John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Probability for linguists

John A Goldsmith

July 6, 2015

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

ъ

John A Goldsmith

- probability and distributions
- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

Overall strategy

- 1 probabilities and distributions
- 2 unigram probability
- **3** a word about *parametric* distributions
- **4** -1 $\times log_2$ probability (or *plog*: positive log probability)
- **6** *bigram* probability: conditional probability
- **6** *mutual information*: the log of the ratio of the observed to the "expected"

うして ふゆう ふほう ふほう ふしつ

- \bigcirc average plog \rightarrow entropy
- 8 encoding events: compression, optimal compression, and cross-entropy
- **9** encoding grammars optimally

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

A distribution

イロト 不得下 イヨト イヨト

ъ

Big point 1

A distribution is a list of numbers that are not negative and that sum to 1.

$$\sum_{i} p_i = 1$$
$$p_i \ge 0$$

John A Goldsmith

probability and distributions

- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

A probabilistic grammar

- A probabilistic model, or grammar, is a universe of possibilities ("sample space") + a distribution.
- A probabilistic grammar is a distribution over all strings of the IPA alphabet.
- It is not a formalism stating which strings are *in* and which are *out*.

うして ふゆう ふほう ふほう ふしつ

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

The purpose of a probabilistic model

Big point 2

The purpose of a probabilistic model is to test the model against the data.

- Suppose we have some well-chosen data D. Then the best grammar is the one that assigns the highest probability to D, all other things being equal.
- The goal is not to test the data!
- Therefore: all grammars must be probabilistic, so they can be tested and evaluated.

うして ふゆう ふほう ふほう ふしつ

Probability

・ロト ・雪ト ・ヨト ・ヨト

-

Probability for linguists

John A Goldsmith

probability and distributions

- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

- The quantitative theory of evidence.
- If we have *variable* data, then probability is the best model to use.
- If we have *categorical* (not variable) data, probability is still the best model to use.

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Probabilities and frequencies

Probabilities and frequencies are not the same thing.

- Frequencies are *observed*.
- Probabilities are values in a system that a human being creates and *assigns*.
- We can choose to assign probabilities as the observed frequencies—buy that is not always a good idea.
- This is a good idea only so long as we don't need to handle yet-unseen (never before seen) data.
- In many cases, this choice maximizes the probability of the data.
- They both deal with *distributions* (i.e., the observed frequencies and the probability distributions of a model).

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Probabilities and frequencies

Probabilities and frequencies are not the same thing.

- *Counts* are counts: the number of things or events that fall in some category.
- *Frequency* is ambiguous: it either means count (less often) or it means *relative frequency*: a ratio between a count of something and the total number of things that fall within the larger category.

うして ふゆう ふほう ふほう ふしつ

• There are 63,147 occurrences of *the* in the Brown Corpus, out of 1,017,904; 6.2% of the words in the Brown Corpus are *the*.

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

English, French, Spanish

Let's take a look at some languages.

And for starters, let's just look at *unigram* frequencies: the frequencies at which items appear, not conditioned by the environment.

people.cs.uchicago.edu/jagoldsm/course/class1

John A Goldsmith

- probability and distributions
- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

- We will assign probabilities to every outcome we consider.
- Each of these is typically quite small.
- We therefore use a slightly different way of talking about small numbers: plogs.

Plogs

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Inverse log probabilities, or *plogs*

A way to describe small numbers... upside down.

A probability	its plog
0.5	1
0.25	2
0.128	3
$\frac{\frac{1}{16}}{\frac{1}{32}}$	4
$\frac{1}{32}$	5
$\frac{1}{1024}$	10
$\frac{1}{1,000,000}$	almost 20

- The *bigger* the plog, the *smaller* the probability.
- It's a bit like a measure of markedness, if you think of more marked things as being less frequent.
- $plog(x) = -log_2(x) = log_2(\frac{1}{x})$

John A Goldsmith

probability and distributions 6 Unigram 5 probabilities 4 Logarithm3 and plogs 3 From sing2 symbols to strings 0

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

This diagram from a visually interactive program displaying phonological complexity at:

http://hum.uchicago.edu/~jagoldsm/PhonologicalComplex

・ロト ・雪ト ・ヨト ・ヨト

3

John A Goldsmith

Most and least frequent phonemes in English

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

rank	phoneme	frequency	plog	
1	#	0.20	2.30	
2	Ð	0.066	3.92	
3	n	0.058	4.10	
4	\mathbf{t}	0.056	4.17	
5	\mathbf{S}	0.041	4.61	
6	r	0.040	4.76	
7	d	0.037	4.85	
8	1	0.035	4.94	
9	k	0.026	5.27	
10	é	0.025	5.31	
45	э́у	0.000 78	10.32	
46	ĕ	0.000 69	10.50	
47	ž	$0.000\ 54$	10.84	
48	ay	$0.000 \ 38$	11.36	
49	ă	$0.000 \ 36$	11.42	æ

John A Goldsmith

average plogs

probability
and distri-
butions

Unigram
probabili-
ties

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

ranl	$\mathbf{x} \mid \text{orthograph}$	y phonemes	$av. plog_1$
1	a	Ð	3.11
2	an	ən	3.44
3	to	tə	3.47
4	and	ənd	3.80
5	eh	é	3.88
6	the	ə	3.88
7	can	kən	3.90
8	an	én	3.91
9	Ann	én	3.91
10	in	ín	3.91

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへぐ

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Worst words in English

rank	orthography	phonemes	$av. plog_1$
$63,\!195$	bourgeois	bĭržwá	7.21
$63,\!196$	Ceausescu	čŏčéskŭ	7.21
$63,\!197$	Peugeot	p yŭžó	7.22
$63,\!198$	Giraud	žayró	7.24
$63,\!199$	Godoy	gádoy	7.27
$63,\!200$	geoid	jí́əĭyd	7.40
$63,\!201$	Cesare	čĕzárĕ	7.40
63,202	Thurgood	θớgĭd	7.47
$63,\!203$	Chenoweth	čénŏwĕθ	7.49
$63,\!204$	Qureshey	kəréšĕ	7.54

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Probability for linguists John A

Word counts and frequencies

probability	
and distri-	
butions	

Goldsmith

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

	word	count	frequency	plog
1	the	69903	0.068271	3.87
2	of	36341	0.035493	4.81
3	and	28772	0.028100	5.15
4	to	26113	0.025503	5.29
5	a	23309	0.022765	5.46
6	in	21304	0.020807	5.59
7	that	10780	0.010528	6.57
8	is	10100	0.009864	6.66
9	was	9814	0.009585	6.70
10	he	9799	0.009570	6.70
11	for	9472	0.009251	6.77
12	\mathbf{it}	9082	0.008870	6.82
13	with	7277	0.007107	7.14
14	as	7244	0.007075	7.14
15	his	6992	0.006829	7.19

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへで

John A Goldsmith

- probability and distributions
- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

Unigram model

うして ふゆう ふほう ふほう ふしつ

- The probability of a string S, of length L, is $\lambda(L)$ times the probability of each of the symbols.
- $p_U(S) = \lambda(L) \times \prod_i S[i]$
- If we sum over all strings of a given length l, the sum of their probabilities is $\lambda(l)$. That's just math.
- This is the model that takes no information about ordering into account.
- Because plogs are additive, it makes sense to ask what the average plog of a word is. In the unigram model, they describe an extensive property.

John A Goldsmith

- probability and distributions
- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

Conditional probabilty

- p(A, given B)
- p(A|B)
- $\frac{p(A \text{ and } B)}{p(B)}$
- p(A's name is "John") < p(A's name is "John" given that A is male and American)
- p(A=Queen of hearts)
- p(A=Queen of hearts | A is a red card)

John A Goldsmith

- probability and distributions
- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

Conditional probability in a string

- p(S[i]=h given that S[i-1]=t)
- p(S[i]=h | S[i-1]=t)
- p(S[i]=book | S[i-1] = the) > p(S[i]=book)
- p(S[i]=the | S[i+1]=book) > p(S[i]=book)
- These are not statements of *causality*.

John A Goldsmith

probability and distributions

- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Addition is easier to understand than multiplication

- In the unigram model, the probability of the string = product of the probabilities of its symbols.¹
- If we use plogs, the log probability of the string is the sum of the plogs of its symbols.

ъ

¹ignoring length of string...

John A Goldsmith

probability and distributions

- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Using plogs with conditional probability

- The probability goes up when we use a better model (i.e., one that encodes more knowledge about the system) that takes into consideration the factors in the neighborhood that helped lead to the events we saw.
- The bigram conditional probability is usually greater than the unigram probability in real data.
- The difference between the bigram plog and the unigram plog is called the *mutual information* (MI).

$$\log \frac{p(AandB)}{p(A)p(B)} = \log \frac{p(AandB)}{p(A)} \frac{1}{p(B)} = \log p(B|A) - \log p(B)$$

うして ふゆう ふほう ふほう ふしつ

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Pointwise mutual information (MI)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ● ●

John A Goldsmith

probability and distributions

- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

A reminder about events, and "a & b"

- There is no implicit statement about location of the events when we write "a & b".
- p(W[i] = "of" & W[i+1]="the")
- p(W[i] = "of" & W[i+5] = "the")
- If we look at the second, the MI will be very close to zero.

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Bigram model

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

・ロト ・聞ト ・ヨト ・ヨト

æ

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

- $p_U = \prod p(S[i])$
- = p_U (the catison the mat)
- = $p_U(t) \times p_U(h) \times p_U(e) \times p_U(c) \dots \times p_U(t)$
- = $p_U(a) \times p_U(a) \times p_U(c) \times p_U(e) \times p_U(e) \dots \times p_U(t)$
- = $(p_U(a))^2 \times p_U(c) \times (p_U(e))^2 \times (p_U(e))^2 \dots \times p_U(t)$

• = $\prod_{l \text{ in alphabet A}} p(a)^{\text{count of } l \text{ in string}}$

John A Goldsmith

probability and distributions

 $\begin{array}{c} {}_{\mathrm{probabili}}^{\mathrm{probabili}}_{\mathrm{ties}} & 6\\ {}_{\mathrm{Logarithm}} & 5\\ {}_{\mathrm{and \ plogs}} & 4 \end{array}$

From singl3 symbols to strings of 2 symbols 1

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Average below is 2.58 (down from 4.64)

(日)、(四)、(日)、(日)、

э

John A Goldsmith

probability and distributions

- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

Using plogs with conditional probability

- We saw that the probability goes up when we use a better model that takes into consideration the factors in the neighborhood that helped lead to the events we saw.
- The bigram conditional probability is usually greater than the unigram probability in real data.
- The difference between the bigram plog and the unigram plog is called the *mutual information* (MI).

うして ふゆう ふほう ふほう ふしつ

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Pointwise mutual information (MI)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ の�?

(日)、(四)、(日)、(日)、 э

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Word counts and frequencies:

repeated

	-			· · ·	
	word	count	frequency	plog	
1	the	69903	$0.068\ 271$	3.87	
2	of	36341	$0.035\ 493$	4.81	
3	and	28772	$0.028\ 100$	5.15	
4	to	26113	$0.025\ 503$	5.29	
5	a	23309	$0.022\ 765$	5.46	
6	in	21304	$0.020\ 807$	5.59	
7	that	10780	$0.010\ 528$	6.57	
8	is	10100	$0.009\ 864$	6.66	
9	was	9814	$0.009\ 585$	6.70	
10	he	9799	$0.009\ 570$	6.70	
11	for	9472	$0.009\ 251$	6.77	
12	it	9082	$0.008\ 870$	6.82	
13	with	7277	$0.007\ 107$	7.14	
14	as	7244	$0.007\ 075$	7.14	
15	his	6992	0.006 829	7.19	

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

	Top of the Brown Corpus for					
			words following the			
	word	count	count / 69,936			
0	first	664	$0.009 \ 49$			
1	same	629	0.008 99			
2	other	419	0.005 99			
3	most	419	0.005 99			
4	new	398	0.005 69			
5	world	393	$0.005 \ 62$			
6	united	385	0.005 51			
7	state	271	0.004 18			
8	two	267	0.003 82			
9	only	260	0.003 72			
10	time	250	0.003 57			
11	way	239	$0.003\ 42$			
12	old	234	$0.003 \ 35$			
13	last	223	0.003 19			
14	house	216	0.003 09			

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

Top of the Brown Corpus for words following *of*.

э

		word	count	count / 36,388
1	L	the	9724	0.267
2	2	a	1473	$0.040\ 5$
3	3	his	810	$0.022 \ 3$
4	1	this	553	$0.015\ 20$
Ę	5	their	342	0.009 40
6	5	course	324	0.008 90
7	7	these	306	$0.008 \ 41$
8	3	them	292	$0.008 \ 02$
ę)	an	276	$0.007\ 58$
1	0	all	256	$0.007 \ 04$
1	1	her	252	$0.006 \ 93$
1	12	our	251	0.006 90
1	13	its	229	0.006 29
1	4	it	205	$0.005\ 63$
1	15	that	156	0.004 29

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditiona probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account **Cross entropy**: where we keep the empirical frequencies, but vary the distribution whose plog we use to compute the entropy. This is the "cross-entropy" of one distribution to the other (but not symmetrical!). Entropy, or self-entropy, is always smaller than cross-entropy.

$$\sum_{x} p(x) ln \frac{q(x)}{p(x)} \le \sum_{x} p(x) (1 - \frac{q(x)}{p(x)}) \tag{1}$$

Why? Look at the plot of ln(x), and compute its first and second derivatives, and its value at (1,0).

$$=\sum_{x} p(x) - \sum_{x} p(x) \frac{q(x)}{p(x)} = 1 - 1 = 0.$$
 (2)

So $\sum_{x} p(x) ln(\frac{q(x)}{p(x)} \leq 0$, which is to say, the cross-entropy always exceeds the entropy that isn't cross, when we use natural logs as our base.

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account But we can maintain the inequality when we switch to base 2 logs (which is what we use with plogs), since it just amounts to multiplying both sides by a constant. First we get:

$$\sum_{x} p(x) \ln q(x) \le \sum_{x} p(x) \ln p(x) \tag{3}$$

and then we multiply by -1:

$$\sum_{x} p(x) plogp(x) \le \sum_{x} p(x) plog q(x)$$
(4)

The Kullback-Leibler divergence $D_{KL}(p,q)$ is defined as KL divergence

$$\sum_{x} p(x) \ln \frac{p(x)}{q(x)} \tag{5}$$

You see that it's the difference between the cross-entropy and the self-entropy—pay careful attention to the *absence* of a minus before the sum.

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

$$\prod_{i=1}^{i=len(string)} S[i] = \prod_{l \in lexicon} l^{count_S(l)}.$$
 (6)

$$logprob(S) = \sum_{lexicon} count_S(l) logprob(l).$$
(7)

$$plog(S) = \sum_{lexicon} count_S(l)plog(l).$$
 (8)

If we divide through by the length of our string, we get the average which is Shannon's entropy:

$$entropy(S) = \sum_{lexicon} freq_S(l) \, plog(l). \tag{9}$$

・ロト ・ 一下・ ・ ヨト ・ 日 ・

3

This is more familiar if we write $-\sum p(x)logp(x)$.

John A Goldsmith

probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability first steps in taking sequence into account

Conditional probability: first steps in taking sequence into account

cross-entropy of two distributions

$$-\sum_{x\in X} \mathbf{p}(\mathbf{x}) \log \mathbf{q}(\mathbf{x}). \tag{10}$$

イロト 不得下 イヨト イヨト

ъ

John A Goldsmith

- probability and distributions
- Unigram probabilities
- Logarithms and plogs
- From single symbols to strings of symbols
- Conditional probability: first steps in taking sequence into account
- Conditional probability: first steps in taking sequence into account

cross-entropy is less than self-entropy

- **p()** and **q()** are two different distributions.
- How do $-\sum p(x) \log p(x)$ and $-\sum p(x) \log q(x)$ compare?
- $-\sum p(x) \log p(x) + \sum p(x) \log q(x) = \sum p(x) \log \frac{q(x)}{p(x)}$
- Suppose we use natural logs: then we know that $ln(x) \leq (x-1)$.
- $\sum_{x \to \infty} p(x) \log \frac{q(x)}{p(x)} \le \sum_{x \to \infty} p(x) \left[\frac{q(x)}{p(x)} 1 \right] = \sum_{x \to \infty} p(x) \sum_{x \to \infty} q(x) = 1 1 = 0$
- So $-\sum p(x) \log p(x)$ (the entropy) is always smaller than the cross-entropy $-\sum p(x) \log q(x)$