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Solvation in picomaterials
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Polar liquids play singular role in
• Protein interactions (water most important

molecule in biology)
• Ionic solvation (ionic liquids)
• Environmental pollution (HCl hydrate)
• Energy production (methane hydrate)
• Batteries
• Photovoltaic cells
Dielectric effect critical for protein interactions

Picoscale models needed



Solvation models
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Modeling issues for solvation
• Solvents are mobile, not fixed in orientation

• Nonlocal effects (frequency dependence):
high dimension

• Nonlinear models: do they achieve same results as
nonlocal ones?

• Ionic effects: can size effects be modeled via
continuum equations? E.g., Na Cl

• Algorithms to resolve nonlinear (e.g., ionic)

interactions

• Need molecular scale models of solvation



Electrostatic modeling: ionic effects
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Protein sidechains have large electrostatic gradients

Figure 1: Different models suggest different modes of interactions. Shown
are two nonlocal dielectric models with (A) and without (B) ionic effects.



Water is complicated
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Water network from a molecular dynamics simulation



Dielectric effect of water
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(a) Polarity of water molecule

(b) Ability to rotate allows water to
align with electric field e

Result: water screens electric field



Competing effects
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Competing effects: why this is so hard

Protein sidechains have large electrostatic gradients
Water is a strong dielectric
Hydrophobic groups modify the water structure

Large electrostatic gradients Screening by dielectric effect

Modulation of dielectric strength by hydrophobic effect

Figure 2: Three competing effects that determine protein behavior. These
conspire to weaken interactive forces, making biological relationships more
tenuous and amenable to mutation.



Charges in a dielectric
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Charges in a dielectric are like lights in a fog.



Dielectric model
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Consider two charge distributions ρ (fixed charges) and γ (polar
groups free to rotate). Resulting electric potential φ satisfies

∆φ = ρ+ γ, (1)

where the dielectric constant of free space is set to one.

Write φ = φρ + φγ, where ∆φγ = γ and ∆φρ = ρ.

Ansatz of Debye [3]: the electric field eγ = ∇φγ is parallel to
(opposing) the resulting electric field e = ∇φ:

∇φγ = (1− ε)∇φ. (2)

Thus ∇φρ = ∇φ−∇φγ = ε∇φ and

∇ · (ε∇φ) = ρ. (3)



Polarization field and Debeye’s Ansatz as projection
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Define p = ∇φγ: called the polarization field.

Recall e = ∇φ.

Write p = (ǫ− ǫ0)e+ ζe⊥, so that

ǫ = ǫ0 +
p · e

e · e
,

with the appropriate optimism that p = 0 when e = 0.

That is, ǫ− ǫ0 reflects the correlation between p and e.

As defined, ǫ is a function of r and t, and potentially singular.

However, Debye postulated that a suitable average ǫ̃ should be well

behaved:

ǫ̃ = ǫ0 +
〈
p · e

e · e

〉
.



Interpretation of ε
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In bulk water ε is a (temperature-dependent) constant:

ε ≈ 87.74− 40.00 τ + 9.398 τ 2 − 1.410 τ 3, τ ∈ [0, 1], (4)

where τ = T/100 and T is temperature in Centigrade
(for T > 0) [4].

ε >> 1: opposing field strength Eγ = ∇φγ much greater
than inducing field.

ε increases with decreasing temperature;
when water freezes, it increases further:
for ice at zero degrees Centigrade, ε ≈ 92.

Increased coherence yields increased
dielectric



Model failure
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But model fails when the spatial frequencies of the
electric field e = ∇φ are commensurate with the size of
a water molecule, since the water molecules cannot
orient appropriately to align with the field.



Model fixes
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Manipulations leading to (3) valid when ε is an
operator, even nonlinear.

Frequency-dependent versions of ε have been
proposed, and these are often called ‘nonlocal’
models.

The operator ε must be represented either as
a Fourier integral (in frequency space), or as
an integral in physical space with a nonlocal
kernel [1, 6].



Frequency dependence of dielectric constant
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Debye observed that the effective permittivity is frequency dependent:

ǫ(ν) = ǫ0 +
ǫ1 − ǫ0

1 + τ2Dν
2

(5)

where τD is characteristic time associated with dielectric material and ν is
temporal wave number. Many experiments have verified this [5]:



Polar residues cause spatial high frequencies
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Charged sidechains form salt bridge networks
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Nonlocal models
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Survey of results from two papers:

Xie Dexuan, Yi Jiang, Peter Brune, and L. Ridgway
Scott.
A fast solver for a nonlocal dielectric continuum model.
SISC, 34(2):B107–B126, 2012.

Xie Dexuan, Yi Jiang, and L. Ridgway Scott.
Efficient algorithms for solving a nonlocal dielectric
continuum model for protein in ionic solvent
SISC, to appear



Nonlocal dielectric
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Linearized Poisson-Boltzmann equation:

−∇ · (ǫ∇Φ(r)) = ρ (6)

In bulk dielectric, ǫ is a constant.

But in general it depends on the frequency of Φ, e.g.

ǫf = f +K ∗ f (7)
where

K̂(ξ) =
1

1 + |ξ|2
. (8)

So convolution with K is the inverse of a PDE.

Can solve using a system of two PDEs.



Free energy differences
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Figure 3: Comparisons of analytical free energy differences calculated
from the nonlocal dielectric model with two values of λ (λ = 15Å and
λ = 30Å) and the values from chemical experiments.



Singularity resolution
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Step 0: Let G be the solution to ∆G = ρ in all space:

G(x) =
∑ qi

|x− xi|
.

Find u0 ∈ H1
0(Ω) such that

a0(u0, w) = ℓ0(w) ∀w ∈ H1
0(Ω), (9)

where ℓ0 and a0 are linear and bilinear forms as defined
by (λ > 0 is a model parameter)

a0(u0, w) = λ2

∫

Ω

∇u0 · ∇w dr+

∫

Ω

u0w dr,

ℓ0(w) =

∫

Ω

G(r)w(r) dr.
(10)



Nonlocal model with protein
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For φ
˜
= (Φ, u) and v

˜
= (v1, v2), define

a(φ
˜
, v
˜
) =

∫

Ω

ǫ(r)∇Φ(r) · ∇v1(r)dr

+ (ǫs − ǫ∞)

∫

Ds

∇u(r) · ∇v1(r)dr

+λ2

∫

Ω

∇u(r) · ∇v2(r)dr+

∫

Ω

(u(r)− Φ(r))v2(r)dr,

(11)

where ǫp, ǫs, ǫ∞ and λ are constants, and

ǫ(r) =

{
ǫp, r ∈ Dp (protein),

ǫ∞, r ∈ Ds (solvent),
(12)



Nonlocal variational equations
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Find φ
˜
1 = (Ψ, u1), φ

˜
2 = (Φ̃, u2) ∈ V such that

a(φ
˜
1, v
˜
) = ℓ1(v

˜
) ∀v

˜
∈ V ,

a(φ
˜
2, v
˜
) = ℓ2(v

˜
) ∀v

˜
∈ V ,

(13)

where ℓ1(v˜
) and ℓ2(v˜

) are two linear forms as defined by

ℓ1(v
˜
) = (ǫ∞ − ǫs)

∫

Dp

∇u0(r) · ∇v1(r)dr

+ (ǫp − ǫ∞)

∫

Ds

∇G(r) · ∇v1(r)dr,

ℓ2(v
˜
) =

1

ǫ0

n∑

i=1

qi

∫

Ds

ci(r)v1(r)dr.

(14)



Surface mesh of BPTI
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The nonlocal model solution Φ is given by

Φ = Ψ+ Ψ̃ +G

Key point: singularity G is added at the end.
∇G appears in ℓ1 only on the solvent domain Ds where
there are no fixed charges.
The auxiliary variables satisfy

u = Φ ∗Qλ, u1 = Ψ ∗Qλ, u2 = Ψ̃ ∗Qλ

u = u0 + u1 + u2



Surface mesh of BPTI
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Mesh cross-section around BPTI
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Surface electrostatics of BPTI
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Figure 4: Nonlocal model yields different potential at protein surface.



Nonlinear models
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Polarization field ∇φγ saturates for large fixed fields:

lim
|∇φ|→∞

(1− ε)∇φ = lim
|∇φ|→∞

∇φγ = C, (15)

One simple model that satisfies (15) is

ε(x) = ε0 +
ε1

1 + λ|∇φ(x)|
(16)

for some constants ε0, ε1, and λ.

Both the nonlocal and nonlinear models of the dielectric response have
the effect of representing frequency dependence of the dielectric effect.

|∇φ(x)| provides a proxy for frequency content, although it will not reflect
accurately high-frequency, low-power electric fields.

Combination of nonlocal and nonlinear dielectric models may be needed.



Local model for dielectric effect?
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Hydrophobic (CHn) groups remove water locally.

This causes a reduction in ε locally.
(Resulting increase in φ makes dehydrons sticky.)

This can be quantified and used to predict binding sites.

The placement of hydrophobic groups near an
electrostatic bond is called wrapping.

Like putting insulation on an electrical wire.

(Wrapping modifies dielectric effect)

We can see this effect on a single hydrogen bond.



Wrapping protects hydrogen bond from water
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Extent of wrapping changes nature of hydrogen bond
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Hydrogen bonds (B) that are not protected from water do not persist.

From De Simone, et al., PNAS 102 no 21 7535-7540 (2005)



Dynamics of dehydrons
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Dynamics of hydrogen bonds and wrapping
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Figure 5: Distribution of bond lengths for two hydrogen bonds formed in a
structure of the sheep prion [2]. Horizontal axis measured in nanometers,
vertical axis represents numbers of occurrences taken from a simulation
with 20, 000 data points with bin widths of 0.1 Ångstrom. Distribution for the
well-wrapped hydrogen bond (H3) has smaller mean value but a longer (ex-
ponential) tail, whereas distribution for the underwrapped hydrogen bond
(H1) has larger mean but Gaussian tail.



Ligand binding removes water
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Binding of ligand changes underprotected hydrogen
bond (high dielectric) to strong bond (low dielectric)

No intermolecular bonds needed!



Dehydrons
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Dehydrons
in human hemoglobin, From
PNAS 100: 6446-6451 (2003) Ariel Fernandez,
Jozsef Kardos, L. Ridgway Scott, Yuji
Goto, and R. Stephen Berry. Structural defects
and the diagnosis of amyloidogenic propensity.

Well-wrapped hydrogen bonds
are grey, and dehydrons are green.

The standard ribbon
model of “structure” lacks indicators
of electronic environment.



Mathematical explanation
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Charges ρ induce an electric field e = ∇φ given by

∇ · (ǫ∇φ) = ∇ · (ǫe) = ρ

Energy = −
∫
ρφ dx

Hydrophobicity affects the operator ǫ: removing water
reduces ǫ.

When ǫ goes down, φ goes up.

Hydrophilic groups contribute to the right-hand side ρ.

Hydrophobicity and hydrophilic are orthogonal, not
opposites.



Antibody binding to HIV protease
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The
HIV protease
has a dehydron
at an antibody
binding site.

When the
antibody binds
at the dehydron,
it wraps it with
hydrophobic
groups.



A model for protein-protein interaction
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Foot-and-mouth disease virus assembly from small proteins.



Dehydrons guide binding
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Dehydrons guide binding of component proteins VP1, VP2 and
VP3 of foot-and-mouth disease virus.



Extreme interaction: amyloid formation
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Standard application of bioinformatics: look at distribution tails.
If some is good, more may be better, but too many may be bad.
Too many dehydrons signals trouble: the human prion.

From PNAS 100: 6446-6451 (2003) Ariel Fernandez, Jozsef Kardos, L.
Ridgway Scott, Yuji Goto, and R. Stephen Berry. Structural defects and
the diagnosis of amyloidogenic propensity.



Genetic code
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Genetic code minimizes changes of polarity due to single-letter codon
mutations, but it facilitates changes in wrapping due to single-letter codon
mutations.
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First digit after residue name is amount of wrapping. Second indicator is
polarity; | |: nonpolar, +−: polar, −−: negatively charged, ++: positively
charged.



Drug ligand wrapping

LRS Digital Biology 2014 40/47

Drug ligand provides additional non-polar carbonaceous group(s) in the
desolvation domain, enhancing the wrapping of a hydrogen bond.



Desolvation spheres
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Desolvation spheres for flap Gly-49–Gly-52 dehydron
containing nonpolar groups of the wrapping inhibitor.



Aligned paralogs
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Aligned backbones for two paralog kinases; dehydrons for Chk1 are
marked in green and those for Pdk1 are in red.



Selective wrapper

LRS Digital Biology 2014 43/47

Dehydron Cys673-Gly676 in C-Kit is not conserved in its paralogs Bcr-Abl,
Lck, Chk1 and Pdk1. By methylating Gleevec at the para position (1), the
inhibitor becomes a selective wrapper of the packing defect in C-Kit.



Experimental confirmation
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Phosphorylation rates from spectrophotometric assay on the five kinases
Bcr-Abl (blue), C-Kit (green), Lck (red), Chk1 (purple), and Pdk1 (brown)
with Gleevec (triangles) and modified Gleevec methylated at positions (1)
and (2) (squares). Notice the selective and enhanced inhibition of C-Kit.



Conclusions
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Some advances in solvation modeling

• Now tractable to compute
nonlocal dielectric models

• Simple models (wrapping/dehydrons)
give consistent predictions at
picoscale

• Have been used to aid drug
design



Thanks
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This talk was based on joint work with

• Peter Brune (Argonne Nat. Lab.),
Yi Jiang and Dexuan Xie (UWisconsin-Milwaukee)

• Steve Berry (U. Chicago),
Ariel Ferndandez (Calderon Inst., Argentina),
Chris Fraser (Bioanalytical Computing),
Kristina Rogale Plazonic (Princeton),
Harold Scheraga (Cornell)

We thank the Institute for Biophysical Dynamics at the
University of Chicago and NSF for support.

We are also grateful to the developers of the PDB,
Viper, DIP, and other biological data bases.
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