,b] (16.69)

for some constant c < 1. (Hint: apply the Peano kernel theorem 13.5.)

Exercise 16.8 Prove that

n−1∑
k=0

(1 + µ)k = ((1 + µ)n − 1)/µ

for any µ > 0 and any n. (Hint: this looks more familiar if you write r = 1 + µ.)

Exercise 16.9 Prove that the estimate (16.28) holds for the implicit Euler method. (Hint:
repeat the argument in section 16.4 but with the quadrature rule∫ b

a

f(x) dx ≈ Qf = (b− a)f(b) (16.70)

instead of (16.68).)

Exercise 16.10 Prove that 1 + x ≤ ex for x ≥ 0. (Hint: see exercise 9.16.)

Draft September 23, 2016, do not distribute Page 285

16.6. EXERCISES CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

Exercise 16.11 Suppose that φ is an integrable, nonincreasing function, e.g., the step func-
tion as defined in (16.63). Prove that

∆tjφ(tj)e
L(tn−tj) ≤

∫ tj

tj−1

φ(t)eL(tn−t) dt (16.71)

for all j = 1, . . . , n.

Exercise 16.12 Consider the function

φ(x) =
1

x2

(
ex

1 + x
− 1

)
. (16.72)

Prove that φ(0) = 1
2

and that φ is decreasing for x ∈ [0, 1]. (Hint: consider the Taylor
expansion of ex around zero.)

Exercise 16.13 Plot the function φ defined in (16.72) for x ∈ [0, 4]. For what interval is it
true that φ ≤ 1

2
?

Exercise 16.14 Suppose that 1 > ∆t > 0 and that n ≤ C∆t−1 for some constant C. Prove
that

etn − (1 + ∆t)n ≈ tne
tn∆t, (16.73)

where tn = n∆t. (Hint: note that (16.73) is equivalent to(
1 + ∆t

e∆t

)n
≈ 1− cn∆t2 (16.74)

for some constant c and that (1 + ∆t)/e∆t ≈ 1− 1
2
∆t2. Use (16.72).)

Exercise 16.15 Experiment with graded meshes of the form

∆tn = δectn−1 ,

for a fixed parameter δ > 0, in solving u′ = u on [0, 1] with initial data u(0) = 1. Work with
the constant c as a small parameter and consider both positive and negative values. What
is the best choice to make the relative error (16.67) smallest? Suppose that we define the
cost-benefit factor to be nen; what strategy (choice of c) minimizes this factor?

Exercise 16.16 Experiment with graded meshes of the form ∆tn = δectn−1, for a fixed pa-
rameter δ > 0, in solving u′ = u on [0, 1] with initial data u(0) = 1. Work with the constant c
as a small parameter and consider both positive and negative values. What is the best choice
to make the absolute error en = |u(tn)−un| smallest? Suppose that we define the cost-benefit
factor to be nen; what strategy (choice of c) minimizes this factor?

Exercise 16.17 Consider using Newton’s method for solving (16.29), starting the iteration
with v0 = un−1. More precisely, define f(v) = v + τv2 − un−1 and apply Newton’s method
to solve f(v) = 0 (this determines un = v). Show that Newton’s method converges for all
τ > 0 in this case and that the solution is v = u+

n , assuming that un−1 > 0. (Hint: apply
exercise 2.20.)

Draft September 23, 2016, do not distribute Page 286

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS 16.7. SOLUTIONS

Exercise 16.18 Consider the function f(u) = u(log u)2 for u > 0. Show that it is not
Lipschitz near u = 0, but that it is Hölder continuous (see exercise 14.5) of order α on [0, K]
for any α < 1 and for any K satisfying 0 < K <∞.

Exercise 16.19 Consider the function f(u) = u(log u)2 for u > 0. Define u(t) = e−1/t for
t > 0. With the obvious extension u(0) = 0, u becomes a C∞ function on [0,∞[. Note that
all derivatives of u at zero also vanish. With the obvious extension f(0) = 0, f ∈ C0[0,∞[,
but it is not Lipschitz near u = 0 (see exercise 16.18) . Prove that there are two solutions
to v′ = f(v) on [0,∞[satsifying v(0) = 0, namely, v = u and v ≡ 0.

16.7 Solutions

Solution of Exercise 16.3. Let K be the smallest integer such that K ≥ LT/γ. By
definition (16.21), we have

γ−nεn =
(LT/γ)n

n!
≤ Kn

n!
. (16.75)

We will show that the function φK(n) = Kn/n! is increasing for n < K and decreasing for
n > K and that φK(K − 1) = φK(K). Therefore,

γ−nεn ≤
KK

K!
= Cγ, (16.76)

where the last equality is our definition of Cγ.

To prove the asserted monotonicity properties of φK(n), observe that

φK(n)

φK(n− 1)
=
K

n

> 1 if n < K

= 1 if n = K

< 1 if n > K.

(16.77)

Solution of Exercise 16.12. We write

φ(x) =
1

x2

(
ex

1 + x
− 1

)
=
ex − 1− x
x2(1 + x)

. (16.78)

Write ψ(x) = ex − 1− x so that

φ(x) =
ψ(x)

x2(1 + x)
. (16.79)

Differentiating, we find

φ′(x) =
ψ′(x)x2(1 + x)− ψ(x)(2x+ 3x2)

x4(1 + x)2
. (16.80)

Draft September 23, 2016, do not distribute Page 287

16.7. SOLUTIONS CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

Since ψ′(x) = ψ(x) + x, we can simplify to get

φ′(x) =
(ψ(x) + x)x2(1 + x)− ψ(x)(2x+ 3x2)

x4(1 + x)2

=
ψ(x)(x2(1 + x)− (2x+ 3x2)) + x3(1 + x)

x4(1 + x)2

=
ψ(x)(−2− 2x+ x2) + x2(1 + x)

x3(1 + x)2

=
(ψ(x)− 1

2
x2)(−2− 2x+ x2) + 1

2
x4

x3(1 + x)2

=
(ψ(x)− 1

2
x2 − 1

6
x3)(−2− 2x+ x2)− 1

6
x3(2− x− x2)

x3(1 + x)2
.

(16.81)

Using the Taylor expansion of the exponential at zero, we find

ψ(x)− 1
2
x2 − 1

6
x3 = x4

∞∑
k=0

xk

(k + 4)!
. (16.82)

If we define η(x) =
∑∞

k=0
xk

(k+4)!
, then (16.81) simplifies to

φ′(x) =
xη(x)(−2− 2x+ x2)− 1

6
(2− x− x2)

(1 + x)2
, (16.83)

so we see that φ′(0) = −1
3
. Moreover, since η(x) > 0 for x ≥ 0,

φ′(x) ≤
−1

6
(2− x− x2)

(1 + x)2
< 0 (16.84)

for 0 ≤ x < 1. We can extend this to x = 1 since

φ′(1) = −3η(1)/4 < 0.

Thus φ is strictly decreasing on [0, 1].

Solution of Exercise 16.14. We know that

e∆t = 1 + ∆t+ 1
2
∆t2 +O

(
∆t3
)
.

Using (16.72), let us write
e∆t

1 + ∆t
= 1 + φ(∆t)∆t2, (16.85)

where φ(0) = 1
2

and φ is decreasing as a function of ∆t. We need now to estimate the nth
power of the left-hand side of (16.85), and so we use the estimate

|(1 + ε)n − 1− nε| ≤ 1
2
ε2n2e(n−2)ε, (16.86)

which we prove subsequently. We now take ε = φ(∆t)∆t2. Thus∣∣∣∣ en∆t

(1 + ∆t)n
− 1− nφ(∆t)∆t2

∣∣∣∣ ≤ C2

8
eC∆t/2∆t2 ≤ K∆t2, (16.87)

Draft September 23, 2016, do not distribute Page 288

CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS 16.7. SOLUTIONS

since n∆t ≤ C and φ(∆t) ≤ 1
2
, where we can take

K =
C2

8
eC/2.

Multiplying (16.89) by (1 + ∆t)n, we find

|etn − (1 + ∆t)n − φ(∆t)tn (1 + ∆t)n∆t| ≤ K∆t2 (1 + ∆t)n

≤K∆t2en∆t ≤ K∆t2eC ,
(16.88)

where tn = n∆t, since e∆t > 1 + ∆t for ∆t > 0, cf. (16.56). In particular,

0 <etn − (1 + ∆t)n ≤ (1 + ∆t)n
(

1
2
tn∆t+K∆t2

)
≤ etn

(
1
2
tn∆t+K∆t2

)
≤ eC

(
1
2
tn∆t+K∆t2

)
.

(16.89)

Applying (16.89) in (16.88), we get

|etn − (1 + ∆t)n − φ(∆t)tne
tn∆t| ≤ K̃∆t2, (16.90)

where K̃ is a constant. Since φ(∆t) ≈ 1
2

+O (∆t), this completes the proof.
The proof of (16.86) is as follows. Using the binomial expansion,

(1 + ε)n − 1− nε =
n∑
j=2

(
n
j

)
εj = ε2

n∑
j=2

(
n− 2
j − 2

)
n(n− 1)

j(j − 1)
εj−2

= ε2
n−2∑
k=0

(
n− 2
k

)
n(n− 1)

(k + 2)(k + 1)
εk

≤ 1
2
n2ε2

n−2∑
k=0

(
n− 2
k

)
εk = 1

2
n2ε2(1 + ε)n−2.

(16.91)

The proof of (16.86) is completed by using (16.56) (see exercise 16.10).

Draft September 23, 2016, do not distribute Page 289

16.7. SOLUTIONS CHAPTER 16. ORDINARY DIFFERENTIAL EQUATIONS

Draft September 23, 2016, do not distribute Page 290

Chapter 17

Higher-order ODE Discretization
Methods

The internal title page of the book [12] reads (essentially) as follows:

An Attempt
to Test

The Theories of Capillary Action
by comparing

the theoretical and measured forms
of drops of fluid

by Francis Bashforth, B.D.
with an explanation of the method of integration

employed in constructing the tables which give the theoretical
forms of such drops

by J. C. Adams, M.A., F.R.S.

In section 16.3, we considered two simple, low-accuracy methods and proved in sec-
tion 16.4 (and exercise 16.9) that they converge to the solutions of the corresponding or-
dinary differential equations (ODEs). There are many reasons for wanting higher accuracy
methods. The most obvious ones are that we want a more accurate solution or a method
that requires less work or both. In some cases, it is essential to have a higher-order method
to obtain an acceptable answer. We discuss one aspect of this in section 18.1.4.

Major advances in the understanding of numerical techniques for solving ordinary dif-
ferential equations occurred at the end of the 19th century and in the beginning years of

291

17.1. HIGHER-ORDER DISCRETIZATIONCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.0001 0.001 0.01 0.1 1

Figure 17.1: Absolute error in computing eπ ≈ 23.141 by the explicit Euler method (16.26)
(×’s) and by the centered scheme (17.1) (+’s). The horizontal axis is ∆t, and the vertical
axis is the absolute error at T = 1.

the 20th century. The Adams-Bashforth1 [12] and Runge-Heun-Kutta2 [31] methods were
established at a time when desktop computing devices3 were becoming common, allowing
much more extensive computations than had been possible previously.

17.1 Higher-order discretization

The main way to achieve more accuracy is to choose a more accurate approximation to
the derivative (or quadrature rule, if we think of this as solving an integral equation). The
simplest higher-order method is the centered difference

un+1 = un−1 + 2∆tf(un, tn). (17.1)

It requires extra work to get started because we need u−1, but let us ignore this difficulty
for the moment. The application of (17.1) to the case where f(x, u) = πu is illustrated in
figure 17.1 by the +’s, which indicate the error as a function of ∆t, for T = 1. The situation
is much improved over the first-order scheme (16.26) illustrated by the ×’s. For example, it

1John Couch Adams (1819–1892) was best known for his mathematical study of planetary motion. In
1843, Adams won the Cambridge mathematical Tripos and was thus named Senior Wrangler; Second Wran-
gler that year was Francis Bashforth. Other top Wranglers include Stokes (page 125) in 1841 and Rayleigh
(page 248) in 1865.

2Martin Wilhelm Kutta (1867–1944) is known both for his difference method and for his work in aerody-
namics. Karl L. W. M. Heun (1859–1929) is known as well for his equation related to the hypergeometric
equation [117]. For information about Runge, see page 167.

3In 1886, the American Arithmometer Company was founded to manufacture and sell an “adding” ma-
chine invented by William Seward Burroughs. The company was later named the Burroughs Adding Machine
Company in 1905, and it shipped its one-millionth adding machine in 1928. Burroughs and Sperry Corpo-
ration merged in 1986 to form Unisys. Sperry was descended from the Sperry Gyroscope Company, which
produced optical products connected to the secret NOSMO device at the end of World War II.

Draft September 23, 2016, do not distribute Page 292

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.1. HIGHER-ORDER DISCRETIZATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

Figure 17.2: Comparison of values un computed via the centered scheme (17.1) (×’s) with
those computed via the explicit Euler scheme (16.26) (+’s) for solving u′ = −u2. The dotted
line is the exact solution (16.5).

takes ∆t ≈ 10−6 to get an error of 10−4 for explicit Euler (16.26), whereas with the centered
scheme (17.1) we get an error of 10−6 with ∆t ≈ 10−4.

Let us apply a cost-benefit analysis (cf. exercise 16.15) where the cost is the number
of time steps, the benefit is the size of the error, and the product of the two is the cost-
benefit factor of interest. Then the centered scheme is 104 times more effective than the
explicit Euler scheme. Of course, this number is not universal; it depends on the interval
of interest and the absolute level of accuracy required, and it will be different for different
problems (different f). But this shows that the benefit of using a high-order scheme can be
astronomical.

Although the centered scheme is much more accurate for a fixed T , it has some disturbing
qualities as T increases for fixed ∆t. In figure 17.2, the centered scheme (17.1) is compared
to the explicit Euler scheme (16.26) for the problem

u′ = −u2.

Initially, the centered scheme is more accurate, as indicated in figure 17.3, but at later times,
the error begins to increase (and “bounce”). The data in figure 17.3 are the relative absolute
errors en defined by

en =
|un − u(tn)|
|u(tn)|

, (17.2)

which are worse for tn ≥ 3 for the scheme (17.1). Note that for tn ≥ 3, the absolute value
masks the bounce in the error (alternation between positive and negative signs) seen in
figure 17.2.

As we integrate longer (see figure 17.4), the centered scheme becomes much less accurate,
and eventually the approximate solution becomes negative, at which point the character of
the equation changes dramatically The discretization scheme locks onto a solution that blows
up in finite time.

Draft September 23, 2016, do not distribute Page 293

17.1. HIGHER-ORDER DISCRETIZATIONCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

Figure 17.3: Comparison of relative absolute errors (17.2) for the centered scheme (17.1)
(×’s) and the explicit Euler scheme (16.26) (+’s) for solving u′ = −u2.

The success of a discretization method for a nonlinear problem depends on ∆t being
small enough. For our model problem u′ = −u2 and the explicit Euler scheme, we see that
u1 = u0 − ∆t(u0)2 < 0 if ∆t > 1/u0. Thus in one step we cross from a region where the
solution tends to zero into one where it blows up in finite time (see section 16.3.1).

17.1.1 An unstable scheme

We have seen that the centered scheme provides a more accurate method as ∆t is decreased
for fixed T , but at a cost. Our first reaction may be to seek a more accurate scheme, but we
will see that things can actually get worse.

The book [89, chapter 8, section 1.4] derives what might be called a forward differentiation
formula

du

dt
(tn−1) ≈ P ′(tn−1) =

1

∆t

k∑
i=0

aki un−i, (17.3)

where P is a polynomial interpolating the values uj at tj = j∆t and the coefficients aki are
just the derivatives of the Lagrange basis functions for this interpolation process, scaled by
∆t. (The aki thus correspond to the derivatives at −1 of the Lagrange basis functions for the
points

−k, 1− k, . . . ,−1, 0;

cf. exercise 17.2). This leads to the scheme

ak0un = −
k∑
i=1

aki un−i + ∆tf(un−1, tn−1). (17.4)

We could choose a different interpolation scheme involving k + 1 points, but if we choose P
to be of degree k, we provide maximum accuracy ∆tk. For low values of k, we do not get

Draft September 23, 2016, do not distribute Page 294

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.1. HIGHER-ORDER DISCRETIZATION

–1.2

–1

–0.8

–0.6

–0.4

–0.2

 0

 0.2

 5 10 15 20 25 30 35

Figure 17.4: Comparison of values un computed via the centered scheme (17.1) (×’s) with
those computed via the explicit Euler scheme (16.26) (+’s) for solving u′ = −u2, integrated
until T = 32.

anything new. For k = 1, this is the explicit Euler scheme, and for k = 2, this is the centered
difference scheme (17.1) (exercise 17.3). However, for k = 3, the scheme is new and takes
the form

1
3
un = −1

2
un−1 + un−2 − 1

6
un−3 + ∆tf(un−1, tn−1). (17.5)

Unfortunately, we will see that this scheme is unconditionally unstable. In figure 17.5, we
see what happens when (17.5) is applied to the solve the equation u′ = u on [0, 1]. Shown
are the results of two time steps, ∆t = 0.1 and ∆t = 0.05. Unfortunately, the results are
worse for the smaller value of ∆t, at least near t = 1. One might suspect that round-off
error is the cause of the problem, but the same behavior is found if rational arithmetic is
used (exercise 17.5).

17.1.2 Improved Euler

So far we have seen some obstacles in deriving high-order schemes. We now consider a
scheme that is second-order accurate and does not exhibit the oscillation problem of the
centered scheme:

ũn =un−1 + ∆tf(un−1, tn−1)

un =un−1 + 1
2
∆t (f(un−1, tn−1) + f(ũn, tn)) .

(17.6)

The algorithm (17.6) is often called the improved Euler scheme. We see that the explicit
Euler scheme is embedded in it, in the sense that the formula for ũn comes directly from
that method. But this value is then used in what appears to be the trapezoidal rule applied
to (16.3), except that ũn is used in the evaluation to make the computation explicit.

In figure 17.6, we compare the improved Euler scheme to the explicit Euler scheme. We
see that the former is much more accurate, and it does not suffer the error degradation in
time that the centered scheme does.

Draft September 23, 2016, do not distribute Page 295

17.2. CONVERGENCE CONDITIONSCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

–2

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

Figure 17.5: Result of using (17.5) to solve u′ = u on [0, 1] with two different values for the
time step ∆t = 0.1 (×’s) and ∆t = 0.05 (+’s). The horizontal axis is t, and the vertical axis
is the value of u.

It is not immediately obvious why (17.6) should be second-order accurate since it is
based on using a first-order scheme to define the important ingredient ũn. Thus a careful
examination is required to establish the order of accuracy rigorously.

The improved Euler scheme (17.6) may be viewed as an elementary example of various
classes of schemes. We can view it as a simple type of predictor-corrector scheme; the
first equation in (17.6) computes the (lower-order, in general) predictor ũn, and the second,
corrector equation in (17.6) uses the predictor to compute the final value un. On the other
hand, the improved Euler scheme (17.6) was one of the original schemes analyzed by Runge
[31] and forms a basic example of the Runge-Kutta schemes.

17.2 Convergence conditions

We have seen several different schemes for solving ODEs with different behaviors. We now
try to understand how to predict these behaviors based on abstract properties of the scheme.
We will see that two conditions that arise naturally are required for a convergent difference
approximation: stability and consistency. We derive these by considering a very simple
situation.

17.2.1 Constant solutions

If we have an ODE of the form (16.1) with f(u, t) = 0, then we find u is constant. This
could happen at any time; u(t) could enter a regime where f(u, t) = 0, and it would stay
there forever. Although we might not expect the numerical approximation to be constant in
such a situation, we might be interested in knowing whether or not the approximate solution
is growing or not.

Having f = 0 simplifies analysis of the numerical schemes. In this case they all take the

Draft September 23, 2016, do not distribute Page 296

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.2. CONVERGENCE CONDITIONS

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1 1 10 100

Figure 17.6: Relative absolute errors (17.2) for the explicit Euler scheme (16.26) (upper
curve) and the improved Euler scheme (17.6) (lower curve) for solving u′ = −u2, using
∆t = 0.01. The horizontal axis is time.

Scheme a0 a1 a2 a3

Euler 1 −1
Centered 1 0 −1
Unstable 1

3
1
2
−1 1

6

Table 17.1: Coefficients ai for various discretization schemes. The coefficients are the same
for all three (explicit, implicit, improved) Euler schemes.

form
k∑
i=0

aiun−i = 0, (17.7)

where a0 6= 0 and ak 6= 0. For the explicit Euler scheme (16.26), k = 1; for the schemes
(17.1) and (17.5), k = 2 and 3, respectively. The improved Euler scheme (17.6) is a bit more
complex in appearance, but when f = 0, it reduces to the explicit Euler scheme (16.26).
When f = 0, the implicit Euler scheme (16.27) also matches the explicit Euler scheme
(16.26). We collect these values of ai for the various schemes in table 17.1.

For the explicit Euler scheme, we find that un = un−1 when f = 0, so we have a constant
approximate solution which matches perfectly the behavior of the exact solution. But for
the higher-order schemes, we need a more subtle analysis to see what is going on. There are
several ways to do this, but the most direct is to observe that there are solutions to (17.7)
of the form un = ξn if and only if

0 =
k∑
i=0

aiξ
n−i = ξn−k

k∑
i=0

aiξ
k−i = ξn−kp(ξ), (17.8)

Draft September 23, 2016, do not distribute Page 297

17.2. CONVERGENCE CONDITIONSCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

where the characteristic polynomial p for the difference stencil (17.8) is defined by

p(ξ) =
k∑
i=0

aiξ
k−i. (17.9)

Since we assume that ak 6= 0, then ξ = 0 is not a root. Thus we have proved the following
result.

Lemma 17.1 There is a solution to the equation (17.7) of the form un = ξn if and only if
p(ξ) = 0, where p is the characteristic polynomial p as defined by (17.9).

If all roots satisfy |ξ| < 1, then all solutions un = ξn will decay exponentially to zero.
But this is too strong a design criterion; it turns out that at least one root must not lead to
decaying solutions.

17.2.2 Consistency

To be convergent, it is natural to assume that the difference approximation applied to a
constant approximation gets the right answer, namely, zero. That is, since u′ = 0 for
constant u, we may expect this as well for the discrete approximation. Thus we expect that
all schemes must have p(1) = 0, i.e.,

k∑
i=0

ai = 0 (17.10)

(cf. exercise 17.7). Thus we are forced to consider schemes whose characteristic polynomials
have a root ξ for which ξ = 1.

For the explicit Euler scheme this is the only root. With the centered scheme (17.1),
p(ξ) = ξ2 − 1 and the roots are ξ = ±1. The root ξ = −1 is the cause of the oscillations we
see in figures 17.2, 17.3, and 17.4.

17.2.3 Unbounded discrete solutions

It is clear that if there is a solution of p(ξ) = 0 with |ξ| > 1, then an explosion can result
even with no driving force (i.e., f = 0). We find a solution to p(ξ) = 0 for (17.5) where

−ξ =
5 +
√

29

4
≈ 2.5963 . (17.11)

This explains the extreme blowup shown in figure 17.5.
There is a more subtle way in which schemes can be unbounded when they should be

constant. Suppose that there is a root ξ of p in (17.9) such that |ξ| = 1. Suppose further
that this is a double root of p, so that also p′(ξ) = 0. Then

0 = p′(ξ) =
k∑
i=0

ai(k − 1)ξk−i−1. (17.12)

Thus a sequence of the form un = nξn is also a solution to (17.7), and unfortunately it is
not bounded. Thus we are led to define a root condition as follows.

Draft September 23, 2016, do not distribute Page 298

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.2. CONVERGENCE CONDITIONS

Definition 17.2 We say that a difference stencil of the form (17.7) satisfies the root con-
dition if

• none of the roots p(ξ) = 0 satisfy |ξ| > 1

• all the roots p(ξ) = 0 satisfying |ξ| = 1 are simple.

We have shown that whenever the root condition is violated, there are unbounded solu-
tions of (17.7).

17.2.4 Zero stability

The first stability concept we will consider is zero stability, or 0-stability. Informally, this
condition states that there are no unbounded solutions of (17.7). Thus it is natural to define
zero stability just in terms of definition 17.2. But to know that this is a sufficient condition
for boundedness, we must prove the following.

Theorem 17.3 The difference method (17.7) has bounded solutions if and only if the root
condition definition 17.2 is satisfied.

Proof. We have already seen that a root p(ξ) = 0 with |ξ| > 1 leads to unbounded solutions,
as well as to multiple roots for which |ξ| = 1.

Now we need to show that if the root condition (definition 17.2) is satisfied, then
the solutions must remain bounded. Let us start by noting that un depends linearly on
un−1, . . . , un−k. Think of v(n) ∈ Rk as the vector v = (un, . . . , un−k+1). Then v(n) = Av(n−1) =
Anv(0), where the matrix A is defined by

A =

−a1/a0 −a2/a0 · · · −ak−1/a0 −ak/a0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

 . (17.13)

By exercise 17.8, we have

(−1)k−1det(A− λI) = (−a1/a0 − λ)λk−1 +
k∑
i=2

(−ai/a0)λk−i

= − λk −
k∑
i=1

(ai/a0)λk−i

= − p(λ)/a0 .

(17.14)

Therefore, the roots of p are the eigenvalues of A. Thus we see that the term “characteristic
polynomial” for the difference stencil is consistent with the usual notion of the characteristic
polynomial of the matrix A.

Let λ1, . . . , λk be the eigenvalues of A that satisfy |λj| = 1. By assumption, these are
simple eigenvalues, so there are eigenvectors xj such that Axj = λjx

j, j = 1, . . . , k.

Draft September 23, 2016, do not distribute Page 299

17.2. CONVERGENCE CONDITIONSCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

Let λ1, . . . , λk denote the eigenvalues of A such that |λj| = 1. Using the Jordan decom-
position, we can write

A = S−1

(
D 0
0 T

)
S, (17.15)

where S is nonsingular, D is the diagonal matrix with entries λj, and T is upper-triangular,
with the remaining eigenvalues of A on the diagonal of T . Thus the diagonal entries of T
are all less than 1 in complex modulus. Therefore (exercise 17.12),

v(n) = Anv(0) = S−1

(
Dn 0
0 T n

)
Sv(0). (17.16)

By lemma 6.14, we find that ‖T n‖∞ → 0 as n→∞ (see exercise 17.13).
QED

17.2.5 Absolute stability regions

For reasons we will explain subsequently, we now consider complex-valued solutions to ODEs.
Solutions to the model problem

u′ = λu (17.17)

are bounded for all complex λ with nonpositive real part, that is, Re λ ≤ 0. It is thus of
interest to ask for what λ a particular scheme generates bounded solutions. This is similar to
the question we asked for λ = 0 in section 17.2.4, so we might call this λ-stability. Since we
have a linear f in our test problem (f(u, t) = λu), we can easily work with implicit schemes
as well as explicit ones.

Definition 17.4 The region of absolute stability (or λ-stability) is the set of values of λ and
∆t for which a numerical scheme for solving (17.17) has the property that un can be bounded
in terms of un−1, un−2, . . . , un−k for some fixed k.

Although in general the absolute stability regions could describe complicated relations
between ∆t and λ, in all the cases we will consider, the regions take the form of a set S in
the complex plane such that the product λ∆t resides in S.

We should explain why complex values of λ might be of interest. Consider a system of
equations such as (

u1

u2

)′
= B

(
u1

u2

)
, where B =

(
0 1
−1 0

)
, (17.18)

which corresponds to the second-order equation u′′1 = −u1. We can diagonalize the system
using a similarity transformation that converts the matrix B to diagonal form. If we call vj
the transformed variables, then the equations become v′j = (−1)jivj since the eigenvalues of
B are ±i (where i is the imaginary unit). In many cases, the behavior of a linear system
reduces to that of a diagonal system with the (complex, in general) eigenvalues on the
diagonal. Thus even if we are interested only in systems with real coefficients, we need to
consider the behavior of schemes for (17.17) for complex λ for essentially the same reason
we are forced to consider complex eigenproblems for real matrices.

For the explicit Euler scheme (16.26), the sequence of approximates satisfies un = un−1 +
λ∆tun−1 = (1 + λ∆t)un−1. Thus |un| ≤ |un−1| iff |1 + λ∆t| ≤ 1. The set of values of the

Draft September 23, 2016, do not distribute Page 300

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.2. CONVERGENCE CONDITIONS

(a) ����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

(b) ����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

(c) �
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 17.7: Absolute stability regions for the (a) explicit Euler scheme (16.26), (b) implicit
Euler scheme (16.27), and (c) centered scheme (17.1). The region for the implicit Euler
scheme is the complement of the hashed disk.

product λ∆t satisfying this condition is the unit disk in the complex plane centered at −1,
as shown in figure 17.7(a).

The region of absolute stability for the implicit Euler scheme (16.27) is similar. The
approximates are defined by un = un−1+λ∆tun, so that absolute stability (i.e., |un| ≤ |un−1|)
holds iff |1 − λ∆t|−1 ≤ 1. Thus the region of absolute stability is the set of λ∆t in the
complement of the unit disk in the complex plane centered at +1, as depicted in figure 17.7(b)
(it is the complement of the hashed region). Note that this includes values of λ for which
solutions to the model problem u′ = λu would not be bounded.

The centered scheme (17.1) applied to the model problem (17.17) yields un = un−2 +
2λ∆tun−1. Now we cannot express un simply in terms of un−1 but rather must form a matrix
equation similar to (17.13). We can thus write(

un
un−1

)
= A

(
un−1

un−2

)
, where A =

(
2λ∆t 1

1 0

)
. (17.19)

The eigenvalues µ of A satisfy

0 = det(A− µI) = −µ(2λ∆t− µ)− 1 = µ2 − (2λ∆t)µ− 1, (17.20)

so that
µ± = z ±

√
z2 + 1, (17.21)

where z = λ∆t. We are interested in the set of z such that both

|µ+(z)| ≤ 1 and |µ−(z)| ≤ 1. (17.22)

Let us start by observing that for purely imaginary z = it, we find

|µ±(it)| =
∣∣∣it±√−t2 + 1

∣∣∣ = 1 as long as |t| ≤ 1, (17.23)

since
√
−t2 + 1 is real in this case. In general, we have

µ+µ− = −1, (17.24)

either by multiplying out the expressions in (17.21) or by observing that the determinant of
A in (17.19), which is −1, must be the same as the product of its eigenvalues. But then

|µ+| = 1/|µ−|, (17.25)

Draft September 23, 2016, do not distribute Page 301

17.3. BACKWARD DIFFERENTIATION FORMULASCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

k a0 a1 2a2 3a3 4a4 5a5 6a6 ρ′

1 1 −1 NA
2 3/2 −2 1 0.33333
3 11/6 −3 3 −1 0.42640
4 25/12 −4 6 −4 1 0.56086
5 137/60 −5 10 −10 5 −1 0.70871
6 147/60 −6 15 −20 15 −6 1 0.86338

Table 17.2: Coefficients of the 0-stable BDF schemes of degree k. The number ρ′ is the
largest modulus of the roots of the characteristic polynomial (17.9) (and equivalently, the
eigenvalues of the matrix (17.13)) excluding the common root (eigenvalue) ξ = 1.

and the only way to satisfy max{|µ+|, |µ−|} ≤ 1 is to have both |µ+| = 1 and |µ−| = 1,
as we found for z = it and t ∈ [−1, 1] in (17.23). But the equations |µ+| = |µ−| = 1 and
µ+µ− = −1 imply we can write (exercise 17.14)

µ± = ± cos θ + i sin θ. (17.26)

Adding the plus and minus terms in (17.21), we have

2z = µ+ + µ− = 2i sin θ. (17.27)

That is, we find that max{|µ+|, |µ−|} ≤ 1 implies that z = it for t ∈ [−1, 1], as we found in
(17.23). Thus the absolute stability region contains only an interval on the imaginary axis:
the set

{
it
∣∣ |t| ≤ 1

}
, depicted in figure 17.7(c) as the dark interval on the vertical axis.

17.3 Backward differentiation formulas

Another way to increase the accuracy in (16.28) is to use a backward differentiation formula
(BDF)

du

dt
(tn) ≈ P ′(tn) =

1

∆t

k∑
i=0

anun−i = f(un, tn), (17.28)

where the coefficients
{
ai
∣∣ i = 0, . . . k

}
are chosen so that (17.28) is exact for polynomials

of degree k. The BDF for k = 1 is the same as the implicit Euler scheme. BDF methods
arise by inverting the relation (13.73) to get

hD = log(I + ∆) (17.29)

and then expanding via the Taylor series log(1 + x) = −
∑∞

j=1(−x)j/j:

hD =
∞∑
j=1

(−1)j+1

j
∆j, (17.30)

which is valid as an expression for operators on polynomials (exercise 17.15). By truncating
the infinite series (17.30) at a finite point, we get BDF formulas:

k∑
i=0

aiun−i =
k∑
j=1

(−1)j

j
∆jun, (17.31)

Draft September 23, 2016, do not distribute Page 302

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.4. MORE READING

where we define ∆un to be the sequence whose nth entry is un − un−1. The higher powers
are defined by induction: ∆j+1un = ∆(∆jun). (There is multiple notation abuse here: ∆un
really means the nth element of the sequence ∆{u ·}, where {u ·} denotes the full sequence.)
For example, ∆2un = un− 2un−1 +un−2, and in general ∆j has coefficients given by Pascal’s
triangle. We thus see that a0 6= 0 for all k ≥ 1.

In table 17.2 we give the coefficients for the first few instances of the BDF formulas. We
see that a0 =

∑k
i=1 1/i, a1 = −k, and for j ≥ 2, jaj is an integer conforming to Pascal’s

triangle.

Given this simple definition of the general case of a BDF, it is hard to imagine what
could go wrong regarding stability. Unfortunately, the condition that |ξ| ≤ 1 for roots of
pk(ξ) = 0 restricts k to be 6 or less for the BDF formulas. Presumably, the same feature that
makes the forward difference formula fail at k = 3 is at work. We simply cannot compute
such accurate approximations to the derivative by looking so exclusively in one direction in
a stable way.

One can compute the roots of pk(ξ) = 0 by forming the matrix (17.13) and computing
its eigenvalues. We find they are all simple up to order k = 7 (and higher), but there is a
complex pair with |ξ| ≈ 1.0222 for k = 7. For smaller values of k, all the eigenvalues other
than the required ξ = 1 satisfy |ξ| < 1.

17.4 More reading

The careful reader will notice that we have not proved that a stable, consistent numerical
method converges to the solution of an ordinary differential equation when the mesh is
refined. This is our stopping point; we leave to further study the general formulation of
such results for different classes of difference methods. There are many basic books on the
numerical solution of ordinary differential equations, such as the classic by Henrici4 [82] and
the more recent [30, 78], as well as advanced books such as [32, 77, 79].

17.5 Exercises

Exercise 17.1 Consider the ODE u′(t) = f(t) with u(0) = 0. Then u(T) =
∫ T

0
f(t) dt.

Consider the explicit Euler scheme (16.26) for solving the ODE. Interpret this as a quadrature
rule for computing the integral. What rule is it?

Exercise 17.2 Show that the coefficients aki in (17.3) are the derivatives of the basis func-
tions for Lagrange interpolation for the points

−k∆t, (1− k)∆t, . . . ,−∆t, 0.

Show that the scaling with respect to ∆t is correct. (Hint: first you need to show that the
coefficients are independent of n. Then just do a scaling of the t variable by ∆t.)

4Peter Henrici (1923–1987) was a student of Eduard Stiefel and spent most of his career at ETH in
Switzerland, but he was at UCLA for several years where he was a colleague of Hestenes and the thesis
advisor of Gilbert Strang, his first student and recipient of the first Henrici prize in 2007.

Draft September 23, 2016, do not distribute Page 303

17.5. EXERCISESCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

Exercise 17.3 Show that the coefficients aki in (17.3) for k = 1 correspond to the explicit
Euler scheme, and for k = 2 to the centered scheme (17.1).

Exercise 17.4 Show that the coefficient ak0 in (17.3) is never zero. (Hint: show that the
basis function φ0 has a nonzero derivative at −1. Observe that φ0(−1) = 0 is a simple zero.)

Exercise 17.5 Show that round-off error is not the cause of the instability observed for
(17.5). (Hint: try writing the equations in terms of rational numbers.)

Exercise 17.6 Examine the behavior of the improved Euler scheme (17.6) on the test prob-
lem u′ = −u2 and compare its accuracy with that of the explicit Euler scheme (16.26). (Hint:
the values ũn are not the same as in (16.26) because they restart at each step with the result
of (17.6) at the previous time step.)

Exercise 17.7 Show that any scheme of the form (17.4) must satisfy

k∑
i=0

ai = 0 (17.32)

in order that un → u(n∆t) as ∆t → 0 uniformly for n∆t ≤ T , where u is the solution to
(16.1). (Hint: show that we must have lim∆t→0

∑k
i=0 aiun−i = u′(n∆t). Apply this to the

special case in which u is constant.)

Exercise 17.8 Prove that

det

α1 α2 · · · αk−1 αk
1 −λ · · · 0 0
· · · · · · ·
0 0 · · · 1 −λ

 = (−1)k−1

k∑
i=1

αiλ
k−i. (17.33)

(Hint: by induction.)

Exercise 17.9 Verify the values claimed for the BDF coefficients, namely, that a0 =
∑k

i=1 1/i,
a1 = −k, and for j ≥ 2, jaj is an integer conforming to Pascal’s triangle.

Exercise 17.10 Verify directly that the roots µ± in (17.21) satisfy

|µ±(it)| > 1

for one of the choices of roots provided that |t| > 1. Also show that for r real, then ±µ±(r) >
1.

Exercise 17.11 Suppose that λ1 6= λ2 are two eigenvalues of a symmetric matrix A with
corresponding eigenvectors xj, j = 1, 2. Prove that (x1)?x2 = 0. (Hint: suppose that λ1 6= 0
and write (x1)?x2 = (1/λ1)(Ax1)?x2.)

Draft September 23, 2016, do not distribute Page 304

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.5. EXERCISES

Exercise 17.12 Suppose that an m×m matrix A can be written in the block form

A =

(
V 0
0 W

)
, (17.34)

where V is a k × k matrix and W is an (m− k)× (m− k) matrix. Prove that

An =

(
V n 0
0 W n

)
(17.35)

for any integer n ≥ 1.

Exercise 17.13 Suppose that an m×m matrix A can be written in the block form

A =

(
V 0
0 W

)
, (17.36)

where V is a k × k matrix and W is an (m− k)× (m− k) matrix. Prove that

‖A‖∞ ≤ max{‖V ‖∞, ‖W‖∞}. (17.37)

(Hint: write m-vectors x in block form: x = (y, z)T, where y is a k-vector.)

Exercise 17.14 Suppose that µ± are complex numbers such that |µ+| = |µ−| = 1 and
µ+µ− = −1. Prove that µ± = ± cos θ + i sin θ for some value of θ ∈ R. (Hint: start by
writing µ± = cos θ± + i sin θ±.)

Exercise 17.15 Verify that (17.30) is valid as an expression for operators on polynomials,
i.e., for any polynomial P and any x,

hP ′(x) =
∞∑
j=1

(−1)j+1

j
∆jP (x) =

k∑
j=1

(−1)j+1

j
∆jP (x),

where k is the degree of P . (Hint: show that ∆jP ≡ 0 for j > k.)

Exercise 17.16 Prove that there are eigenvectors of the form

(ξk−1, ξk−2, . . . , ξ, 1) (17.38)

for the matrix (17.13) when ξ is a root of (17.9).

Exercise 17.17 Suppose that the polynomial (17.9) has multiple roots ξ satisfying |ξ| =
ρ(A), the spectral radius of the matrix (17.13). Prove that A is defective (not diagonalizable).
(Hint: if A were diagonalizable, could there be solutions like (17.12) that grow faster than
ρ(A)n?)

Exercise 17.18 Consider the polynomial p(ξ) = (ξ − 1)2. Determine the matrix B corre-
sponding to (17.13) for this polynomial. Show that the only eigenvalue of B is ξ = 1 and
that B has only one eigenvector. Prove that

Bk =

(
k + 2 −(k + 1)
k + 1 −k

)
=

(
1 0
0 1

)
+ k

(
1 −1
1 −1

)
(17.39)

for all integers k ≥ 1.

Draft September 23, 2016, do not distribute Page 305

17.6. SOLUTIONSCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

17.6 Solutions

Solution of Exercise 17.5. If we multiply (17.5) by 24 and write it expressly for the case
f(u, t) = u, we find

8un = (−12 + 24∆t)un−1 + 24un−2 − 4un−3. (17.40)

Thus for ∆t = 1/12 or 1/24 we have an expression with integer coefficients. Take, e.g.,
∆t = 1/24. Then (17.40) becomes

8un = −11un−1 + 24un−2 − 4un−3 . (17.41)

Writing un = pn/qn, we find

pi = − 11pi−1qi−2qi−3 + 24qi−1pi−2qi−3 − 4qi−1qi−2pi−3

qi = 8qi−1qi−2qi−3 .
(17.42)

To begin the algorithm, we can use the approximation ex ≈ 1 + x + x2/2 + x3/6 with
x = ∆t, 2∆t to provide rational starting data for u1 and u2. To reduce the growth in
coefficients, we can divide both pn and qn by their greatest common divisor (GCD). Using
octave with this code produces integer results for pn and qn (use “format bank” to verify
this), and by plotting pn/qn we see the same results (to graphical accuracy) as for the
corresponding algorithm (17.5) performed in floating-point. The main loop in the octave

code to verify this looks like

pp=-11*p(i-1)*q(i-2)*q(i-3)

+24*q(i-1)*p(i-2)*q(i-3)

-4*q(i-1)*q(i-2)*p(i-3);

qq=8*q(i-1)*q(i-2)*q(i-3);

g=gcd(pp,qq);

p(i)=pp/g;

q(i)=qq/g;

u(i)=-(3/2)*u(i-1)+3*u(i-2)-0.5*u(i-3)+3*dt*u(i-1);

where dt = ∆t.

Draft September 23, 2016, do not distribute Page 306

CHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS17.6. SOLUTIONS

Solution of Exercise 17.8. For k = 2, this is evident. For general k, we expand along the
first column and use induction:

det

α1 α2 α3 · · · αk−1 αk
1 −λ 0 · · · 0 0
0 1 −λ · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −λ

 = α1 det

−λ 0 · · · 0 0
1 −λ · · · 0 0
...

...
...

...
...

0 0 · · · 1 −λ

− det

α2 α3 · · · αk−1 αk
1 −λ · · · 0 0
...

...
...

...
...

0 0 · · · 1 −λ

= α1(−λ)k−1 − (−1)k−2

k−1∑
i=1

αi+1λ
k−1−i

= α1(−λ)k−1 − (−1)k−2

k∑
j=2

αjλ
k−j = (−1)k−1

k∑
j=1

αjλ
k−j.

(17.43)

Solution of Exercise 17.10. For |t| > 1,

µ±(it) = i
(
t±
√
t2 − 1

)
, (17.44)

and thus |µ±(it)| > 1 for one of the choices of roots (e.g.,

µ− = t−
√
t2 − 1 (17.45)

if t < −1). On the other hand, if z = r is purely real, then

µ±(r) = r ±
√
r2 + 1 (17.46)

is also real. For r > 0, then

µ2
+ =

(
r +
√
r2 + 1

)2

> 1 + r > 1; (17.47)

if r < 0, then

µ2
− =

(
r −
√
r2 + 1

)2

< −1 + r < −1. (17.48)

Draft September 23, 2016, do not distribute Page 307

17.6. SOLUTIONSCHAPTER 17. HIGHER-ORDER ODE DISCRETIZATION METHODS

Draft September 23, 2016, do not distribute Page 308

Chapter 18

Floating Point

“To summarize, although there are practically occurring matrices for
which partial pivoting yields a moderately large, or even exponentially
large, growth factor, the growth factor is almost invariably found to be
small. Explaining this fact remains one of the major unsolved problems
in numerical analysis.” N. Higham in [85].

It is beyond the scope of this book to consider the effect of floating-point in detail. We
have noted its effect in certain areas where some rigorous estimates can be given. In this
chapter we look at some central topics and point out areas where further research is needed.

One recurring concern in numerical computation has been the accumulation of floating-
point errors when a very large number of steps are involved. One of the simplest computations
of this type is the summation of n numbers with n large. We will analyze this computation in
great detail and show that the floating-point error can be bounded rigorously by a reasonable
upper bound. However, we will also see that in typical computations, these upper bounds
are too pessimistic and fall short of predicting the observed floating-point error.

Another topic is perturbation theory for systems of linear equations. We derive the
standard theory and show how it can motivate the iterative improvement algorithm. But we
also point out limitations of the standard theory in predicting actual errors in solving systems
of linear equations, which are again very pessimistic compared to observed computational
errors.

18.1 Floating-point arithmetic

In section 1.5, we introduced a simple model of floating-point arithmetic. This provides a
way to analyze algorithms which are executed in floating-point arithmetic on a digital com-
puter. The algorithms we have considered involve real numbers at an abstract level, but we
are forced to work with a finite approximation of them in actual computations. Including
an analysis of the effect of floating-point allows us to prove theorems about the actual com-
putations, not just about their theoretical counterparts executed using real numbers. The
latter is of interest but not sufficient to guarantee success of the approximated computations
done using floating-point arithmetic.

Cancellation is a major source of error. Note that f`(a − b) = (a − b)(1 + δ) does not
mean that f`(f`(a + e) − b) is at all close to a + e − b. Floating-point arithmetic is not

309

18.1. FLOATING-POINT ARITHMETIC CHAPTER 18. FLOATING POINT

associative. Cancellation amplifies errors that have already occurred. It can easily be that
f`(a+ e) = a, and if b = a, we get zero for the result instead of e. However, we will see that
in other cases, the effect of floating-point arithmetic is much more subtle.

Floating-point arithmetic is quite complicated and does not lend itself to a simple repre-
sentation. A floating-point hardware standard has been adopted by the Institute of Electrical
and Electronics Engineers (IEEE), and most hardware follows this at the moment. How-
ever, these specifications simply provide bounds on the behavior of floating-point. But it is
possible to use such a model to guarantee the success of computations using this standard
[85].

We should note that there is no absolute guarantee that on every occasion a computer
will not make a mistake, say, because of some external force. Indeed, it used to be common
that parity errors occurred in computers, that is, a piece of memory would be corrupted by
a 1-bit error. Current technology typically can correct such errors and detect 2-bit errors
(which are far more unlikely). We ignore such unlikely errors; they would be even more
unlikely to recur.

The model of floating-point arithmetic used in this book is a standard way of representing
an upper bound of the inaccuracies of floating-point. We emphasize that it is just a model
and that other more accurate models are possible. One flaw of this model is that, even if
some error bound is shown to be the worst case for the model, it may not be the worst case
for floating-point arithmetic for any set of data. And even if there is the possibility of a
worst-case scenario, it is in many cases extremely unlikely to occur.

18.1.1 Summation

A common subproblem in many algorithms is the computation of a sum of n numbers for
large n. This appears in the computation of inner products in the conjugate gradients
algorithm (chapter 9), and in all the iterative methods the computation of a matrix-vector
product is of this type. Even in Gaussian elimination (chapter 3) or in a direct method
such as the Cholesky method, computation of inner products is a central issue. Consider
computing the sum

An =
n∑
i=1

ai. (18.1)

Let Ãn denote the result obtained by floating-point arithmetic. The equation (1.39) implies
that we can write

Ãk = (1 + δk)(Ãk−1 + ak), (18.2)

where |δk| ≤ ε (see section 1.5) and where we define Ã1 = A1 = a1. Define ek = Ãk − Ak.
Subtracting Ak from (18.2), we have

ek = Ãk − Ak = Ãk−1 − Ak−1 + δk(Ãk−1 + ak)

= (1 + δk)(Ãk−1 − Ak−1) + δkAk = (1 + δk)ek−1 + δkAk.
(18.3)

Subtracting ek−1 from both sides of (18.3) gives

ek − ek−1 = δkek−1 + δkAk. (18.4)

Draft September 23, 2016, do not distribute Page 310

CHAPTER 18. FLOATING POINT 18.1. FLOATING-POINT ARITHMETIC

n (An − Ã>n)/An (An − Ã<n)/An
103 +2.4× 10−16 +5.9× 10−16

104 +3.4× 10−15 −3.6× 10−15

105 +7.6× 10−15 +1.6× 10−15

106 +5.1× 10−14 −3.3× 10−15

107 +1.5× 10−13 −6.8× 10−15

108 +7.1× 10−14 +2.4× 10−14

109 −2.8× 10−14 +8.4× 10−14

Table 18.1: Normalized errors for two methods for summing the series (18.6), largest-first
(Ã>n) versus smallest-first (Ã<n), are shown for various values of n.

Then by summing (18.4), we have (since e1 = 0)

An − Ãn = en =
n∑
i=2

Aiδi +
n∑
i=2

ei−1δi =
n∑
i=2

Aiδi +O(ε2) (18.5)

for n ≥ 2. We postpone for a moment making this a rigorous estimate for |An − Ãn|. It
provides a useful guide in practice, but even if we ignore the O(ε2) term, it can still be hard
to interpret. The individual errors δi are likely to be distributed around zero, not biased in
predictable ways, so if the partial sums Ai are slowly varying in i, there can be substantial
cancellation.

One prediction that (18.5) makes is that the error will be smaller if we add the numbers
starting with the smallest a’s first and moving to the larger a’s at the end since this makes
the partial sums Ai smaller. Let us consider an example, the slowly diverging series

An =
n∑
i=1

1

i
≈ γ + log n, (18.6)

where γ = 0.57721 · · · is Euler’s constant; cf. (13.94). A thought experiment explains why the
order of summation might matter. If we start with the largest numbers, then we eventually
(for n large enough) get to the point where 1/i is below the level of round-off error for the
sum Ai accumulated so far, i.e., i−1 < εAi. Thus the result of the summation process An
will quit changing for some finite n and give the false impression that this is a convergent
series. On the other hand, if we start with the smallest terms, the results do not stabilize
(exercise 18.1) for any n, although they might eventually overflow.

The errors for these two orders of summation are shown in table 18.1. We see that the
errors are often smaller if we sum the smallest terms first, but both errors are smaller than
(18.5) predicts, as we explore in section 18.5. Moreover, the errors are not uniformly smaller
for the “smallest first” approach. The error difference for the two methods as a function of
n is depicted in figure 18.1, and we see that it looks somewhat like a random process. In
these computations, ε ≈ 2.2 × 10−16 (exercise 18.2). We explain in section 18.1.3 how we
were able to compute the errors for these sums.

In exercise 18.3, a more complicated behavior is examined with the slowly converging
series

π

4
≈ An =

n∑
i=1

(−1)i+1

2i− 1
. (18.7)

Draft September 23, 2016, do not distribute Page 311

18.1. FLOATING-POINT ARITHMETIC CHAPTER 18. FLOATING POINT

Now we see a new behavior that is order-dependent. If we add the odd and even terms
separately, we get two diverging sums whose difference is the quantity of interest. Eventu-
ally, the answer will be smaller than ε times these two diverging sums, and it will have no
significant digits. Thus we can see that the order of computation could provide a variety of
results for a single problem. On the other hand, the estimate (18.5) says that as long as the
partial sums Ai/An remain of reasonable relative size, the computation of a sum of numbers
will not produce a very large error.

Lemma 18.1 The error in the expression (18.5) satisfies∣∣∣An − Ãn − n∑
i=2

Aiδi

∣∣∣ ≤ 2nε2
n∑
i=1

(n+ 1− i)|Ai|, (18.8)

provided that n ≤ 1/2ε.

Proof. Define σk =
∑k

i=2Aiδi for k ≥ 2 and set σ1 = 0 and βk = ek − σk. Note that e1 = 0.
Then (18.5) says that

en = σn +
n∑
i=2

ei−1δi, (18.9)

and thus

βk =
k∑
i=2

(βi−1 + σi−1)δi. (18.10)

Define S =
∑n

i=2 |σi|. Then we claim that for all k,

|βk| ≤ ((1 + ε)k − 1)S. (18.11)

The proof is by induction using (18.10) (see exercise 18.6),

|βk+1| ≤ ε
(
S +

k+1∑
i=2

|βi−1|
)

≤ εS
(

1 +
k+1∑
i=2

((1 + ε)i−1 − 1)
)

= εS + S
(
(1 + ε)k+1 − 1− ε

)
− kS

≤S
(
(1 + ε)k+1 − 1

)
.

(18.12)

Applying exercise 18.7 shows that
|βk| ≤ 2kεS. (18.13)

From the definition of S and the σi’s, we see that

S =
n∑
i=2

|σi| ≤
n∑
i=2

i∑
k=2

ε|Ak| = ε

n∑
k=2

(n+ 1− k)|Ak|, (18.14)

where we have used an elementary form of Fubini’s theorem to reverse the order of the
summations. QED

Draft September 23, 2016, do not distribute Page 312

CHAPTER 18. FLOATING POINT 18.1. FLOATING-POINT ARITHMETIC

–4e-15

–2e-15

 0

 2e-15

 4e-15

 6e-15

 8e-15

 1e-14

 0 200 400 600 800 1000 1200 1400 1600

Figure 18.1: The vertical axis is the difference Ã>n − Ã<n between two methods (largest-first
minus smallest-first) for summing the series (18.6) for various values of n. The horizontal
axis is n.

18.1.2 Summation application

The most general application of the estimates in lemma 18.1 is to say that∣∣An − Ãn∣∣ ≈ ε
n∑
i=2

|Ai| (18.15)

since we do not know anything a priori about the distribution of the δi’s. Here we are
implicitly assuming that the term that is quadratic in ε is much smaller than the right-hand
side of (18.15). Let us apply this idea to some examples.

We can apply the estimates in lemma 18.1 to the summation problem (18.6). Let A<k
denote the partial sums progressing from the smallest to the largest terms. Then using
estimate in (18.6), we have

A<k =
n∑

i=n+1−k

1

i
≈ log

n

n− k
. (18.16)

Since all the partial sums are positive, we thus find

n∑
k=1

|A<k | =
n∑
k=1

A<k ≈
n∑
k=1

log
n

n− k
= log

(
n∏
k=1

n

n− k

)

= log

(
nn

n!

)
≈ log

en√
2πn

= n− 1
2

log(2πn) ≈ n,

(18.17)

by Stirling’s formula (see page 209). Similarly, if we let A>k denote the partial sums pro-
gressing from the largest to the smallest terms, we find (exercise 18.8) that

n∑
k=1

|A>k | =
n∑
k=1

A>k ≈
n∑
k=1

γ + log k = γn+ log(n!)

≈ γn+ 1
2

log(2πn) + n log
n

e
≈ n log n.

(18.18)

Draft September 23, 2016, do not distribute Page 313

18.1. FLOATING-POINT ARITHMETIC CHAPTER 18. FLOATING POINT

Thus we see that the partial sums for the smallest-to-largest algorithm for computing (18.6)
are smaller than those for the largest-to-smallest algorithm, but only by a factor of log n.
We compare the results of the two algorithms computed using octave in table 18.1 and
figure 18.1. The errors are smaller for A<n , but neither grows like n as (18.17) and (18.18)
would predict.

Now let us consider a more rapidly converging sum where there is a more distinct differ-
ence in the way that the sums are done:

n∑
k=1

1

k2
≈ π2

6
= 1.644934 · · · . (18.19)

Now the partial sums are quite order-dependent. First,

A<k =
n∑

i=n+1−k

1

i2
≤
∫ n

n−k

dx

x2
=

1

n− k
− 1

n
=

k

n(n− k)
. (18.20)

For k < n, this estimate is quite tight since we also have

A<k ≥
∫ n+1

n+1−k

dx

x2
=

1

n+ 1− k
− 1

n+ 1
=

k

(n+ 1)(n+ 1− k)
. (18.21)

However, for k = n, the estimate (18.20) fails, and we need to substitute

A<n = An ≤
π2

6
.

Summing (18.20), we find

n∑
k=1

|A<k | =
n∑
k=1

A<k ≤
π2

6
+

n−1∑
k=1

k

n(n− k)
=
π2

6
+

1

n

n−1∑
k=1

k

n− k

=
π2

6
+

1

n

n−1∑
i=1

n− i
i

=
π2

6
+

n−1∑
i=1

1

i
− n− 1

n
≤ 2 + log n

(18.22)

(see exercise 18.10). From lemma 18.1,

|An − A<n | ≤ (2 + log n)ε+O
(
ε2
)
. (18.23)

On the other hand, A>k ≥ 1 for all k, so that

n∑
k=1

A>k ≥ n. (18.24)

Thus the errors for the two methods could be quite different. In particular, (18.23) says that
we can take A<n as an estimate for An in evaluating the errors in A>n computationally. In
table 18.2 we give the differences in the results of the two algorithms, together with a more
precise estimate of the individual errors. To estimate these errors, we need a formula for An,
which we do not have explicitly. However, it is easy to see that

An =
n∑
k=1

1

k2
=
π2

6
−

∞∑
k=n+1

1

k2
. (18.25)

Draft September 23, 2016, do not distribute Page 314

CHAPTER 18. FLOATING POINT 18.1. FLOATING-POINT ARITHMETIC

n Ã>n − Ã<n (18.28) for Ã>n (18.28) for Ã<n
103 +1.7764× 10−15 +1.5543× 10−15 −2.2204× 10−16

104 +5.5511× 10−15 +5.5511× 10−15 0.0
105 +1.5987× 10−14 +1.6209× 10−14 +2.2204× 10−16

106 +4.3743× 10−14 +4.3521× 10−14 −2.2204× 10−16

107 −9.7189× 10−13 −9.7189× 10−13 0.0
108 +9.8635× 10−10 +9.8635× 10−10 0.0
109 −8.0137× 10−9 −8.0137× 10−9 0.0

Table 18.2: The difference between two methods for summing the series (18.19), largest-first
(Ã>n) minus smallest-first (Ã<n), for various values of n.

With a small correction, we can recognize the latter sum as the trapezoidal rule approximat-
ing the integral

∞∑
k=n+1

1

k2
+

1

2n2
≈
∫ ∞
n

dx

x2
=

1

n
. (18.26)

But we can also invoke the Euler-Maclaurin formula (13.92) to get an even more accurate
approximation:

∞∑
k=n+1

1

k2
≈ 1

n
− 1

2n2
+

1

6n3
. (18.27)

The next term in the Euler-Maclaurin expansion (13.92) would contribute a term of order
n−5. For simplicity, in table 18.2 we have just listed the estimates

Ãn −
π2

6
+

1

n
− 1

2n2
+

1

6n3
, (18.28)

where by Ãn we mean one of the methods computed in floating-point. We refer to these as
Ã>n and Ã<n in table 18.2.

We see that the algorithm starting with the smallest summands appears to have at most
a 1-bit error for the values of n listed, whereas the algorithm starting with the largest entries
has an error that grows with n. However, the error does not grow linearly with n as might
have been expected from (18.24). The unpredictable nature of the distribution of the δi’s
leads to a slower growth rate due to cancellations in the floating-point error. Unfortunately,
we do not have a more precise model to predict this behavior in more detail.

We have seen that it is possible to derive rigorous error expressions for the summation
problem but that these still fall short of predicting the error behavior in several cases.
Moreover, the error behavior is quite data-dependent. Doing the same level of analysis for
more complex algorithms remains a topic of research.

18.1.3 Better summation algorithms

There are also simple techniques [85] to reduce the errors in large sums. Probably the simplest
is called double precision accumulation which simply stores the current accumulated value as
a double-precision variable, essentially reducing the value of ε substantially. However, there

Draft September 23, 2016, do not distribute Page 315

18.1. FLOATING-POINT ARITHMETIC CHAPTER 18. FLOATING POINT

is a much more sophisticated technique due to Kahan,1 which can be viewed as a type of
residual correction algorithm (cf. section 18.2.2).

The gist of the Kahan summation algorithm is to keep an error estimate ek in addition to
the running sum sk. Then the error estimate is added to the next summand before adding
it to the running sum:

yk = ak + ek−1

sk = sk−1 + yk

dk = sk−1 − sk
ek = dk + yk.

(18.29)

The terms dk and yk are temporaries and do not need to be stored from one iteration to
the next, and only one storage location for the e’s is needed as well. But there need to be
two locations for the s’s, the old and the new values. Moreover, the computations of dk
and ek can be collapsed into one line, eliminating dk completely. But it is critical that the
difference, sk−1 − sk, be computed (in floating-point) before adding yk.

It is possible to show that the errors using (18.29) satisfy

An − Ãn =
n∑
i=1

δiai, (18.30)

where |δi| ≤ 2ε+O (nε2) [85]. The algorithm (18.29) was used to estimate the exact sum in
table 18.1. The algorithm was applied with both orders, and the results were identical in all
cases reported.

18.1.4 Solving ODEs

Algorithms for solving ordinary differential equations compute quantities very closely related
to the simple sums (18.1). The requirement of using finite-precision arithmetic means that
the best error behavior we could expect for the algorithm (16.26) is

|u(tn)− un| ≤ Cf,T∆t+ nε ∀tn ≤ T, (18.31)

where ε measures the precision error that occurs at each step in (16.27).
Let us suppose that tn = T . It is useful to rewrite (18.31) using the fact that n = T/∆t

as

|u(T)− un| ≤ Cf,T∆t+
Tε

∆t
, (18.32)

which shows that the error reaches a minimum and cannot be reduced by reducing ∆t. This
occurs when Cf,T∆t = Tε/∆t, that is, ∆t =

√
Tε/Cf,T , and the best accuracy is

√
Cf,TTε.

We can turn this around to say that it occurs at the time T = Cf,T∆t2/ε.
Choosing a more accurate difference method helps avoid the onset of round-off error since

we can use a larger ∆t to get the desired accuracy. The centered difference method (17.1)
instead satisfies an error estimate of the form

|u(tn)− un| ≤ Ĉf,T∆t2 + nε = Ĉf,T∆t2 +
tnε

∆t
(18.33)

1William Morton (a.k.a. Velvel) Kahan (1933-) was a primary architect of the IEEE floating-point stan-
dard and won the Turing award in 1989.

Draft September 23, 2016, do not distribute Page 316

CHAPTER 18. FLOATING POINT 18.2. ERRORS IN SOLVING SYSTEMS

for all tn ≤ T . Of course, the constant Ĉf,T may be different, but it is typically not different by

an order of magnitude. The critical value for ∆t occurs at the much smaller level 3

√
tnε/Ĉf,T .

However, there is still a limitation in theory. In practice, very high-order schemes are used
[72, 112, 174] primarily to achieve sufficient accuracy for longtime integration, but this also
has the side effect of diminishing round-off error.

18.2 Errors in solving systems

Iterative methods for solving linear and nonlinear systems are inherently self-correcting with
regard to floating-point error. However, direct methods for solving linear systems do not
have such a self-correction aspect, and it was an early concern whether it would be possible
to accurately compute with such methods. We address some of these questions here.

There are various issues to analyze for direct methods. The central point is that we
compute only approximate factorizations. It would be of interest to understand in detail how
floating-point errors affect the resulting factors, but this issue is not yet well understood. It
appears that the triangular factors are far better behaved than current analytical techniques
would predict [167].

18.2.1 Condition number

The condition number of a matrix A has appeared in different contexts previously (cf. sec-
tions 9.3.4 and 15.1.4). For a given norm, it is defined by

κ(A) = ‖A‖‖A−1‖. (18.34)

It is defined only for invertible matrices A. We show here how it quantifies the stability of
solving a system of equations. Note that κ(I) = 1 for the identity matrix I, and indeed
κ(A) ≥ 1 for any matrix A (exercise 18.11). Moreover, κ(A) is invariant under a simple
scaling A→ tA for any scalar t (exercise 18.12).

One characterization of a matrix factorization in floating-point is that it produces the
exact factors of a perturbed system Ã = L̃Ũ , where L̃ and Ũ are the computed factors
including round-off. We will examine how this might affect the resulting solution of a per-
turbed system. However, the best-known rigorous bounds are quite pessimistic, and a more
involved analysis like (18.5) for summation might be more revealing. However, such results
are lacking.

Suppose we write X(t) for the solution of

A(t)X(t) = F (t), (18.35)

where we think of t as a perturbation parameter as might arise from floating-point or other
errors. Here we imagine that there can be independent errors in A and F , and we want to
see how this causes changes in X. We are interested in what happens for small t, so we
differentiate (18.35) to find

A(t)X ′(t) + A′(t)X(t) = F ′(t), (18.36)

or equivalently,
X ′(t) = A−1(t)F ′(t)− A−1(t)A′(t)X(t). (18.37)

Draft September 23, 2016, do not distribute Page 317

18.2. ERRORS IN SOLVING SYSTEMS CHAPTER 18. FLOATING POINT

This equation says that the change in X has two parts. The first part says something
obvious: if you make an error in F , it will cause an error in X, and the relationship involves
the operator A in the obvious way. The second part is more complicated; it depends on the
interaction between the perturbation in A and the solution vector X, all multiplied by the
inverse of A. We begin by giving a standard estimate for both terms and then return to
point out why this may be pessimistic for the second term.

We take norms in (18.37) to find

‖X ′(t)‖ ≤ ‖A−1F ′‖+ ‖A−1A′X(t)‖, (18.38)

which we simplify to get

‖X ′(t)‖
‖X(t)‖

≤ ‖A
−1F ′‖
‖X(t)‖

+
‖A−1A′X(t)‖
‖X(t)‖

≤ ‖A
−1F ′‖
‖X(t)‖

+ ‖A−1A′‖

≤‖A−1‖
(
‖F ′‖
‖X(t)‖

+ ‖A′‖
)

= κ(A)

(
‖F ′‖

‖A‖‖X(t)‖
+
‖A′‖
‖A‖

)
≤κ(A)

(
‖F ′‖
‖F (t)‖

+
‖A′‖
‖A‖

)
,

(18.39)

where we used the estimate ‖F (t)‖ = ‖A(t)X(t)‖ ≤ ‖A(t)‖‖X(t)‖ in the last step. The
estimate (18.39) has a simple interpretation: the relative error in X is bounded by the sum
of the relative errors in A and F , multiplied by the condition number of A.

Although this does provide a rigorous upper bound (see exercise 18.14), it shows that
the interaction between perturbations in A and X is complicated. It could well be that for
certain solutions X, the term A−1(A′)X would be quite a bit smaller than in others. For
example, if X is slowly varying (nearly constant) and if A−1 tends to smooth things out
(cf. the matrix M in (4.22) which is the inverse of the matrix A in (4.20)), then both A−1F ′

and A−1(A′)X could be much smaller than in other situations. Using norms to bound things
gives a worst-case estimate (see exercise 18.16).

On the other hand, solving equations HX = F with the Hilbert matrix (4.15) can
be quite different. The inverse of the Hilbert matrix (4.15) grows exponentially with n
(exercise 18.17), and since the errors A′ and F ′ in (18.37) are not naturally correlated, we
expect the error X ′ to be quite large, as experiments show (exercise 18.18). In this case, the
estimate (18.39) is unfortunately not overly pessimistic.

18.2.2 A posteriori estimates and corrections

The residual error R = F −AX left after applying some algorithm to “solve” AX = F can
(1) give an estimate of the error and (2) be used to correct it. More precisely, let the function
f denote the solution process, so that Y = f(A,F) is the result of such an algorithm, for
which we know (e.g., from (18.39)) that, for some parameter µ,

‖f(A,Aw)− w‖ ≤ µ‖w‖ (18.40)

for any vector w. In particular, this implies that

‖Y −X‖ ≤ µ‖X‖. (18.41)

Draft September 23, 2016, do not distribute Page 318

CHAPTER 18. FLOATING POINT 18.2. ERRORS IN SOLVING SYSTEMS

Define the residual R = F −AY . (There is a small point in that there will be some floating-
point error in computing R by this formula, but we are interested in the case where this is
much smaller than the overall error parameter µ; thus we ignore this error here.) Then we
“solve” AE = R, or more precisely, define Ê = f(A,R). Then, by (18.40),

‖Ê − E‖ = ‖f(A,R)− E‖ ≤ µ‖E‖. (18.42)

We expect that Y + Ê is a better approximation to X since

Y + E = X. (18.43)

(To prove (18.43), multiply by A: AY + AE = F −R +R = F = AX.) Therefore,

Y + Ê = Y + E − (E − Ê) = X − (E − Ê). (18.44)

To quantify this, we just estimate:

‖(Y + Ê)−X‖ = ‖E − Ê‖ [by (18.44)]

≤µ‖E‖ [by (18.42)]

=µ‖X − Y ‖ [by (18.43)]

≤µ2‖X‖ [by (18.41)].

(18.45)

If µ < 1, (18.45) implies that Y + Ê is a more accurate approximation to X than Y is.
This algorithm is known as iterative improvement. If the level of accuracy in (18.45) is not
enough, the process can be repeated by making the assignment Y ← Y + Ê and repeating
the calculations (R = F −AY and Ê = f(A,R)) and estimates. After k applications of the
solution algorithm f(A, ·), the error satisfies

‖Y −X‖ ≤ µk‖X‖. (18.46)

This implies that the error would eventually go to zero, which does not necessarily happen in
floating-point. This is true for all the iterative methods considered so far. Once the change
in the iteration is the size of round-off error, it can bounce around unpredictably.

18.2.3 Pivoting

The intent of pivoting in Gaussian elimination is to reduce the error in the resulting Ã = L̃Ũ .
One cause of error is simply the size of the factors. Pivoting can reduce the size of the factors
substantially. However, there is a well-known example that shows that partial pivoting is
not sufficient to control the growth of factors [85]. Consider the n× n matrix A given by

A =

1 0 0 · · · 0 0 1
−1 1 0 · · · 0 0 1
−1 −1 1 · · · 0 0 1
...

...
...

...
...

...
−1 −1 −1 · · · −1 1 1
−1 −1 −1 · · · −1 −1 1

. (18.47)

Draft September 23, 2016, do not distribute Page 319

18.3. MORE READING CHAPTER 18. FLOATING POINT

That is, A has entries equal to−1 below the diagonal, 1’s on the diagonal and in the rightmost
column, and 0 elsewhere. For this matrix, the standard partial pivoting algorithm will do
no pivoting, as the diagonal term in the standard order is at each step at least as large as
the entries below it. However, the entries in the right-hand column grow exponentially, so
that if A = LU , then ‖U‖∞ = 2n−1. In particular, it is easy to see that L and A agree on
and below the diagonal and that U has 1’s on the diagonal except for the nth entry, the last
column is uin = 2i−1, and there are 0’s elsewhere. If for example (see page 35), n = 105,
then ‖U‖∞ ≈ 103010, even though there are entries in U of order unity. On the other hand,
experience shows that such catastrophic growth is very uncommon [85, 167].

18.3 More reading

The book by Trefethen and Bao [167] reports interesting experiments regarding the effect
(or lack thereof) of floating-point computation on matrix factorization. The comprehensive
text by Higham [85] should be consulted for a more detailed understanding of the effects of
floating-point arithmetic. There is a recent handbook on floating-point arithmetic [123].

18.4 Exercises

Exercise 18.1 Write a code to compute the slowly diverging series

An =
n∑
i=1

1

i

and compare with (18.5), which estimates the error in terms of the partial sums. What is
the worst order? The best order? See if the results “converge” for one order and diverge for
the other. (Hint: you may need to work in a programming system that allows you to specify
“single” precision, such as “float” in C.)

Exercise 18.2 You can estimate the size of ε in our floating-point model by ε = inf
{
x > 0

∣∣ f`(f`(1 + x)− 1) > 0
}

.
On a computer with binary-based arithmetic, you can estimate ε by replacing x in the set
above by xk = 2−k. For the first k such that f`(f`(1 + xk)− 1) = 0, ε ≈ xk−1.

Exercise 18.3 Write a code to compute the slowly converging series

π

4
≈

n∑
i=1

(−1)i+1

2i− 1

and compare with the estimate (18.5), which estimates the error in terms of the partial
sums. What is the worst order? The best order? What if you sum the odd and even terms
separately?

Exercise 18.4 Analyze the algorithms in section 1.5 for computing solutions to (1.40) for
various values of b. Establish conditions on b that guarantee the success of each of the four
algorithms.

Draft September 23, 2016, do not distribute Page 320

CHAPTER 18. FLOATING POINT 18.4. EXERCISES

Exercise 18.5 Perform some computational experiments with the numerical methods dis-
cussed in chapter 17 to see whether the effects of round-off error can be easily discerned.

Exercise 18.6 Prove that

ε

k∑
i=1

(1 + ε)i = (1 + ε)k+1 − 1− ε. (18.48)

(Hint: multiply the sum by ((1 + ε)− 1) and see how it telescopes.)

Exercise 18.7 Prove that

(1 + ε)n − 1 ≤ 2nε, (18.49)

provided that n ≤ 1/2ε. (Hint: expand the left-hand side in a binomial series and bound the
terms, or use the fact that log(1 + ε) ≤ ε for ε > 0.)

Exercise 18.8 Justify all the steps in (18.18).

Exercise 18.9 Backward error analysis expresses

Ãn =
n∑
i=1

ai(1 + γi). (18.50)

This represents the computed sum as the exact sum with modified summands. Develop an
analysis of the size of the γi’s in terms of the δi’s in (18.2).

Exercise 18.10 Prove that

π2

6
+

n−1∑
i=1

1

i
− n− 1

n
≤ 2 + log n. (18.51)

(Hint: see (13.96) for an estimate of the sum when n > 3. For n = 1, 2 make a direct
evaluation.)

Exercise 18.11 Prove that κ(A) ≥ 1 for any matrix A, where κ(A) = ‖A‖‖A−1‖ is the
condition number of A. Show that this holds for any choice of norm. (Hint: note that
1 = ‖AA−1‖ and apply (6.3).)

Exercise 18.12 Prove that κ(tA) = κ(A) for any matrix A and scalar t, where κ(A) =
‖A‖‖A−1‖ is the condition number of A. Show that this holds for any choice of norm. Here
tA is the matrix with entries taij if A = (aij). (Hint: note that 1 = ‖AA−1‖ and apply
(6.3).)

Exercise 18.13 Estimate the term of order ε2 in (18.23) and determine how it affects the
subsequent statements regarding using A<k as an “exact” sum.

Draft September 23, 2016, do not distribute Page 321

18.5. SOLUTIONS CHAPTER 18. FLOATING POINT

Exercise 18.14 The following is a more conventional version of (18.39). Suppose that
AX = F and ÃX̃ = F̃ . Prove that

‖X − X̃‖
‖X‖

≤ κ(A)

(
1− κ(A)

‖A− Ã‖
‖A‖

)−1(
‖F − F̃‖
‖F‖

+
‖A− Ã‖
‖A‖

)
, (18.52)

where κ(A) = ‖A‖‖A−1‖ is the condition number of A.

Exercise 18.15 Experiment with different ways of computing Stirling’s formula (12.88).
Find a way to control the size of the numerator and denominator. (Hint: write each as a
product of n terms and write the quotient of the product as the product of the quotients.)

Exercise 18.16 Experiment computationally with solving Ax = f , where A is the n × n
matrix (4.20). Start with a given x and compute f = Ax by matrix-vector multiplication.
Then use a standard routine (e.g., y=A\f in octave) to “solve” Ay = f and compare x
to y (e.g., monitor the value of ‖x − y‖/‖x‖) for different x and different values of n).
Also compute the size of the condition number κ(A) = ‖A‖‖A−1‖ and monitor the value of
‖x− y‖/κ(A)‖x‖. Compare the choices where x is all 1’s (xi = 1 for all i = 1, . . . , n) and x
is random (e.g., x=rand(n,1) in octave).

Exercise 18.17 Show that the inverse of the n × n Hilbert matrix H in (4.14) and (4.15)
has entries of order one and exponentially large. In particular, show that

(H−1)11 =
n∑
i=1

1

j2
≈ π√

6

(H−1)nn =u−2
nn > 22n (for n > 2),

(18.53)

where H = U?U is the Cholesky factorization of H given by (4.16). (Hint: to estimate the
size of unn, see exercise 4.5.)

Exercise 18.18 Experiment computationally with solving Hx = f , where H is the n × n
Hilbert matrix in (4.14) and (4.15). Start with a given x and compute f = Hx by matrix
multiplication. Then use a standard routine (e.g., y=H\f in octave) to “solve” Hy = f and
compare x to y (e.g., monitor the value of ‖x−y‖/‖x‖) for different x and different values of
n). Also compute the size of the condition number κ(H) = ‖H‖‖H−1‖ and monitor the value
of ‖x− y‖/κ(H)‖x‖. Compare the choices where x is all 1’s (xi = 1 for all i = 1, . . . , n) and
x is random (e.g., x=rand(n,1) in octave).

18.5 Solutions

Solution of Exercise 18.7. Let r = nε. Recall that r ≤ 1
2
. Write

(1 + ε)n − 1 =
n∑
i=1

(
n
i

)
εi =

n∑
i=1

n!

(n− i)!i!
εi

=
n∑
i=1

i−1∏
k=0

n− k
i− k

ε ≤
n∑
i=1

(nε)k

=
n∑
i=1

rk =
r − rn+1

1− r
≤ r

1− r
≤ 2r.

(18.54)

Draft September 23, 2016, do not distribute Page 322

CHAPTER 18. FLOATING POINT 18.5. SOLUTIONS

Alternatively, since log(1 + ε) ≤ ε for ε > 0,

(1 + ε)n = en log(1+ε) ≤ enε.

For x ≤ 1, ex ≤ 1 + 2x since e1 = e = 2.718 · · · < 3 and the exponential function is strictly
increasing. Therefore, (1 + ε)n ≤ 1 + 2εn, provided εn ≤ 1.

Solution of Exercise 18.14. Subtract AX = F and ÃX̃ = F̃ to get

A(X − X̃) = F − AX̃ = F − F̃ + (Ã− A)X̃. (18.55)

Multiplying by A−1 and taking norms gives

‖X − X̃‖ ≤ ‖A−1‖
(
‖F − F̃‖+ ‖Ã− A‖‖X̃‖

)
. (18.56)

We have ‖F‖ ≤ ‖A‖‖X‖, so that ‖X‖−1 ≤ ‖A‖/‖F‖. Therefore

‖X − X̃‖
‖X‖

≤κ(A)

(
‖F − F̃‖
‖F‖

+
‖A− Ã‖
‖A‖

‖X̃‖
‖X‖

)

≤κ(A)

(
‖F − F̃‖
‖F‖

+
‖A− Ã‖
‖A‖

(
1 +
‖X − X̃‖
‖X‖

))
.

(18.57)

Therefore,

‖X − X̃‖
‖X‖

(
1− κ(A)

‖A− Ã‖
‖A‖

)
≤κ(A)

(
‖F − F̃‖
‖F‖

+
‖A− Ã‖
‖A‖

)
. (18.58)

Draft September 23, 2016, do not distribute Page 323

18.5. SOLUTIONS CHAPTER 18. FLOATING POINT

Draft September 23, 2016, do not distribute Page 324

Chapter 19

Notation

“During the years 1831-80 the strange figure of Benjamin Peirce (A.B.
1829) completely dominated the situation. His great natural mathemat-
ical talent and originality of thought, combined with a total inability to
put anything clearly, produced upon his contemporaries a feeling of awe
that amounted almost to dread.” [38]

We follow standard notation in general, but we use some notation that is different from
what is sometimes used.

We will use the notation]a, b[to denote the open interval a < x < b. Similarly,]a, b]
(a < x ≤ b) and [a, b[(a ≤ x < b) denote the corresponding half-open intervals.

We use a tall vertical line as the separator in our notation for a set. Thus]a, b] ={
x
∣∣ a < x ≤ b

}
.

When the infimum of a set is known to be attained, we will often write min{· · · } for
inf{· · · }, and similarly for max and sup.

We use the notation “argmin” to denote the point at which a minimum takes place. Thus
argminφ(r) is the value of r0 (if it exists), where φ(r0) = min φ(r), where the minimum is
taken over some set S. We can similarly define argmin

{
φ(r)

∣∣ r ∈ S} in the same way.

We use the notation f := g to mean “f is defined to be g.” Sometimes the definition
comes first, so we write g =: f in that case.

We use the notation x← y in an algorithm to mean that (the value of) y is assigned to
(the value of) x. This notation is used instead of an equal sign (=), which is used in many
programming languages.

We generally use capital letters for matrices but frequently denote their entries by low-
ercase. Thus the entries in A are denoted by aij, and those of B by bij. We use the notation
B = A? for the conjugate transpose: bij = aji, where z denotes the complex conjugate of
z. The same notation applies to vectors as well: v? performs the complex conjugate and
switches from a column vector to a row vector (or conversely).

We write the transpose as AT or vT for a matrix or vector, respectively. In particular,
we often write a (column) vector as v = (a, b, c, d, e, f, g)T to save space. Of course, for real
matrices, AT = A?, and similarly for real vectors.

325

CHAPTER 19. NOTATION

An expression of the form g(x) = O (f(x)) means that |g(x)| ≤ C|f(x)| for some constant
C <∞.

For a function f , we use the expression f ≡ 0 to mean that f is “identically zero.” That
is, we mean that f(x) = 0 for all x in the domain of f .

We use R to denote the field of real numbers, and C to denote the field of complex
numbers. For a complex number z = r + it, we write r = Re z and t = Imz. The notation
`p is introduced in section 5.1.1 to denote Fn endowed with the p-norm, where Fn denotes
either Rn or Cn.

We define sign(t) to be 1 when t ≥ 0 and −1 when t < 0.

We use the notation “log x” for the natural logarithm (elog x = x).

We use the notation Pn to denote the space of polynomials of degree n in one variable;
P∞ denotes the space of all such polynomials, cf. (13.66).

We use the notation ρ(A) for the spectral radius of A, the modulus of the largest eigen-
value of A, cf. (6.8).

We use the notation κ(A) for the condition number of A, cf. (9.74), section 15.1.4 and
exercise 18.11. The condition number depends on the particular norm being used.

Draft September 23, 2016, do not distribute Page 326

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Mani-
folds. Princeton University Press, 2007.

[2] Victor S. Adamchik and David J. Jeffrey. Polynomial transformations of Tschirnhaus,
Bring and Jerrard. SIGSAM Bulletin, 37(3):90–94, 2003.

[3] A. C. Aitken. Studies in practical mathematics. I. the evaluation, with application,
of a certain triple product matrix. Proceedings of the Royal Society of Edinburgh,
57:172–181, 1937.

[4] A. C. Aitken. Gallipoli to the Somme: Recollections of a New Zealand Infantryman.
Oxford, 1963.

[5] Adrian Albert. Modern Higher Algebra. University of Chicago Press, 1937.

[6] P. S. Aleksandrov, N. I. Akhiezer, B. V. Gnedenko, and A. N. Kolmogorov. Sergei
Natanovich Bernstein (obituary). Russian Mathematical Surveys, 24(3):169–176, 1969.

[7] Steven C. Althoen and Renate McLaughlin. Gauss-Jordan reduction: A brief history.
American Mathematical Monthly, 94(2):130–142, 1987.

[8] Ned Anderson and Åke Björck. A new high order method of regula falsi type for
computing a root of an equation. BIT Numerical Mathematics, 13:253–264, Sept.
1973. 10.1007/BF01951936.

[9] V. I. Arnold. Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry
phase, adiabatic connections and quantum Hall effect. Selecta Mathematica, New
Series, 1(1):1–19, 1995.

[10] Vladimir I. Arnold. Ordinary Differential Equations. Springer Verlag, 2006.

[11] Sheldon J. Axler. Linear Algebra Done Right. Springer Verlag, 1997.

[12] Francis Bashforth and John Couch Adams. An Attempt to Test the Theories of Cap-
illary Action. Cambridge University Press, 1883.

[13] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.

[14] K. Yusuf Billah and Robert H. Scanlan. Resonance, Tacoma Narrows Bridge failure,
and undergraduate physics textbooks. American Journal of Physics, 59(2):118–124,
1991.

327

BIBLIOGRAPHY BIBLIOGRAPHY

[15] George David Birkhoff. General mean value and remainder theorems with applications
to mechanical differentiation and quadrature. Transactions of the American Mathe-
matical Society, 7(1):107–136, 1906.

[16] J. L. Bona, W. G. Pritchard, and L. R. Scott. Solitary-wave interaction. Physics of
Fluids, 23:438–441, 1980.

[17] Jonathan Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimization:
Theory and Examples. Springer, 2nd edition, 2005.

[18] John Boyd. Chebyshev and Fourier Spectral Methods. Dover, 2nd edition, 2001.

[19] Stephen P. Boyd. Convex Optimization. Cambridge University Press, 2004.

[20] Ernst Breitenberger. Gauss’s geodesy and the axiom of parallels. Archive for History
of Exact Sciences, 31:273–289, Sept. 1984. 10.1007/BF00327704.

[21] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag, 3rd edition, 2008.

[22] Richard Brent. Algorithms for Minimization Without Derivatives. Dover Publications,
2002.

[23] C. Brezinski. The life and work of André Cholesky. Numerical Algorithms, 43:279–288,
Nov. 2006. 10.1007/s11075-006-9059-x.

[24] C. Brezinski and M. Gross-Cholesky. La vie et les travaux d’André Cholesky. Bulletin
de la Société des Amis de la Bibliothèque de l’Éc. Polytechnique, 39:7–32, 2005.

[25] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[26] David Brink. Hölder continuity of roots of complex and p-adic polynomials. Commu-
nications in Algebra, 38(5):1658–1662, 2010.

[27] Ezra Brown. Square roots from 1; 24, 51, 10 to Dan Shanks. College Mathematics
Journal, 30(2):82–95, Mar. 1999.

[28] L. Brutman. On the Lebesgue function for polynomial interpolation. SIAM Journal
on Numerical Analysis, 15(4):694–704, 1978.

[29] Richard L. Burden and J. Douglas Faires. Elementary Numerical Analysis.
Brooks/Cole, 8th edition, 2005.

[30] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations: Runge-
Kutta and General Linear Methods. John Wiley & Sons, 1987.

[31] J. C. Butcher. A history of Runge-Kutta methods. Applied Numerical Mathematics,
20:247–260, March 1996.

[32] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley &
Sons, 2nd edition, 2008.

Draft September 23, 2016, do not distribute Page 328

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Florian Cajori. Historical note on the Newton-Raphson method of approximation.
American Mathematical Monthly, 18(2):29–32, 1911.

[34] V. Chellaboina and W. M. Haddad. Is the Frobenius matrix norm induced? IEEE
Transactions on Automatic Control, 40(12):2137–2139, 1995.

[35] E. W. Cheney. Introduction to Approximation Theory. American Mathematical Society,
Providence, RI, 2nd edition, 2000.

[36] Lindsay N. Childs. A Concrete Introduction to Higher Algebra. Springer Verlag, 3rd
edition, 2009.

[37] William James Cody, Jr. and William Waite. Software Manual for the Elementary
Functions. Prentice-Hall, 1980.

[38] Julian Coolidge. Mathematics 1870–1928. In Samuel Eliot Morison, editor, The Ter-
centennial History of Harvard College and University 1636–1936, pages 248–257. Har-
vard University Press, 1930.

[39] P. D. Crout. A short method for evaluating determinants and solving systems of linear
equations with real or complex coefficients. Transactions of the American Institute of
Electrical Engineers, 60:1235–1240, 1941.

[40] Felipe Cucker and Antonio Gonzalez Corbalan. An alternate proof of the continuity of
the roots of a polynomial. The American Mathematical Monthly, 96(4):342–345, 1989.

[41] Germund Dahlquist and Åke Björck. Numerical Methods. Dover, 2003.

[42] Harold Davenport. Dirichlet. Mathematical Gazette, 43(346):268–269, 1959.

[43] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration. Academic
Press, 2nd edition, 1984.

[44] Carl de Boor. Divided differences. Surveys in Approximation Theory, 1:46–69, 2005.

[45] Carl de Boor and Allan Pinkus. Proof of the conjectures of Bernstein and Erdös
concerning the optimal nodes for polynomial interpolation. Journal of Approximation
Theory, 24:289–303, Dec. 1978.

[46] D. W. Decker, H. B. Keller, and C. T. Kelley. Convergence rates for Newton’s method
at singular points. SIAM Journal on Numerical Analysis, 20(2):296–314, 1983.

[47] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1997.

[48] P. Deuflhard and G. Heindl. Affine invariant convergence theorems for Newton’s
method and extensions to related methods. SIAM Journal on Numerical Analysis,
16(1):1–10, 1979.

[49] Peter Deuflhard and Andreas Hohmann. Numerical Analysis: A First Course in Sci-
entific Computation. Walter de Gruyter & Co., Hawthorne, NJ, USA, 1995.

Draft September 23, 2016, do not distribute Page 329

BIBLIOGRAPHY BIBLIOGRAPHY

[50] Luca Dieci and Donald Estep. Some stability aspects of schemes for the adaptive
integration of stiff initial value problems. SIAM Journal on Scientific and Statistical
Computing, 12:1284–1303, 1991.

[51] E. Dikmen, A. Novoselsky, and M. Vallieres. Shell model calculations of 108Sb in the
sdgh shell. Physical Review C, 66(5):057302, Nov 2002.

[52] S. M. Djouadi. Comments on “Is the Frobenius Matrix Norm Induced?”. IEEE Trans-
actions on Automatic Control, 48(3):518–518, 2003.

[53] M. H. Doolittle. Method employed in the solution of normal equations and the ad-
justment of a triangulation. U.S. Coast and Geodetic Survey Report, pages 115–120,
1878.

[54] M. Dowell and P. Jarratt. A modified regula falsi method for computing the root of an
equation. BIT Numerical Mathematics, 11:168–174, June 1971. 10.1007/BF01934364.

[55] Tobin A. Driscoll, Kim-Chuan Toh, and Lloyd N. Trefethen. From potential theory to
matrix iterations in six steps. SIAM Review, 40(3):547–578, 1998.

[56] William Dunham. Euler: The Master of Us All. Mathematics Association of America,
Washington, D.C., 1999.

[57] Todd F. Dupont and L. Ridgway Scott. The end-game for Newton iteration. Research
Report UC/CS TR-2010-10, University of Chicago, Department of Computer Science,
2010.

[58] Alan Edelman. Large dense numerical linear algebra in 1993: the parallel comput-
ing influence. International Journal of High Performance Computing Applications,
7(2):113–128, 1993.

[59] Paul Erdös. Problems and results on the theory of interpolation. II. Journal Acta
Mathematica Hungarica, 12(1-2):235–244, 1961.

[60] D. K. Fadeev and V. N. Fadeeva. Computational Methods of Linear Algebra. W. H.
Freeman, 1963.

[61] Richard William Farebrother. A memoir of the life of M. H. Doolittle. Bulletin of the
Institute of Mathematics and Its Application, 23(6/7):102, 1987.

[62] P. C. Fenton. A. C. Aitken (1895–1967). Gazette of the Australian Mathematical
Society, Mar. 1995.

[63] C. T. Fike. Computer evaluation of mathematical functions. Prentice-Hall, 1968.

[64] George Forsythe. Notes, 128. Mathematical Tables and Other Aids to Computation,
5(36):255–258, 1951.

[65] George E. Forsythe. Solving linear algebraic equations can be interesting. Bulletin of
the American Mathematical Society, 59:299–329, 1953.

Draft September 23, 2016, do not distribute Page 330

BIBLIOGRAPHY BIBLIOGRAPHY

[66] David Fowler and Eleanor Robson. Square root approximations in old Babylonian
mathematics: YBC 7289 in context. Historia Mathematica, 25:366–378, Nov. 1998.

[67] L. Fox, H. D. Huskey, and J. H. Wilkinson. Notes on the solution of algebraic lin-
ear simultaneous equations. Quarterly Journal Mechanics and Applied Mathematics,
1(1):149–173, 1948.

[68] Herman H. Goldstine. A History of Numerical Analysis from the 16th through the 19th
century. Springer, 1977.

[69] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Dover, 3rd edition,
1996.

[70] Gene H. Golub and Dianne P. O’Leary. Some history of the conjugate gradient and
Lanczos algorithms: 1948–1976. SIAM Review, 31(1):50–102, 1989.

[71] Ronald Gowing. Roger Cotes–Natural Philosopher. Cambridge University Press, 1983.

[72] K. R. Grazier, W. I. Newman, W. M. Kaula, and J. M. Hyman. Dynamical evolution
of planetesimals in the outer solar system. Icarus, 140:341–352, 1999.

[73] Anne Greenbaum. Iterative methods for solving linear systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1997.

[74] David Alan Grier. When Computers Were Human. Princeton University Press, 2005.

[75] Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer, 1993.

[76] Wolfgang Hackbusch. The Concept of Stability in Numerical Mathematics. Springer,
2014.

[77] E. Hairer, Christian Lubich, and G. Wanner. Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, 2nd
edition, 2006.

[78] E. Hairer, Syvert P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations
I: Nonstiff Problems. Springer, 2002.

[79] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Springer, 2004.

[80] Anders Hald. A History of Mathematical Statistics. John Wiley & Sons, 1998.

[81] John Fraser Hart et al. Computer Approximations. Krieger, 1978.

[82] Peter Henrici. Discrete Variable Methods in Ordinary Differential Equations. John
Wiley & Sons, 1962.

[83] Peter Henrici. Elements of Numerical Analysis. John Wiley & Sons, 1964.

Draft September 23, 2016, do not distribute Page 331

BIBLIOGRAPHY BIBLIOGRAPHY

[84] V. Hernández, J. E. Román, A. Tomás, and V. Vidal. A survey of software for sparse
eigenvalue problems. Technical Report SLEPc Technical Report STR-6, Universidad
Politecnica de Valencia, http://www.grycap.upv.es/slepc, 2005.

[85] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2nd edition, 2002.

[86] Nicholas J. Higham. The numerical stability of barycentric Lagrange interpolation.
IMA Journal of Numerical Analysis, 24(4):547–556, 2004.

[87] Alston S. Householder. Principles of Numerical Analysis. McGraw-Hill, 1953.

[88] I. M. L. Hunter. An exceptional talent for calculative thinking. British Journal of
Psychology, 53(3):243–258, 1962.

[89] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Dover, 1994.

[90] Nathan Jacobson. Lectures in Abstract Algebra II. Linear algebra. Springer Verlag,
1953.

[91] Ioan James. Remarkable Mathematicians: From Euler to von Neumann. Cambridge
University Press, 2003.

[92] K. R. James and W. Riha. Convergence criteria for successive overrelaxation. SIAM
Journal on Numerical Analysis, 12(2):137–143, 1975.

[93] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW ’03: Pro-
ceedings of the 12th international conference on World Wide Web, pages 271–279, New
York, NY, USA, 2003. Association for Computing Machinery, New York, NY.

[94] D. Kalman. Uncommon Mathematical Excursions: Polynomia and Related Realms.
Mathematical Association of America, 2008.

[95] Shen Kangshen, John N. Crossley, and Anthony W.-C. Lun. The Nine Chapters of the
Mathematical Art. Oxford, 1999.

[96] Daniel Kehlmann. Measuring the World. Vintage, 2007.

[97] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1995.

[98] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1995.

[99] Theodore A. Kilgore. A characterization of the Lagrange interpolating projection with
minimal Tchebycheff norm. Journal of Approximation Theory, 24:273–288, Dec. 1978.

[100] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: A survey of
approaches and applications. Journal of Computational Physics, 193(2):357–397, 2004.

[101] Gina Bari Kolata. Geodesy: Dealing with an enormous computer task. Science,
200(4340):421–466, 1978.

Draft September 23, 2016, do not distribute Page 332

BIBLIOGRAPHY BIBLIOGRAPHY

[102] Nick Kollerstrom. Thomas Simpson and “Newton’s method of approximation:” an
enduring myth. British Journal for the History of Science, 25(3):347–354, 1992.

[103] Vladimir Ivanovich Krylov. Approximate Calculation of Integrals. Macmillan Press,
1962.

[104] J. L. Lagrange. Analytical Mechanics. Springer, 2001.

[105] F. M. Larkin. Root-finding by fitting rational functions. Mathematics of Computation,
35(151):803–816, 1980.

[106] Imre Latakos. Proofs and Refutations. Cambridge University Press, 1976.

[107] Norman Lebovitz. Ordinary Differential Equations. Brooks/Cole, 2002.

[108] W. Ledermann. Issai Schur and his school in Berlin. Bulletin of the London Mathe-
matical Society, 15(2):97–106, 1983.

[109] Hou-Biao Li and Ting-Zhu Huang. On a new criterion for the H-matrix property.
Applied Mathematics Letters, 19:1134–1142, 2006.

[110] Ren-Cang Li. Near optimality of Chebyshev interpolation for elementary function
computations. IEEE Transactions on Computers, 53(6):678–687, 2004.

[111] Elliott H. Lieb and Michael Loss. Analysis. American Mathematical Society, Provi-
dence, RI, 2nd edition, 2001.

[112] A. Logg. Multi-adaptive Galerkin methods for ODEs I. SIAM Journal on Scientific
Computing, 24(6):1879–1902, 2003.

[113] A. Logg. Automating the finite element method. Archives of Computational Methods
in Engineering, 14(2):93–138, 2007.

[114] G. G. Lorentz. Approximation of Functions. Chelsea, New York, 2nd edition, 1986.

[115] G. G. Lorentz and K. L. Zeller. Birkhoff interpolation. SIAM Journal on Numerical
Analysis, 8(1):43–48, 1971.

[116] L. A. Lyusternik, O. A. Chervonenkis, and A. R. Yanpol’skii. Handbook for Computing
Elementary Functions. Pergamon Press, 1965.

[117] Robert S. Maier. On reducing the Heun equation to the hypergeometric equation.
Journal of Differential Equations, 213:171–203, 2005.

[118] L. Maligranda. Why Hölder’s inequality should be called Rogers’ inequality. Mathe-
matical Inequalities and Applications, 1(1):69–83, 1998.

[119] Giuseppe Mastroianni and Gradimir V Milovanović. Interpolation processes: Basic
theory and applications. Springer, 2008.

[120] Roy Mathias. Proof of two matrix theorems via triangular factorizations. Technical
report, University of Birmingham.

Draft September 23, 2016, do not distribute Page 333

BIBLIOGRAPHY BIBLIOGRAPHY

[121] Frank McSherry. A uniform approach to accelerated PageRank computation. In WWW
’05: Proceedings of the 14th International Conference on the World Wide Web, pages
575–582, New York, NY, USA, 2005. Association for Computing Machinery, New York,
NY.

[122] Gérard Meurant. The Lanczos and Conjugate Gradient Algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, Philadelphia, PA, 2006.

[123] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod,
Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge
Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010. ACM G.1.0;
G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[124] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 2nd edition,
2006.

[125] J. Tinsley Oden and Leszek F. Demkowicz. Applied Functional Analysis. CRC Press,
1996.

[126] A. M. Ostrowski. Solution of Equations and Systems of Equations. Academic Press,
1966.

[127] B. N. Parlett. The Rayleigh quotient iteration and some generalizations for nonnormal
matrices. Mathematics of Computation, 28(127):679–693, 1974.

[128] Beresford Parlett. Very early days of matrix computations. SIAM News, 36(9), 2003.

[129] Paul C. Pasles. Benjamin Franklin’s Numbers: An Unsung Mathematical Odyssey.
Princeton University Press, 2008.

[130] David A. Patterson and John L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 3rd edition, 2007.

[131] Giuseppe Peano. Resto nelle formule di quadratura, espresso con un integrale definito.
ATTI della Reale Accademia Dei Lincei-Rendiconti, 22:562–569, 1913.

[132] G. Peters and J. H. Wilkinson. Inverse iteration, ill-conditioned equations and New-
ton’s method. SIAM Review, 21(3):339–360, 1979.

[133] Clifford A. Pickover. Archimedes to Hawking. Oxford, 2008.

[134] M. J. D. Powell. Approximation Theory and Methods. Cambridge University Press,
1981.

[135] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes. Cambridge University Press, 3rd edition, 2007.

[136] Liqun Qi. Eigenvalues and invariants of tensors. Journal of Mathematical Analysis
and Applications, 325(2):1363 – 1377, 2007.

[137] Liqun Qi, W. Sun, and Y. Wang. Numerical multilinear algebra and its applications.
Frontiers of Mathematics in China, 2(4):501–526, 2007.

Draft September 23, 2016, do not distribute Page 334

BIBLIOGRAPHY BIBLIOGRAPHY

[138] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Springer,
2nd edition, 2007.

[139] Heinz-Joachim Rack. An example of optimal nodes for interpolation revisited. In
Advances in Applied Mathematics and Approximation Theory, pages 117–120. Springer,
2013.

[140] Th. M. Rassias, H. M. Srivastava, and A. Yanushauskas. Topics in Polynomials of One
and Several Variables and Their Applications. River Edge, 1993.

[141] Edgar Reich. On the convergence of the classical iterative method of solving linear
simultaneous equations. Annals of Mathematical Statistics, 20(3):448–451, 1949.

[142] J. R. Rice. The Approximation of Functions, volume 1. Addison-Wesley, 1969.

[143] J. R. Rice. The Approximation of Functions, volume 2. Addison-Wesley, 1969.

[144] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1996.

[145] R. Roy. The work of Chebyshev on orthogonal polynomials. In Th. M. Rassias, H. M.
Srivastava, and A. Yanushauskas, editors, Topics in Polynomials of One and Several
Variables and Their Applications, pages 495–512. River Edge, 1993.

[146] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.

[147] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1986.

[148] Hans Schneider. Olga Taussky-Todd’s influence on matrix theory and matrix theorists.
Linear & Multilinear Alg., 5:197–224, 1977.

[149] L. R. Scott, T. W. Clark, and B. Bagheri. Scientific Parlallel Computing. Princeton
University Press, 2005.

[150] L. R. Scott and Xie Dexuan. Parallel linear stationary iterative methods. In Petter
Bjørstad and Mitchell Luskin, editors, Parallel solution of partial differential equations,
pages 31–55. Springer–Verlag, 2000.

[151] A. Seth and W.S. Gan. Fixed-point square roots using Lb truncation [DSP tips and
tricks]. Signal Processing Magazine, IEEE, 28(6):149–153, 2011.

[152] J. R. Silvester. Determinants of block matrices. Mathematical Gazette, 84(501):460–
467, 2000.

[153] Simon J. Smith. Lebesgue constants in polynomial interpolation. Annales Mathemat-
icae et Informaticae, 33:109–123, 2006.

[154] Arnold Sommerfeld. Mechanics. Academic Press, 1952.

[155] Blair K. Spearman and Kenneth S. Williams. Characterization of solvable quintics
x5 + ax+ b. American Mathematical Monthly, 101(10):986–992, 1994.

[156] Neal Stephenson. The Baroque Cycle, Volume 1: Quicksilver. Harper Perennial, 2004.

Draft September 23, 2016, do not distribute Page 335

BIBLIOGRAPHY BIBLIOGRAPHY

[157] G. W. Stewart. Matrix Algorithms, Volume I: Basic Decompositions. Philadelphia :
Society for Industrial and Applied Mathematics, 1998.

[158] G. W. Stewart. Matrix Algorithms, Volume II: Eigenvalue Problems. Philadelphia :
Society for Industrial and Applied Mathematics, 2001.

[159] G. Strang and K. Borre. Linear Algebra, Geodesy, and GPS. Wellesley Cambridge
Press, 1997.

[160] V. Szebehely, D. Saari, J. Waldvogel, and U. Kirchgraber. Eduard L. Stiefel
(1909–1978). Celestial Mechanics and Dynamical Astronomy, 21:2–4, Jan. 1980.
10.1007/BF01230237.

[161] René Taton. Evariste Galois and his contemporaries. Bulletin of the London Mathe-
matical Society, 15(2):107–118, 1983.

[162] David J. Thomas and Judith M. Smith. Joseph Raphson, F.R.S. Notes and Records
of the Royal Society of London, 44(2):151–167, 1990.

[163] John Todd. Numerical analysis at the National Bureau of Standards. SIAM Review,
17(2):361–370, 1975.

[164] H. R. Tolley and Mordecai Ezekiel. The Doolittle method for solving multiple correla-
tion equations versus the Kelley-Salisbury “iteration” method. Journal of the American
Statistical Association, 22(160):497–500, 1927.

[165] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review,
50(1):67–87, 2008.

[166] Lloyd N. Trefethen. Approximatin theory and approximation practice. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2013.

[167] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 1997.

[168] Lloyd N Trefethen and JAC Weideman. The exponentially convergent trapezoidal rule.
SIAM Review, 56(3):385–458, 2014.

[169] A. M. Turing. Rounding-off errors in matrix processes. Quarterly Journal of Mechanics
and Applied Mathematics, 1(1):287–308, 1948.

[170] Herbert Westren Turnbull. University of St. Andrews James Gregory Tercentenary.
St. Andrews: The University, 1939.

[171] Ian Tweddle. The prickly genius–Colin Maclaurin (1698–1746). Mathematical Gazette,
82(495):373–378, 1998.

[172] Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Programming
Matrix Computations. www.lulu.com, 2008.

[173] Henk A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge
University Press, 2003.

Draft September 23, 2016, do not distribute Page 336

BIBLIOGRAPHY BIBLIOGRAPHY

[174] F. Varadi, B. Runnegar, and M. Ghil. Successive refinements in long-term integrations
of planetary orbits. Astrophysical Journal, 592:620–630, 2003.

[175] Richard S. Varga. Gershgorin and His Circles. Springer, 2000.

[176] Richard S. Varga. Matrix Iterative Analysis. Springer, 2nd edition, 2000.

[177] John H. Welsch. Algorithm 280: Abscissas and weights for Gregory quadrature. Com-
munincations of the ACM, 9(4):271, 1966.

[178] E. T. Whittaker and G. Robinson. The Calculus of Observations: A Treatise on
Numerical Mathematics. Blackie, 1942.

[179] E. T. Whittaker and G. Robinson. The Calculus of Observations: An Introduction to
Numerical Analysis. Dover, 4th edition, 1967.

[180] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford, 1965.

[181] Ragnar Winther. Some superlinear convergence results for the conjugate gradient
method. SIAM Journal on Numerical Analysis, 17(1):14–17, 1980.

[182] Tjalling J. Ypma. Historical development of the Newton-Raphson method. SIAM
Review, 37(4):531–551, 1995.

Draft September 23, 2016, do not distribute Page 337

INDEX INDEX

Draft September 23, 2016, do not distribute Page 338

Index

0-stability, 297

accuracy, 1
adaptivity, 2
Aitken, Alexander Craig, 28
argmax, 87
argmin, 87
arity, 110
Arnoldi, Walter Edwin, 248
assignment, 2

backsubstitution, 37
backward differentiation formula, 300
band structure, 59
banded matrix, 59
bandwidth, 59
BDF, 300
Bernoulli number, 50
Bernoulli, Jakob, 50
Bernstein, Sergei Natanovich, 199
best approximation, 193
Birkhoff, George David, 186
Bring radical, 247

cache, 55
cache hit, 55
cache miss, 55
Cauchy, Augustin Louis, 74
central processing unit, 55
CG: conjugate gradients, 141
characteristic polynomial, 296
Chebyshev, Pafnuty Lvovich, 178
Cholesky factorization, 57
Cholesky, André-Louis, 57
chord method, 22
compact factorization, 53
complete flag, 92
complexity, 2

composite rules, 218
condition number, 153, 260
conjugate gradient method, 141
consistency, 1
contraction, 273
contraction mapping principle, 283
convergent matrix, 93
CPU, 55
Crout, Prescott Durand, 62

diagonally dominant, 126
Dickson, L. E., xiv
Dirichlet, Gustav Peter Lejeune, 63
divided difference, 162
Doolittle, Myrick Hascall, 55
double precision accumulation, 313

efficiency, 2
Erdös, Paul, 184
Euler, Leonhard, 179
Euler-Maclaurin formula, 228
explicit Euler, 276

fangcheng, 35
fixed point, 2
fixed-point iteration, 2
flag, 92
forward substitution, 37
Frobenius, Ferdinand Georg, 85
full pivoting, 43
functional iteration, 18

Gauss points, 216
Gauss, Johann Carl Friedrich, 35
generalized diagonal dominance, 131
generating function, 235
global convergence, 5
Golub, Gene Howard, 239

339

INDEX INDEX

Gram, Jørgen Pedersen, 77
Gram-Schmidt, 76
greedy algorithm, 145
Gregorie/Gregory, James, 224

Henrici, Peter, 301
Hermite, Charles Hermite, 184
Hessenberg form, 247
Hessenberg matrix, 248
Hestenes, Magnus Rudolph, 155
Hilbert matrix, 58
Hilbert, David, 58
homotopy method, 241
Hölder, Otto Ludwig, 70

implicit Euler, 276
improved Euler, 293
inner-product spaces, 68
interpolate, 160
inverse iteration, 263
irreducible, 135
iterative improvement, 317

Jordan matrix, 261

Kahan, W. M. (a.k.a. Velvel), 314
kernel, 70
Klein, Felix, 135
Krylov, Alexei Nikolaevich, 150
Kummer, Ernst, 70

Lagrange, Joseph-Louis, 160
Lanczos, Cornelius, 248
Lebesgue constant, 182
Lebesgue function, 182
line search, 142
linear form, 184
linear functional, 184
link relevance, 240
Lipschitz, Rudolf Otto Sigismund, 18
lower-Hessenberg matrix, 248
lower-triangular matrix, 37
LU factorization, 38

matrix free methods, 116
matrix splitting, 125
maximum norm, 165
memory references, 53

midpoint rule, 214
Minkowski, Hermann, 71
modulus of continuity, 200
Moore, E. H., xiv
Moore, R. L., xiii
multipliers, 36

Newton, Isaac, 17
nilpotent, 94
norm, 67
normal equations, 78

octave, 2
ODE: ordinary differential equation, 271
operation estimates, 40
order of exactness, 215
orthogonality condition, 75

partial pivoting, 43
Peano kernel, 221
Peano, Giuseppe, 219
Peirce, Benjamin, 323
petaflop, 35
Picard, Charles Emile, 273
pivoting, 43
predictor-corrector, 293
projection, 161

QR factorization/decomposition, 78
quadrature, 213
quadrature coefficients, 213

Raphson, Joseph, 22
Rayleigh a.k.a. John William Strutt, 246
reducible, 135
residual, 142
root condition, 297
Runge, Carl David Tolmé, 167

Schmidt, Erhard, 77
Schur decomposition, 88
Schur, Issai, 83
Schwarz, Karl Hermann Amandus, 74
search direction, 142
secant method, 25
Seidel, Philipp Ludwig, 125
semigroup property, 273
Sherman-Morrison formula, 63

Draft September 23, 2016, do not distribute Page 340

INDEX INDEX

shift index, 94
Simpson’s rule, 214
Simpson, Thomas, 22
singular value decomposition, 266
singular values, 266
sparse, 59
sparsity, 53
spectral radius, 85
splitting, 125
stability, 1
stable, 9
Stiefel, Eduard, 155
Stirling, James, 208
Stokes, George, 125
Strang, Gilbert, 301
supports a flag, 92

Taylor polynomial, 106
tensor, 110

tensor eigenproblem, 114
trapezoidal rule, 214
triangular matrix, 37
Turing, Alan, 57

ultraradical, 247
uniquely determines, 185
unisolvent, 185
unit ball, 69
upper-Hessenberg matrix, 248
upper-triangular matrix, 37

Weierstrass, Karl Theodor Wilhelm, 159
Wilkinson, James Hardy, 57
work estimates, 40

Young, William Henry Young, 71

zero stability, 297

Draft September 23, 2016, do not distribute Page 341

