next up previous
Next: Diameter of Up: Discrete Math, 12th Problem Previous: Discrete Math, 12th Problem

Min Deg

Definition 1.1   The minimum degree % latex2html id marker 1856
$ \mathop{\rm min\,deg}(G)$ of a permutation group $ G$ is the minimum of the degrees of the nonidentity elements of $ G$.

For example, % latex2html id marker 1862
$ \mathop{\rm min\,deg}(S_n)=2$, % latex2html id marker 1864
$ \mathop{\rm min\,deg}(A_n)=3$, % latex2html id marker 1866
$ \mathop{\rm min\,deg}(D_n)$ is $ n-2$ if $ n$ is even and $ n-1$ if $ n$ is odd. % latex2html id marker 1876
$ \mathop{\rm AGL}(d,q)$ acts on $ {\mathbb{F}_q}^d$, which has $ n=q^d$ elements, has % latex2html id marker 1882
$ \mathop{\rm min\,deg}=q^d-q^{d-1}=n(1-\frac 1q)\ge \frac n2$.


\begin{exercise}
% latex2html id marker 873
(A.~Bochert c.~1895) If $G<S_n$\ is ...
...t $A_n$\ or $S_n$), then $\mathop{\rm min\,deg}(G)\ge\frac n4-2$.
\end{exercise}

Theorem 1.2 (Jordan)   If $ G<S_n$ is primitive, then % latex2html id marker 1887
$ \mathop{\rm min\,deg}(G)\to\infty$ as a function of $ n$.

For example, $ S_k<S_n$ with $ n=\binom{k}{2}\sim
\frac{k^2}{2}$ acting on two-element subsets, is primitive. The degree of a transposition in this induced action is $ 2(k-2)$ and % latex2html id marker 1897
$ \mathop{\rm min\,deg}=2(k-2)\sim\sqrt{8n}$. The classification of finite simple groups can be used to show that this is minimal among primitive permutation groups of degree $ n$, but elementary arguments already give the right order of magnitude; they show that the minimum degree of a primitive permutation group must be at least $ c\sqrt{n}$.



Varsha Dani 2003-08-15