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m Visualize the global structure of a language

m Solve a technical problem in the unsupervised learning of
morphology (past tenses of English verbs)

m Develop a language-independent method















The algorithm is in three steps:

First, a determination of similarity between all pairs of
words based on a simple comparison of word-context, and
the creation of a graph C whose edge-weights is determined
directly by those similarities.

Second, the computation of the K most significant
eigenvectors of the normalized Laplacian of graph C, and
the calculation of the coordinates of each of the words in R”
based on these eigenvectors (where K is approximately 10).

Third, calculation of a new distance d(.,.) between all pairs
of words, viewing the words as points in RX; a new graph
S is constructed, whose edge weights are directly based on
distance in RX.
The graph S can be directly viewed, using data
visualization tools such as Gephi, and various clustering
techniques can be applied to it as well.



First step: 1

Property

W(-1) = wj the word to the immediately left of w is w,
W(1) = wj the word to the immediately right of w is
W(-2) = wj the word two words left of w is wj; etc.
W(-2-1) = (wjwg) W(-2)=w; and W(-1)=wy,.

W(-1,1) = (wjwg) W(-1)=w; and W(1)=wy.
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First step: 2

With all of our experiments described below, we have used the
three features W(-2,-1), W(-1,1), and W(1,2).

Thus, in a corpus consisting the sun shines in Hyde Park, the
word shines would be assigned three features: (the, sun); (sun,
in); and (in, Hyde).



First step: 3

m Let V be the number of distinct word types in the language.

m Then there are in principle V' features of the type W(-2,-1),
and also of the type W(-1,1) and W(1,2).

m But the number of such features that are actually used is a
small subset of the total number.

m For example, in an English-language encyclopedia
composed of 888,000 distinct words, there were 1,689,000
distinct trigrams, of which 1,465,000 (nearly 87%) occur
only once.



First step: 4

m We define f(w;,w;) as the number of distinct features
(using the contextual features just defined) shared by
words w; and wj.

m [t is natural to think of a graph Cin which the nodes are
our words, and the edges are weighted by f(w;, w;).

m The weight between two nodes indicates how many contexts
they share, so all other things being equal, the stronger the
weight of the edge between word A and word B, the more
similar A and B are concerning their syntactic contexts.



Laplacian of a graph is a matrix

m The laplacian of a graph, such as C, is defined as the
matrixM in which M (i, j) = f(w;, wj) when i # j.

m For the diagonal elements, we first define d(i) as
Zk;ﬁi M(ia k) :

m d(7) is the number of times word i appears in the corpus
(you see that?).

m M (i,4) is defined as —1 x d(1).



® We now have an initial similarity measure between words,
but this similarity is not normalized for frequency: high
frequency words will be much more similarity to others
words that low frequency words will.

m Even if we normalize for frequency, though, the simplest
ways of estimating similarity of distribution between two
words on the basis of this data—using the cosine of the
angle subtended by vectors pointing to each of the two
words—is not as good as we might hope.



Second step: 1

m A number of researchers have explored the idea of taking a
large set of data in a space of very high dimensionality, and
finding a subspace of much lower dimensionality which is
almost everywhere fairly close to the data.

m We've been especially influenced by the work of Partha
Niyogi and Mikhail Belkin in the discussion that follows.



Second step: 2

m This means finding the eigenvectors of a normalized version
of the graph laplacian.

m The normalized version of M, which we call N, is defined
as follows: for all ¢, N(i,i) = —1, while for (7,7),i # j, we
use the d() function defined above to normalize, and say

that N(i,j) = %.



Second step and third step

We computed the first 11 eigenvectors of this normalized
laplacian—those with the lowest eigenvalues, and used the 2nd
through the 11th to give us coordinates for each word. Each
word is thus associated with a point in R'?. We then select, for
each word, the k closest words to it in this new space. These
are the neighbors that we will explore below.



infinitifs

adj. de pays ,, noms de villes

passe simple
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Help with learning morphology
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m There is a simple connection between minimizing the
squared distance between nodes (though we haven’t
explained yet what kind of distance we are talking about
now) of a weighted graph and the graph’s Laplacian. We
assume that no vertex is adjacent to itself.

m From a purely formal point of view, we could say that we
are looking for a vector = in RV which minimizes the
expression, where W is the adjacency matrix of the graph,
and w; ; are its entries:

D (@i — ) wiy (1)

0]



m Now we get to the kind of distance we’re talking about:
from the point of view of a projection, imagine that the
entries w; ; in matrix W express the “similarity” between
the i*" and the j' element. We are looking for a single
vector X, then, which assigns very similar values to its i**
and j*" coordinate just in case those two coordinates
correspond to elements that are “similar”.

m We can think of that vector as representing a map from the
graph’s nodes to the real line; that is how we will think
about it now, for the most part.



m We define a diagonal matrix D such that d;; is the sum of
the weights associated with edges adjacent to the it*
vertex: d;; = Ej w;j. Then

ZZ(%—% Wi = ZZx —I—m —2xizi)w;  (2)
i



—ZZ ww+ZZ wij 222%% (3)

—Z wazz Jwi — 222%% (4)
=D ady Yy wiy wig—2) Y wmwjw (5)
= Zl’?dm + Zl‘?dﬂ -2 Z inxjww (6)

i j i



m The first two terms are identical, and each are equal to
XTDX, while the third term is twice X7 W X. So

ZZ —zj)’w;; = 2(XTDX-XTWX) = 2(XT(D-W)X)

(7)
m It turns out that the matrix D-W has a name: it is the
laplacian of the matrix W (or the graph of which W is the
adjacency matrix). So we’ll write £ = D — W. And there is
a more natural way of writing X7 (D — W)X, which is to
write (X, £X), which we can read as the inner product of
the vector X and the vector £X.



m If we restrict our attention to vectors of unit length, then
this quantity (X, £X) is called the Rayleigh quotient. And
we can find its maximal and minimal values along the
eigenvectors of the laplacian. This is quite remarkable!

m Before we get to why that should be the case, we are going
to squeeze the matrix so that its major diagonal consists of
just 1’s. We do this by defining a normalized laplacian, by
dividing each entry /;; of £ by ﬁ\/@. We can write this:

L =D :LD 2 (8)



m If you are following this, you can see that
L'=I-D WD 2.

m The first term is the identity matrix; the second has Os
down the major diagonal, and is symmetric, and has only
positive values; let’s call it W/, because it is the normalized
form of W.

m And we have a better intuitive understanding of a matrix
such as W', because it can naturally describe an ellipsoid:
if we look at points x such that (z, W’x) is a constant, we
get an ellipsoid.

m Furthermore, W’z is a vector normal to the surface of that
ellipsoid at the point x.

m If we think about this geometrically, that means that
(z, W'z) will be a local maximum when 2 and W’z point
in the same direction — which is the same thing as saying
that z is an eigenvector of W’.



m So we look at the eigenvectors of W', or of £'. If we look at
the eigenvectors of W', we sort them by decreasing
eigenvalue, so \g is the largest eigenvalue, and its
eigenvector simply reflects the overall frequencies of the
graph.

m Note: sometimes people start number the eigenvalues at 1,
and sometimes at 0, as I have done here.] The second
eigenvalue, A1, is of great importance in graph theory. Here
we care about its eigenvector, though, and we look at the
values it assigns to each word.
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