```
Probability
for linguists
into
account
Conditional
probability:
first steps
in taking
sequence
into
```

John A
Goldsmith
probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence

Probability for linguists

John A Goldsmith

July 6, 2015
(1) probabilities and distributions
(2) unigram probability
(3) a word about parametric distributions
(4) $-1 \times \log _{2}$ probability (or $p l o g:$ positive \log probability)
(5) bigram probability: conditional probability
(6) mutual information: the \log of the ratio of the observed to the "expected"
(7) average plog \rightarrow entropy

8 encoding events: compression, optimal compression, and cross-entropy
(9) encoding grammars optimally

```
Probability
for linguists
into
```

John A
Goldsmith
probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence into account

Conditional probability: first steps in taking sequence

A distribution

Big point 1
A distribution is a list of numbers that are not negative and that sum to 1 .

$$
\begin{gathered}
\sum_{i} p_{i}=1 \\
p_{i} \geq 0
\end{gathered}
$$

A probabilistic grammar

- A probabilistic model, or grammar, is a universe of possibilities ("sample space") + a distribution.
- A probabilistic grammar is a distribution over all strings of the IPA alphabet.
- It is not a formalism stating which strings are in and which are out.

The purpose of a probabilistic
 model

The purpose of a probabilistic model is to test the model against the data.

- Suppose we have some well-chosen data D. Then the best grammar is the one that assigns the highest probability to D , all other things being equal.
- The goal is not to test the data!
- Therefore: all grammars must be probabilistic, so they can be tested and evaluated.

```
Probability
for linguists
    John A
Goldsmith
probability
and distri-
butions
Unigram
probabili-
ties
Logarithms
and plogs
Probability
- The quantitative theory of evidence.
- If we have variable data, then probability is the best model to use.
- If we have categorical (not variable) data, probability is still the best model to use.

\section*{Probabilities and frequencies}

Probabilities and frequencies are not the same thing.
- Frequencies are observed.
- Probabilities are values in a system that a human being creates and assigns.
- We can choose to assign probabilities as the observed frequencies-buy that is not always a good idea.
- This is a good idea only so long as we don't need to handle yet-unseen (never before seen) data.
- In many cases, this choice maximizes the probability of the data.
- They both deal with distributions (i.e., the observed frequencies and the probability distributions of a model).

\section*{Probabilities and frequencies}

Probabilities and frequencies are not the same thing.
- Counts are counts: the number of things or events that fall in some category.
- Frequency is ambiguous: it either means count (less often) or it means relative frequency: a ratio between a count of something and the total number of things that fall within the larger category.
- There are 63,147 occurrences of the in the Brown Corpus, out of \(1,017,904 ; 6.2 \%\) of the words in the Brown Corpus are the.

\section*{English, French, Spanish}

Let's take a look at some languages. And for starters, let's just look at unigram frequencies: the frequencies at which items appear, not conditioned by the environment.
people.cs.uchicago.edu/jagoldsm/course/class1
```

Probability
for linguists
John A
Goldsmith

```
Plogs

\section*{Inverse log probabilities, or plogs}

A way to describe small numbers... upside down.
\begin{tabular}{c|c} 
A probability & its plog \\
\hline 0.5 & 1 \\
0.25 & 2 \\
0.128 & 3 \\
\(\frac{1}{16}\) & 4 \\
\(\frac{1}{32}\) & 5 \\
\(\frac{1}{1024}\) & 10 \\
\(\cdots\) & \(\cdots\) \\
\(\frac{1}{1,000,000}\) & almost 20
\end{tabular}
- The bigger the plog, the smaller the probability.
- It's a bit like a measure of markedness, if you think of more marked things as being less frequent.
- \(p l o g(x)=-\log _{2}(x)=\log _{2}\left(\frac{1}{x}\right)\)

\section*{Plogs}

John A
Goldsmith
probability
and distri-
butions
Unigram probabilities

Logarithms and plogs

From single symbols to


John A
Goldsmith
probability and distri butions
Unigram
probabili-

Logarithms and plogs 3

Average is 4.64 below: \(\int\)


This diagram from a visually interactive program displaying phonological complexity at:
http://hum.uchicago.edu/~jagoldsm/PhonologicalComplex

Most and least frequent phonemes in English
\begin{tabular}{cccc} 
rank & phoneme & frequency & plog \\
\hline 1 & \(\#\) & 0.20 & 2.30 \\
2 & a & 0.066 & 3.92 \\
3 & n & 0.058 & 4.10 \\
4 & t & 0.056 & 4.17 \\
5 & s & 0.041 & 4.61 \\
6 & r & 0.040 & 4.76 \\
7 & d & 0.037 & 4.85 \\
8 & 1 & 0.035 & 4.94 \\
9 & k & 0.026 & 5.27 \\
10 & \(\dot{\text { a }}\) & 0.025 & 5.31 \\
\hline 45 & वy & 0.00078 & 10.32 \\
46 & \(\check{y}\) & 0.00069 & 10.50 \\
47 & ž & 0.00054 & 10.84 \\
48 & ăy & 0.00038 & 11.36 \\
49 & ă & 0.00036 & 11.42
\end{tabular}

Probability for linguists

John A
Goldsmith

\section*{average plogs}
\begin{tabular}{c|l|l|c|} 
rank & orthography & phonemes & av. \(\log _{1}{ }^{2}\) \\
\hline 1 & a & ə & 3.11 \\
2 & an & ən & 3.44 \\
3 & to & tə & 3.47 \\
4 & and & ənd & 3.80 \\
5 & eh & غ́ & 3.88 \\
6 & the & ə & 3.88 \\
7 & can & kən & 3.90 \\
8 & an & ǽn & 3.91 \\
9 & Ann & ǽn & 3.91 \\
10 & in & in & 3.91 \\
\hline
\end{tabular}

\section*{Worst words in English}
\begin{tabular}{|c|c|c|c|}
\hline rank & orthography & phonemes & av. \(\mathrm{plog}_{1}\) \\
\hline 63,195 & bourgeois & băržwá & 7.21 \\
\hline 63,196 & Ceausescu & čŏčćskŭ & 7.21 \\
\hline 63,197 & Peugeot & p yưžó & 7.22 \\
\hline 63,198 & Giraud & žayró & 7.24 \\
\hline 63,199 & Godoy & gádoy & 7.27 \\
\hline 63,200 & geoid & jíวyd & 7.40 \\
\hline 63,201 & Cesare & čězárě & 7.40 \\
\hline 63,202 & Thurgood & \(\theta \dot{\text { ¢́gñ }}\) & 7.47 \\
\hline 63,203 & Chenoweth & čénว̆wĕ \(\theta\) & 7.49 \\
\hline 63,204 & Qureshey & kəréšĕ & 7.54 \\
\hline
\end{tabular} for linguists

John A Goldsmith

Word counts and frequencies
\begin{tabular}{l|l|l|l|l} 
& word & count & frequency & plog \\
\hline 1 & the & 69903 & 0.0688271 & 3.87 \\
2 & of & 36341 & 0.035493 & 4.81 \\
3 & and & 28772 & 0.028100 & 5.15 \\
4 & to & 26113 & 0.025503 & 5.29 \\
5 & a & 23309 & 0.022765 & 5.46 \\
6 & in & 21304 & 0.020807 & 5.59 \\
7 & that & 10780 & 0.010528 & 6.57 \\
8 & is & 10100 & 0.009864 & 6.66 \\
9 & was & 9814 & 0.009585 & 6.70 \\
10 & he & 9799 & 0.009570 & 6.70 \\
11 & for & 9472 & 0.009251 & 6.77 \\
12 & it & 9082 & 0.008870 & 6.82 \\
13 & with & 7277 & 0.007107 & 7.14 \\
14 & as & 7244 & 0.007075 & 7.14 \\
15 & his & 6992 & 0.006829 & 7.19
\end{tabular}

\section*{Unigram model}
- The probability of a string S , of length L , is \(\lambda(L)\) times the probability of each of the symbols.
- \(p_{U}(S)=\lambda(L) \times \prod_{i} S[i]\)
- If we sum over all strings of a given length \(l\), the sum of their probabilities is \(\lambda(l)\). That's just math.
- This is the model that takes no information about ordering into account.
- Because plogs are additive, it makes sense to ask what the average plog of a word is. In the unigram model, they describe an extensive property.

John A
Goldsmith

\section*{Conditional probabilty}
- \(\mathrm{p}(\mathrm{A}\), given B\()\)
- \(\mathrm{p}(A \mid B)\)
- \(\frac{p(A \text { and } B)}{p(B)}\)
- \(\mathrm{p}(\mathrm{A}\) 's name is "John" \()<\mathrm{p}(\mathrm{A}\) 's name is "John" given that A is male and American)
- \(\mathrm{p}(\mathrm{A}=\) Queen of hearts)
- \(\mathrm{p}(\mathrm{A}=\) Queen of hearts \(\mid \mathrm{A}\) is a red card \()\)

\title{
Conditional probability in a string
}
- \(\mathrm{p}(\mathrm{S}[\mathrm{i}]=\mathrm{h}\) given that \(\mathrm{S}[\mathrm{i}-1]=\mathrm{t})\)
- \(p(S[i]=h \mid S[i-1]=t)\)
- \(\mathrm{p}(\mathrm{S}[\mathrm{i}]=\) book \(\mid \mathrm{S}[\mathrm{i}-1]=\) the \()>\mathrm{p}(\mathrm{S}[\mathrm{i}]=\) book \()\)
- \(p(S[i]=\) the \(\mid S[i+1]=\) book \()>p(S[i]=\) book \()\)
- These are not statements of causality.
```

Probability
for linguists
John A
Goldsmith

Addition is easier to understand than multiplication

- In the unigram model, the probabilility of the string $=$ product of the probabilities of its symbols. ${ }^{1}$
- If we use plogs, the log probability of the string is the sum of the plogs of its symbols.

Using plogs with conditional probability

- The probability goes up when we use a better model (i.e., one that encodes more knowledge about the system) that takes into consideration the factors in the neighborhood that helped lead to the events we saw.
- The bigram conditional probability is usually greater than the unigram probability in real data.
- The difference between the bigram plog and the unigram plog is called the mutual information (MI).

$$
\log \frac{p(A a n d B)}{p(A) p(B)}=\log \frac{p(A a n d B)}{p(A)} \frac{1}{p(B)}=\log p(B \mid A)-\log p(B)
$$

John A
Goldsmith

Pointwise mutual information (MI)

probability

 and distributionsUnigram probabilities

Logarithms and plogs
From single symbols to strings of symbols

Conditional probability: first steps in taking sequence
into
account
Conditional
probability:
first steps
in taking
sequence
into
account

A reminder about events, and "a

\& b"

- There is no implicit statement about location of the events when we write "a \& b".
- $\mathrm{p}(\mathrm{W}[\mathrm{i}]=$ "of" $\& \mathrm{~W}[\mathrm{i}+1]=$ "the" $)$
- $\mathrm{p}(\mathrm{W}[\mathrm{i}]=$ "of" $\& \mathrm{~W}[\mathrm{i}+5]=$ "the" $)$
- If we look at the second, the MI will be very close to zero.

Unigram model with MI

John A
Goldsmith

probability and distri-

 butionsUnigram probabiliaverage:
Logarithms
and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence
into
account
Conditional
probability:
first steps
in taking
sequence
into

Probability for linguists

John A Goldsmith

Bigram model

Probability for linguists

John A
Goldsmith
probability and distributions

Unigram probabilities

Logarithms and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence

into

account
Conditional probability: first steps in taking sequence into
6.7


```
Probability
for linguists
```

John A Goldsmith

- $p_{U}=\prod p(S[i])$
- $=p_{U}$ (thecatisonthemat)
- $=\mathrm{p}_{U}(t) \times p_{U}(h) \times p_{U}(e) \times p_{U}(c) \ldots \times p_{U}(t)$
- $=p_{U}(a) \times p_{U}(a) \times p_{U}(c) \times p_{U}(e) \times p_{U}(e) \ldots \times p_{U}(t)$
- $=\left(\mathrm{p}_{U}(a)\right)^{2} \times p_{U}(c) \times\left(p_{U}(e)\right)^{2} \times\left(p_{U}(e)\right)^{2} \ldots \times p_{U}(t)$
- $=\prod_{1 \text { in alphabet A }} p(a)^{\text {count of } 1 \text { in string }}$

Probability for linguists

John A
Goldsmith

probability and distri-

 butionsUnigram probabili. $\begin{array}{ll}\text { ties } & 6 \\ \text { Logarithm }\end{array}$

and plogs | 6 |
| :--- |
| 5 |
| 4 |
| 3 |

Conditional
probability:
first steps
in taking sequence

account

Conditional probability: first steps in taking sequence into
account

Average below is 2.58 (down from 4.64)

John A Goldsmith

Average below is 2.58 (down from 4.64)

Green: Mutual information in stations Blue: Unigyjam flot in stations

Using plogs with conditional probability

- We saw that the probability goes up when we use a better model that takes into consideration the factors in the neighborhood that helped lead to the events we saw.
- The bigram conditional probability is usually greater than the unigram probability in real data.
- The difference between the bigram plog and the unigram plog is called the mutual information (MI).

Probability for linguists

John A Goldsmith

Probability for linguists

John A
Goldsmith
and distri-
butions
Unigram
probabili-
ties
Logarithms
and plogs
From single
symbols to
strings of
symbols
Conditional
probability:
first steps
in taking
sequence
into
account
Conditional
probability:
first steps
in taking
sequence
into
account

John A
Goldsmith

Pointwise mutual information (MI)

probability

 and distributionsUnigram probabilities

Logarithms and plogs
From single symbols to strings of symbols

Conditional probability: first steps
in taking sequence
into
account

Conditional probability: first steps in taking sequence into
account

Unigram model with MI

John A
Goldsmith

probability and distri-

 butionsUnigram probabili-
average:
Logarithms
and plogs

From single symbols to strings of symbols

Conditional probability: first steps in taking sequence

into

account

Conditional probability: first steps in taking sequence

Probability
for linguists for linguists

John A Goldsmith

Word counts and frequencies:

repeated

	word	count	frequency	plog
1	the	69903	0.068271	3.87
2	of	36341	0.035493	4.81
3	and	28772	0.028100	5.15
4	to	26113	0.025503	5.29
5	a	23309	0.022765	5.46
6	in	21304	0.020807	5.59
7	that	10780	0.010528	6.57
8	is	10100	0.009864	6.66
9	was	9814	0.009585	6.70
10	he	9799	0.009570	6.70
11	for	9472	0.009251	6.77
12	it	9082	0.008870	6.82
13	with	7277	0.007107	7.14
14	as	7244	0.007075	7.14
15	his	6992	0.006829	7.19

John A Goldsmith

Top of the Brown Corpus for

words following the

	word	count	count / 69,936
0	first	664	0.00949
1	same	629	0.00899

0.00599
0.00599
0.00569
0.00562
0.00551
0.00418
0.00382
0.00372
0.00357
0.00342
0.00335
0.00319
0.00309

Conditional

Top of the Brown Corpus for

 words following of.| | word | count | count $/ 36,388$ |
| :--- | :--- | :--- | :--- |
| 1 | the | 9724 | 0.267 |
| 2 | a | 1473 | 0.0405 |
| 3 | his | 810 | 0.0223 |
| 4 | this | 553 | 0.01520 |
| 5 | their | 342 | 0.00940 |
| 6 | course | 324 | 0.00890 |
| 7 | these | 306 | 0.00841 |
| 8 | them | 292 | 0.00802 |
| 9 | an | 276 | 0.00758 |
| 10 | all | 256 | 0.00704 |
| 11 | her | 252 | 0.00693 |
| 12 | our | 251 | 0.00690 |
| 13 | its | 229 | 0.00629 |
| 14 | it | 205 | 0.00563 |
| 15 | that | 156 | 0.00429 |

Cross entropy: where we keep the empirical frequencies, but vary the distribution whose plog we use to compute the entropy. This is the "cross-entropy" of one distribution to the other (but not symmetrical!). Entropy, or self-entropy, is always smaller than cross-entropy.

$$
\begin{equation*}
\sum_{x} p(x) \ln \frac{q(x)}{p(x)} \leq \sum_{x} p(x)\left(1-\frac{q(x)}{p(x)}\right) \tag{1}
\end{equation*}
$$

Why? Look at the plot of $\ln (x)$, and compute its first and second derivatives, and its value at $(1,0)$.

$$
\begin{equation*}
=\sum_{x} p(x)-\sum_{x} p(x) \frac{q(x)}{p(x)}=1-1=0 \tag{2}
\end{equation*}
$$

So $\sum_{x} p(x) \ln \left(\frac{q(x)}{p(x)} \leq 0\right.$, which is to say, the cross-entropy always exceeds the entropy that isn't cross, when we use natural logs as our base.

But we can maintain the inequality when we switch to base 2 logs (which is what we use with plogs), since it just amounts to multiplying both sides by a constant. First we get:

$$
\begin{equation*}
\sum_{x} p(x) \ln q(x) \leq \sum_{x} p(x) \ln p(x) \tag{3}
\end{equation*}
$$

and then we multiply by -1 :

$$
\begin{equation*}
\sum_{x} p(x) p \log p(x) \leq \sum_{x} p(x) p \log q(x) \tag{4}
\end{equation*}
$$

The Kullback-Leibler divergence $D_{K L}(p, q)$ is defined as KL divergence

$$
\begin{equation*}
\sum_{x} p(x) \ln \frac{p(x)}{q(x)} \tag{5}
\end{equation*}
$$

You see that it's the difference between the cross-entropy and the self-entropy-pay careful attention to the absence of a minus before the sum.

$$
\begin{gather*}
\prod_{i=1}^{i=\operatorname{len}(\text { string })} S[i]=\prod_{l \in \text { lexicon }} l^{\operatorname{count}_{S}(l)} \\
\operatorname{logprob}(S)=\sum_{\text {lexicon }} \operatorname{count}_{S}(l) \operatorname{logprob}(l) \tag{6}\\
\operatorname{plog}(S)=\sum_{\text {lexicon }} \operatorname{count}_{S}(l) \operatorname{plog}(l) \tag{7}
\end{gather*}
$$

If we divide through by the length of our string, we get the average which is Shannon's entropy:

$$
\begin{equation*}
\operatorname{entropy}(S)=\sum_{\text {lexicon }} \operatorname{freq}_{S}(l) p l o g(l) \tag{9}
\end{equation*}
$$

This is more familiar if we write $-\sum p(x) \log p(x)$.

```
Probability
for linguists
```

John A
Goldsmith
Logarithms
and plogs
From single
symbols to
strings of
symbols
Conditional
probability:
first steps
in taking
sequence
into
account
Conditional
probability:
first steps
in taking
sequence
into
account

```
probability and distributions

Unigram probabili-
```

```
ties
```

```
```

ties

```
cross-entropy of two distributions
\(-\sum_{x \in X} \mathrm{p}(\mathrm{x}) \log \mathrm{q}(\mathrm{x})\).

\section*{cross-entropy is less than self-entropy}
- p() and q() are two different distributions.
- How do \(-\sum \mathrm{p}(\mathrm{x}) \log \mathrm{p}(\mathrm{x})\) and \(-\sum \mathrm{p}(\mathrm{x}) \log \mathrm{q}(\mathrm{x})\) compare?
- \(-\sum \mathrm{p}(\mathrm{x}) \log \mathrm{p}(\mathrm{x})+\sum \mathrm{p}(\mathrm{x}) \log \mathrm{q}(\mathrm{x})=\sum \mathrm{p}(\mathrm{x}) \log \frac{q(x)}{p(x)}\)
- Suppose we use natural logs: then we know that \(\ln (x) \leq(x-1)\).
- \(\sum \mathrm{p}(\mathrm{x}) \log \frac{q(x)}{p(x)} \leq \sum \mathrm{p}(\mathrm{x})\left[\frac{q(x)}{p(x)}-1\right]=\) \(\sum p(x)-\sum q(x)=1-1=0\)
- So \(-\sum \mathrm{p}(\mathrm{x}) \log \mathrm{p}(\mathrm{x})\) (the entropy) is always smaller than the cross-entropy \(-\sum \mathrm{p}(\mathrm{x}) \log \mathrm{q}(\mathrm{x})\)```

