Class 2a: Word learning

2.1 Language induction: Word chunking

A good deal of work beginning in the late 1960s. Two widely-cited MIT dissertations in the mid 1990s on this, by Michael Brent and Carl de Marcken.

3749 sentences, 400,000 characters:

TheFultonCountyGrandJurysaidFridayaninvestigationofAtl anta'srecentprimaryelectionproducednoevidencetha yirregularitiestookplace.f Thejuryfurthersaidinterm-endpresentmentsthattheCityE xecutiveCommittee,whichhadover-allchargeoftheelecti on,deservesthepraiseandthanksoftheCityofAtlantaforthe annerinwhichtheelectionwasconducted...

The Fulton County Grand Ju ry s aid Friday an investi gation of At l anta 's recent prim ary e lection produc ed no e videnc e that any ir regul ar it i es took place. Thejury further s aid in term - end present ment s thatthe City Ex ecutive Commit tee,which had over - all charg e ofthe e lection, de serves the pra is e and than k softhe City of At 1 anta forthe man ner in whichthe e lection was conduc ted.

Fig. 2.1: The two problems of word segmentation

Select the lexicon \mathcal{L} which minimizes the description length of the corpus \mathcal{C}. A lexicon \mathcal{L} is a distribution $p r_{\mathcal{L}}$ over a subset of Σ^{*}. \mathcal{L} 's length is the length in bits in some specified format (the format matters!) and encoding. Any such distribution assigns a minimal encoding (up to trivial variants) to the corpus, and this encoding requires precisely $-\log p(\mathcal{C})$ bits. The description length of a corpus given lexicon \mathcal{L} is defined as $|\mathcal{L}|-\operatorname{logpr}_{\mathcal{L}} \mathcal{C}$: select the lexicon that minimizes this quantity (as best you can). $|\mathcal{L}|$ comes into the picture because if we assume \mathcal{L} is expressed in a binary-encoded format in which no morphology is a prefix of another, this encoding induces a natural probability distribution, with $p(l)$ proportional to $2^{|l|}$

A lexicon L is a pair of objects $\left(L, p_{L}\right)$:

- a set $L \in A^{*}$, and
- a probability distribution p_{L} that is defined on A^{*} for which L is the support of p_{L}. We call L the words.
- We insist that $\mathrm{A} \in \mathrm{L}$: all individual letters are words;
- We define a language as a subset of L^{*}; its members are sentences.
- Each sentence can be uniquely associated with an utterance (an element in A^{*}) by a mapping F:

Lexicon 1: a,b,c,..., z
Lexicon 2: $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{t}, \mathrm{th}, \ldots \mathrm{z}$
How do these two models of English compare? Why (and how) is Lexicon 2 better?

$$
\begin{aligned}
& {[t] } \text { count of } t \\
& {[h] } \text { count of } h \\
& {[t h] } \text { count of } t h \\
& \mathrm{Z} \text { total number of words (tokens) } \\
&=\sum_{m \in \text { lexicon }}[m] \\
& \hline
\end{aligned}
$$

Let's compare the probability of the corpus under each of those assumptions regarding the correct lexicon. Let's break out the log probability of corpus $=\sum_{\text {minlexicon }}[m] \log \frac{[m]}{Z}$ into its component terms:

(i) all letters are separate words	(ii) $t h$ treated as a word
$[t]_{1} \log \frac{[t]_{1}}{Z_{1}}$	$[t]_{2} \log \frac{[t]_{2}}{Z_{2}}$
$[h]_{1} \log \frac{h]_{1}}{Z_{1}}$	$[h]_{2} \log \frac{h]_{2}}{Z_{2}}$
$\sum_{m \neq t, h}[m]_{1} \log \frac{[m]_{1}}{Z_{1}}$	$\sum_{m \neq t, h}[m]_{1} \log \frac{[m]_{1}}{Z_{2}}$
	$[t h]_{2} \log \frac{[t h]_{2}}{Z_{2}}$
$[t]_{1}$	$[t]_{2}=[t]_{1}-[t h]$
$[h]_{1}$	$[h]_{2}=[h]_{1}-[t h]$
Z_{1}	$Z_{2}=Z_{1}-[t h]$

Word discovery A good deal of work beginning in the late 1960s. Two widely-cited MIT dissertations in the mid 1990s on this, by Michael Brent and Carl de Marcken. We will explore this in detail, because the most important result that emerges from this work is that where the method fails, it fails for an extremely interesting reason: it fails because it does not know enough linguistics. This does not invalidate the overall conception; it means that the methods for extracting structure and system must be smarter than cookie-cutters, and that is excellent news!

3749 sentences, 400,000 characters:

TheFultonCountyGrandJurysaidFridayaninvestigationofAtl anta'srecentprimaryelectionpr yirregularitiestookplace.f Thejuryfurthersaidinterm-endpresentmentsthattheCityE xecutiveCommittee,whichhadover-allchargeoftheelecti on,deservesthepraiseandthanksoft annerinwhichtheelectionwasconducted ...

The Fulton County Grand Ju ry s aid Friday an investi gation of At 1 anta 's recent prim ary e lection produc ed no e videnc e that any ir regul ar it i es took place. Thejury further s aid in term - end present ment s thatthe City Ex ecutive Commit tee,which had over - all charg e ofthe e lection, de serves the pra is e and than k softhe City of At l anta forthe man ner in whichthe e lection was conduc ted.

Select the lexicon \mathcal{L} which minimizes the description length of the corpus \mathcal{C}. A lexicon \mathcal{L} is a distribution $p r_{\mathcal{L}}$ over a subset of Σ^{*}. \mathcal{L} 's length is the length in bits in some specified format (the format matters!) and encoding. Any such distribution assigns a minimal encoding (up to trivial
variants) to the corpus, and this encoding requires precisely $-\operatorname{logpr}(\mathcal{C})$ bits. The description length of a corpus given lexicon \mathcal{L} is defined as $|\mathcal{L}|-\operatorname{logpr}_{\mathcal{L}} \mathcal{C}$: select the lexicon that minimizes this quantity (as best you can). $|\mathcal{L}|$ comes into the picture because if we assume \mathcal{L} is expressed in a binary-encoded format in which no morphology is a prefix of another, this encoding induces a natural probability distribution, with $\operatorname{pr}(l)$ proportional to $2^{|l|}$

piece	count	status
th	127,717	
he	119,592	
in	86,893	
er	81,899	
an	72,154	
re	67,753	
on	61,275	
es	59,943	
en	55,763	
at	54,216	
ed	52,893	
nt	52,761	
st	52,307	
nd	50,504	
ti	50,253	
to	48,233	
or	47,391	
te	44,280	
ea	41,913	
is	41,159	
ar	40,402	
of	40,296	
ha	39,922	
it	39,304	
ng	39,018	

Iteration number 2

Corpus cost: 43,593,516.07501816
Dictionary cost: 670.9952683596506
Break based Word Precision 0.2617 recall 0.9837
Token based Word Precision 0.0317 recall 0.1134
Type based Word Precision 0.7048 recall 0.0011

piece	count	status
the	51,775	
ou	35,767	
al	34,321	
and	29,107	
ing	27,883	
as	24,936	
ll	24,681	
ro	22,267	
om	21,073	
ic	20,855	
ec	20,185	
el	19,262	
le	18,278	
ly	17,604	
il	16,559	16,232
ac	16,115	
se	16,076	
em	16,076	
co	15,381	14,940
li	14,706	
wa	$14,7,632$	
ch	14	
ur	14,241	
be	14,224	
ion	13,762	

Corpus cost: $34,131,012.08884644$
Dictionary cost: 842.2498702922143

Break based Word Precision 0.2917 recall 0.9642
Token based Word Precision 0.0624 recall 0.1965
Type based Word Precision 0.6538 recall 0.0012

Iteration number 3

piece	count	status
for	12,923	
ent	12,373	
id	12,290	
ow	11,441	
wh	11,121	
wi	10,302	
am	10,268	
that	10,003	
ad	9,995	
ver	9,969	9,840
gh	9,840	
ld	9,582	
no	9,357	
was	9,295	
ation	9,188	
im	9,011	
ir	8,788	
ig	8,539	
ts	8,425	
ith	8,384	8,356
ers	8,324	
ol	8,195	
ter	8,195	
ther	8,158	
ri	8,100	

Corpus cost: 30,164,461.41543184
Dictionary cost: 1,040.771864391648

Break based Word Precision 0.3125 recall 0.9626
Token based Word Precision 0.0770 recall 0.2260
Type based Word Precision 0.6000 recall 0.0014

Iteration number 4

piece	count	status
ve	8,192	
ab	8,034	
The	7,997	
with	7,681	
ce	7,577	
ay	7,506	
ag	7,467	
ofthe	7,456	
his	7,021	
us	6,810	
et	6,709	
pro	6,572	
ut	6,476	
ap	6,441	
,and	6,313	
su	6,260	
od	6,024	
un	6,006	
ep	5,973	
tion	5,972	
op	5,967	
ul	5,918	
po	5,798	
bu	5,766	
ain	5,712	

absen	ce
absen	ce

absen	t		
absen	t	ee	
absen	t	ee	ism
absen	t	ee	S
absen	t	ia	
abso	1	ut	e
abso	1	ut	e
abso	1	ut	e
abso	1	ut	i
abso	1	ut	i
abso	1	ut	i
abso	1	ut	i
abso	1	ved	
abso	r	aka	
abso	r	b	
abso	r	b	able
abso	r	b	e
abso	r	b	e
abso	r	b	e
abso	r	b	e
abso	r	b	e
abso	r	b	ing
abso	r	b	s
abso	r	pti	on
abso	r	pti	ve
abst	ain		
abst	ain	ed	
abst	ain	ing	
abst	e	miousness	
abst	e	ntion	
abst	inence		
abst	ract		
abst	ract	ed	
abst	ract	i	ng
abst	ract	i	on
abst	ract	i	on

abst	ract	ly	
abst	ract	s	
absurd			m
absurd	i	s	t
absurd	i	s	t
absurd	i	s	ies
absurd	i	t	y
absurd	i	t	
absurd	ly		

2.2 Sequitur: a non-probabilistic approach

2.3 MDL style approaches to word learning

2.3.1 What works well

2.3.2 What does not work well

Two serious problems: MDL is used primarily as a stopping criterion, and it does not do a good job of that. Even more importantly, the learning confuses word learning and phrase learning from the start; and slices off suffixes putting them together with following high frequency words. MDL is incapable of handling this problem as long as we stay with nothing but words.

Learning morphology

3.1 Class 2b: Zellig Harris

3.1.1 Harris 1955

3.1.2 Harris 196x

3.1.3 Hafer and Weiss

Hafer and Weiss 1974: Word segmentation by letter successor varieties

Information Storage and Retrieval 10 371-385

They point out the question of: which is the stem?

Four techniques:

1. SF threshold
2. Peak and plateau (or just peaks?")h make a cut at point k when $\mathrm{SF}(\mathrm{k})$ is $>=\mathrm{SF}(\mathrm{k}-1)$ and also $\mathrm{SF}(\mathrm{k})>=\mathrm{SF}(\mathrm{k}+1)$.
3. Is the stem a free standing word?
4. Entropy of successor letter set

Best: 11 and 15.

1. SF threshold: worked so badly that they did not pursue it.
2. Both SF and PF reach "cutoff" (threshold). They don't tell us what the threshold used was! Other evidence suggests it was 5 and 17 for SF and PF respectively. Precision: 0.894, recall 0.511
3. Threshold exceeded by the sum of SF and PF. Precision 0.848 , recall 0.565 . They don't give the threshold, again!
4. Make breaks only after a " completed word" . Precision 0.904, recall 0.318 .
5. The mirror image of 4: Useless.
6. Make breaks after a completed word, OR PF reaches threshold. Precision 0.778 recall 0.711 .
7. SF at "peak and plateau" Precision: 0.486 recall 0.734 . This works very badly at the beginning of words.
8. Both SF and PF are at "peak and plateau": Precision 0.787, recall 0.569 .
9. Sum of SF and PF are at "peak and plateau" Recall: 0.828 precision: 0.441. This makes 3 times as many cuts as method 8 , and 80
10. Make breaks after a complete word, also where PF is at "peak or plateau": works for FIND-ING, COMPUT-ER. Precision 0.484, Recall 0.937.
11. Hybrid of method 2 and 6 : Make a cut when either of the following conditions is met:
a) a. Left to right: completed word $\mathrm{PF}>=5$; OR
b) b. $\mathrm{SF}>=2$ and $\mathrm{PF}>=17$

Precision 0.91 recall 0.610
Entropy-based techniques:
12. Left to right: completed word, PF-entropy > -3. Precision 0.72, recall 0.728 .
13. Sum of entropies greater than threshold $=4$, and also make break after complete word (or before complete word). Precision 0.609 recall 0.59.
14. Entropy version of 11 : Make a cut when:
a) Left to right completed word and predecessor entropy $>=$ 0.8, OR
b) Right to left completed word and successor entropy $>=1.0$. Precision 0.874, recall 0.526 .
15. Relaxation of 14: basically just a fudge, not interesting, I think. Cut as in 14, OR: if SF $=1$ at point k , and EITHER SuccEntropy or PreEntropy $>=0.8$ at $\mathrm{k}+1$, cut at $\mathrm{k}+1$.

3.2 Finding signatures

3.3 Learning morphology: Linguistica

Signatures	Exemplar	Descr. Length (model)	Corpus Count	Stem Count	Source
NULL-s	accommodation	12996.7	13787	978	SFI
's-NULL	a*a*u	4237.23	8263	324	SFI
NULL-ly	according	3436.6	3391	259	SF1
NULL-ed-ing-s	account	886.936	2852	76	SFI
-eding	allott	1036.02	272	71	SF1
-NULL.ed	abolish	1308.03	392	91	SF1
NULL.ed.s	accent	646.789	859	51	SF1
-NULL.ing.s	boat	592.372	1060	46	SFl
-NULL.ing	abound	1078.03	528	76	SFI
-NULL.ed.ing	absorb	503.885	364	37	SFI
-ing.s	awaken	172.814	29	11	SF1
-ed.ing.s	fad	56.9268	13	3	SFI
's-NULL-s	afternoon	967.65	4258	83	SFI
e-ed-es-ing	accus	480.75	1345	40	Known stems to
-e.ed.es	advanc	497.055	702	38	Check sigs
e.ed	acquiesc	825.969	311	58	Check sigs
-e.ed.ing	anticipat	337.05	189	24	Known stems to
-e.es.ing	battl	208.905	478	16	Known stems to
-e.ing	abid	395.385	128	27	SFI
-ed.es	aggravat	330.992	146	23	Check sigs
-es.ing	celebrat	254.894	72	17	SFI
-ed.es.ing	experienc	55.0602	35	3	From known sten
ies-y	abilit	899.932	642	66	SFI
NULL-al-s	addition	310.116	485	24	SFl
NULL.al	dramatic	87.2327	65	6	Check sigs
NULL-ly-s	absolute	320.709	468	25	SFl

English: NULL - s - ed - ing - es- er - 's - e - ly - y - al - ers - in - ic - tion - ation - en - ies - ion - able - ity - ness - ous - ate - ent - ment - t (burnt) - ism - man - est - ant - ence - ated - ical - ance - tive - ating - less - d (agreed) - ted - men - a (Americana, formul-a/-ate) - n (blow/blown) ful - or - ive - on - ian - age - ial - o (command-o, concert-o) ...

French: s-es - e- er - ent - ant - a - ée - é - és - ie - re - ement - tion ique - ait - èrent - on - ées - te - ation - is - aient - al - ité - eur - aire - it - isme - en - age - ion - aux - ier - ale - iste - ien - t-eux - ance - ence elle - iens - euse - ants - ienne - sion ...

3.4 What is the question?

We identify morphemes due to frequency of occurrence: yes, but all of their sub-strings have at least as high a frequency, so frequency is only a small part of the matter; and due to the non-informativeness of their end with respect to what follows.

But those are heuristics: the real answer lies in formulating an FSA (with post-editing) that is simple, and generates the data.

3.5 Immediate issues: getting the morphology right

English: NULL - s - ed - ing - es- er - 's - e - ly - y - al - ers - in - ic - tion - ation - en - ies - ion - able - ity - ness - ous - ate - ent - ment - t (burnt) - ism - man - est - ant - ence - ated - ical - ance - tive - ating - less - d (agreed) - ted - men - a (Americana, formul-a/-ate) - n (blow/blown) ful - or - ive - on - ian - age - ial - o (command-o, concert-o) ...

The key insight

The overall complexity of the grammar, not how we get there.

The key question: if we recognize that the learner needs something to be able to learn, what sorts of things can we give her that will in any way help solve the problem? What kinds of tools will actuall be useful? The purpose of the enterprise that we are engaged in is to answer that question.

3.5.1 Lxa 3 and 4 model

\bigcirc							-
File Edit View Mini-Lexica suffixes prefixes com	plagnostics otherth	Allomorphy E					
	Signatures	Descr. Ler	Corpus	m C	Source	Robustness	\checkmark
Log file (now off)/home/jagoldsm/working/og1.html Project directory: /homefjagoldsm/working/	NULL-s	3889.23	4157	378		3202	
Lexicon : click items to display them	a-as-0-0s	543.18	4950	66	From known stem and suffix	1410	
- Analyzed 7,619	a.o	1245.77	666	114		943	
Mini-Lexicon 1 **ACTIVE**	a.o.os	560.20	641	56	Known stems to suffixes	908	
- Forward trie 11.624	a.as.o	261.27	253	25	Known stems to suffixes	344	
--Reverse trie 11.624	as.os	265.44	104	23		248	
--Suffixes $143: 8,486: 48,095$	a.as.os	159.02	111	14	From known stem and suffix	227	
- Parts of speech 50	as.o.os	127.73	81	11	From known stem and suffix	178	
Stems 4,106	NULL-es	780.82	2199	79		651	
- - Description length	NULL-se	672.13	514	61		506	
All Words 11,624	ones-ón	249.24	252	23		278	
All Analyzed 7.639	NULL-me	356.16	662	34		268	
- All Suffixes 143	NULL-le	317.07	499	30		251	
- Sescription 790	e-en	299.17	247	27	From known stem and suffix	247	
Tokens read: 111,060	NULL-me-se	99.42	64	8	From known stem and suffix	130	
- Tokens included: 109,532	me.se	38.79	6	2	From known stem and suffix	19	
Tokens requested: 500,000	le-se	149.49	44	12		119	
	ado-ar-ó	84.86	27	6	Known stems to suffixes	102	
	ado.ar	116.72	26	9	From known stem and suffix	90	
	ar.ó	120.80	87	10	Known stems to suffixes	83	
	ado.ó	59.60	11	4		38	
	a-an-as-e	59.98	76	4	Known stems to suffixes	93	
	La ane	3564	37	,	Knowim stems to suffixes	78	
	Command Line	bification					
	a.as.o.os						
	Stems:						

Words	Stem	Mini-Lexicon 4	Mini-Lexicon 3	Mini-Lexicon 2	Mini-Lexicon 1
fully	ful			ly	
fulton	fult			on	
fumes	fum		es		
function	func			tion	
functional	func	tion	al		
functionary	func	tion	ary		
functions	func	tion	s		
fundamental	fundament		al	al	
fundamentalism	fundament		al		
fundamentally	fundament		al	ly	
fundamentals	fundament		er	s	
fund-raiser	fund-rais			s	
fund-raisers	fund-rais			ing	
fund-raising	fund-rais				

Boot-strapping heuristic for signatures, followed by a sequence of incremental heuristics, each applying until the MDL criterion is achieved

The qantity that we are trying to identify is letter-based recurrence: the product of the length times the number of occurrences. This is at the heart of de Marcken, and much of MDL (if the MDL model is chunkbased).

Low Hanging Fruit First:

Data: this text
Result: A morphology
m : a modification method in $\mathcal{M o d s}$, which is universal;
$\mathrm{M} \leftarrow$ Bootstrap(data);
for $m \in \mathcal{M o d s}$ do
while m improves the morphology do $\mathrm{M} \leftarrow \operatorname{modified} \mathrm{M}$;
end
end

```
Algorithm 1: Linguistica 3-4: more specific
Data: this text
Result: A morphology
m : a modification method in \(\mathcal{M o d s}\), which is universal; they modify
signatures;
\(\mathrm{M} \leftarrow\) Bootstrap(data);
for \(m \in\) Mods do
    for signature \(\sigma \in\) Signatures do
        \(\sigma^{\prime} \leftarrow \mathrm{m}(\mathrm{M}, \sigma\), data);
        \(\mathrm{M}^{\prime} \leftarrow \operatorname{replace}\left(\mathrm{M}, \sigma, \sigma^{\prime}\right)\);
        if \(D L(M\) ', data \()<D L(M\), data \()\) then
            \(\mathrm{M} \leftarrow \mathrm{M}^{\prime}\);
        end
    end
end
```

```
Algorithm 2: Linguistica 3-4: still more specific
Data: this text
Result: A morphology
m : a modification method in Mods, which is a universal list; they
modify signatures;
\(\mathrm{M} \leftarrow\) Bootstrap (data);
for \(i \in(1 \ldots\) length \((\mathcal{M}))\) do
        \(\mathrm{m}=\mathcal{M o d s}_{i} ;\)
    for signature \(\sigma \in\) Signatures do
        \(\sigma^{\prime} \leftarrow \mathrm{m}(\mathrm{M}, \sigma\), data);
        \(\mathrm{M}^{\prime}=\) replace \(\left(\mathrm{M}, \sigma, \sigma^{\prime}\right)\);
        if \(D L(M\), data \()<D L(M\), data \()\) then
            \(\mathrm{M} \leftarrow \mathrm{M}^{\prime} ;\)
        end
    end
end
```

Looking for affixes, there is a lot of noise (spurious structure) if we look at short words. So: we look only a longer words first, where we can get some reliable conclusions (meaning high precision, low recall).

It is an extremely bad error to look for solutions that solve the problem right from the beginning.

The solution only comes into focus as we proceed.
problems:

3.6 Class 3: On beyond Lxa 4: allomorphy, FSAs and paradigms

