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1Class 1: Overview of information

theory and machine learning for

linguists

1.1 Course outline

1. Class 1: An introduction to machine learning, probability, and

viewing linguistic theory through those lenses.

2. Class 2:

a) Word discovery (or word breaking): a non-probabilistic ap-

proach (Sequitur) and an MDL-based (probabilistic) approach.

b) Morph and morpheme discovery

i. Zellig Harris and successor frequency. Good and bad

points.

ii. Definition of signatures, and signature-based morphol-

ogy learning. Linguistica.
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3. Class 3: Unsupervised learning of morphology. The challenges:

a) Layering (or morphological width)

b) Alignment of signatures

c) Allomorphy

d) FSA

e) Nonconcatenative morphology: Germanic strong verbs; Semitic

languages.

4. Class 4: Beyond morphology

a) Learning the syntactic coherence of past tense and past par-

ticiples in English automatically.

b) The general problem of the induction of PoS.

c) MDL as the basis of linguistic theory.

1.2 Class 1 overview

1. Overview of 2 week course (10 minutes)

2. Unsupervised learning: what it means for linguistics (5 minutes)

a) 3 kinds of knowledge: native speaker, linguist, theory.

6 Chapter 1 Class 1: Overview of information theory and machine learning for
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Fig. 1.1: English morphology: morphemes on edges

b) The inadequacy of the claim of innateness as an answer to

the problem of language learning. We learn things by trying

to build a learner: the biggest help comes from ideas about

complexity, not “silver bullet” answers.

c) Four kinds of structure to discover:

i. Sequential structure

ii. Chunking structure (morphemes, words, phrases)

iii. Categorization

iv. Hierarchical structure

3. Big questions (8 minutes)

a) Chomsky’s 3 notions of linguistic theory (1957): we opt for

the first one.

b) Machine learning: what is it?

1.2 Class 1 overview 7
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Fig. 1.2: French

c) The general structure of a hill-climbing learner

d) Generative grammar and machine learning: complementary

goals

e) Question of innate knowledge (picture of big and little infor-

mation innately)

4. Probability and information theory (5 minutes)

a) probability in the abstract (5 minutes)

b) probability of events (20 minutes)

c) encoding of events (10 minutes)

d) encoding of grammars (10 minutes)

5. What is next (10 minutes)

8 Chapter 1 Class 1: Overview of information theory and machine learning for



1.3 Unsupervised learning and other sorts:

what it means for linguistics

1.3.1 Machine learning: what is it?

Machine learning: This term arose in the mid-1980s in the context

of computer science. It is the study of how to infer generalizations

from large amounts of data, and involves methods and concepts from

mathematics, statistics, and computer science.

Learning: supervised learning, unsupervised learning; learning with

unlabeled examples.

1.3.2 3 kinds of knowledge: native speaker, linguist,

theory

The knowledge of the speaker accounts for his/her ability to speak and

understanding.

The knowledge of the linguist offers an explanation of that ability.

The knowledge of linguistic theory offers an explanation and justifica-

tion for why the linguist says what she does (and not something else).

The educated non-linguist listens to a linguist talking about Hungar-

ian vowel harmony and asks: why are they going on about these ex-

ceptions? I know how to speak my language: I am rarely, if ever, in

doubt—something that I can’t say about these linguist types.

The linguist listens to discussions of linguistic theory (of the sort that

we will engage in here!) and says, I know what the morphemes are in

Swahili: why are they going on and on about the methods to determine

what the morphemes are? I am rarely, if ever, in doubt—something that

I can’t say about these unsupervised learning sorts.

1.3 Unsupervised learning and other sorts: what it means for linguistics 9



1.3.3 Chomsky’s 3 notions of linguistic theory (1957)

Data Discovery device Correct grammar of corpus

Data

Grammar
Verification device Yes, or, No

Data

Grammar 1

Grammar 2

Evaluation metric G1 is better; or, G2 is better.

We opt for the first one; generative grammar opts for the third.

1.3.4 Innateness

The inadequacy of the claim of innateness as an answer to the prob-

lem of language learning. We learn things by trying to build a learner:

the biggest help comes from ideas about complexity, not “silver bullet”

answers.

10 Chapter 1 Class 1: Overview of information theory and machine learning for



Unlearned

Learned

What is the proper balance of the Learned and the Unlearned? That’s

the big question.

Learned

Unlearned

1.3 Unsupervised learning and other sorts: what it means for linguistics 11



We can learn what is useful to know, as we pointed out above.

The deepest level at which we need to understand this work is the way

it approaches the question of knowledge and learning of language. We

are at a point when it is no longer news to say that it is not obvious how

language can be learned. What we know now is that it is no longer

possible to respond to that by saying that what is not learned must

therefore be innate. What we are looking at, in this work, is knowledge

that is hard to learn, and just as hard to have innately. Neither approach

is a solution. Something new and different needs to be said: we need a

deep learner, a smart learner, and we need to figure out its architecture.

How will machine learning help us? That is the timely question. I

hope to offer some tentative suggestions by looking at the acquisition

of morphology.

1.3.5 Summary

The kind of linguistics I will be describing is close to Chomsky’s original

notion of generative grammar, but it is distinct from it in three ways.

1. It aims to provide mechanisms (algorithms) to project grammars

from data.

2. It sees the evaluation task as composed of two equally important

terms: grammar simplicity and fit of grammar to data. Generative

grammar recognized(s) only the first.

3. It exploits the notion of computational complexity when it can.

Generative grammar was based on philosophical naturalism and

psychologism, grounding the deepest explanations in the discov-

eries of science and psychology.

1.3.6 Four kinds of structure to discover:

1. Sequential structure

2. Chunking structure (morphemes, words, phrases)

12 Chapter 1 Class 1: Overview of information theory and machine learning for



Data Discovery device Correct grammar of corpus

Data

Grammar
Verification device Yes, or, No

Data

Grammar 1

Grammar 2

Evaluation metric G1 is better; or, G2 is better.

Fig. 1.3: Chomsky’s three conceptions of linguistic theory

3. Categorization

4. Hierarchical structure

1.3.7 The general structure of a hill-climbing learner

1.3.8 Generative grammar and machine learning:

complementary goals

The generativist focuses, for now, on determining the hypothesis space

(’class’) that includes all human languages; excluding humanly impos-

sible languages is important too, but not as important as making sure

the hypothesis space is large enough to include at least one grammar

rich and complex enough to model each attested language.

The information theoretic linguist focuses on enriching the hypoth-

esis space much more slowly, and puts primary focus on methods to

find the particular grammar within that hypothesis space that optimizes

some reasonable measure. What is a reasonable measure? It could

be probability (which we would maximize), or better yet, description

1.3 Unsupervised learning and other sorts: what it means for linguistics 13
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Fig. 1.4: Unsupervised learning of grammars

length (which we would minimize, because in some respects it is in-

verted with respect to probability).

Given data D, find g = arg maxg∈G pg(D).

Given data D, find g = arg maxg∈G [pg(D)− cost(g)].

These are two very different goals! And a person could perfectly well

want to work on both problems.

Very important: The most important reason that we develop probabilis-

tic models is to evaluate and compare different grammars. (It is not in

order to assign probabilities to data that already exists, or that does not

exist yet. We are not rolling dice.)

Importance in computational sphere of quantitative measurement of

success. There is little emphasis on evaluating a model based on its fit

to a scientist’s intuition.

Probability is the quantitative theory of evidence.

14 Chapter 1 Class 1: Overview of information theory and machine learning for



1.4 Probability and information theory

1.4.1 probability of events

(20 minutes)

slides: Probability for linguists.

1.4 Probability and information theory 15
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Overall strategy

1 probabilities and distributions

2 unigram probability

3 a word about parametric distributions

4 -1 ×log2 probability (or plog: positive log probability)

5 bigram probability: conditional probability

6 mutual information: the log of the ratio of the observed
to the “expected”

7 average plog → entropy

8 encoding events: compression, optimal compression,
and cross-entropy

9 encoding grammars optimally
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Big point 1

A distribution is a list of numbers that are not negative and
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A probabilistic grammar

• A probabilistic model, or grammar, is a universe of
possibilities (“sample space”) + a distribution.

• A probabilistic grammar is a distribution over all
strings of the IPA alphabet.

• It is not a formalism stating which strings are in and
which are out.
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The purpose of a probabilistic
model

Big point 2

The purpose of a probabilistic model is to test the model
against the data.

• Suppose we have some well-chosen data D. Then the
best grammar is the one that assigns the highest
probability to D, all other things being equal.

• The goal is not to test the data!

• Therefore: all grammars must be probabilistic, so they
can be tested and evaluated.
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Probability

• The quantitative theory of evidence.

• If we have variable data, then probability is the best
model to use.

• If we have categorical (not variable) data, probability is
still the best model to use.
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Probabilities and frequencies

Probabilities and frequencies are not the same thing.

• Frequencies are observed.

• Probabilities are values in a system that a human being
creates and assigns.

• We can choose to assign probabilities as the observed
frequencies—buy that is not always a good idea.

• This is a good idea only so long as we don’t need to
handle yet-unseen (never before seen) data.

• In many cases, this choice maximizes the probability of
the data.

• They both deal with distributions (i.e., the observed
frequencies and the probability distributions of a
model).
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Probabilities and frequencies

Probabilities and frequencies are not the same thing.

• Counts are counts: the number of things or events that
fall in some category.

• Frequency is ambiguous: it either means count (less
often) or it means relative frequency : a ratio between a
count of something and the total number of things that
fall within the larger category.

• There are 63,147 occurrences of the in the Brown
Corpus, out of 1,017,904; 6.2% of the words in the
Brown Corpus are the.
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English, French, Spanish

Let’s take a look at some languages.
And for starters, let’s just look at unigram frequencies: the
frequencies at which items appear, not conditioned by the
environment.
people.cs.uchicago.edu/jagoldsm/course/class1

people.cs.uchicago.edu/jagoldsm/course/class1
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Plogs

• We will assign probabilities to every outcome we
consider.

• Each of these is typically quite small.

• We therefore use a slightly different way of talking
about small numbers: plogs.
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Inverse log probabilities, or plogs

A way to describe small numbers... upside down.
A probability its plog

0.5 1
0.25 2
0.128 3

1
16 4
1
32 5
1

1024 10
. . . . . .
1

1,000,000 almost 20

• The bigger the plog, the smaller the probability.

• It’s a bit like a measure of markedness, if you think of
more marked things as being less frequent.

• plog(x) = −log2(x) = log2(
1
x
)
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Average is 4.64 below:

#
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6

stations

This diagram from a visually interactive program displaying
phonological complexity at:
http://hum.uchicago.edu/~jagoldsm/PhonologicalComplexity/

http://hum.uchicago.edu/~jagoldsm/PhonologicalComplexity/
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Most and least frequent
phonemes in English

rank phoneme frequency plog

1 # 0.20 2.30
2 @ 0.066 3.92
3 n 0.058 4.10
4 t 0.056 4.17
5 s 0.041 4.61
6 r 0.040 4.76
7 d 0.037 4.85
8 l 0.035 4.94
9 k 0.026 5.27
10 ǽ 0.025 5.31

45 Óy 0.000 78 10.32
46 æ̆ 0.000 69 10.50
47 ž 0.000 54 10.84
48 ăy 0.000 38 11.36
49 ă 0.000 36 11.42
50 Ŏ 0.000 28 11.79
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average plogs

rank orthography phonemes av. plog1
1 a @ 3.11
2 an @n 3.44
3 to t@ 3.47
4 and @nd 3.80
5 eh É 3.88
6 the @ 3.88
7 can k@n 3.90
8 an ǽn 3.91
9 Ann ǽn 3.91
10 in Ín 3.91
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Worst words in English

rank orthography phonemes av. plog1
63,195 bourgeois b2̆ržwá 7.21
63,196 Ceausescu čŎčÉskŭ 7.21
63,197 Peugeot p yŭžó 7.22
63,198 Giraud žăyró 7.24
63,199 Godoy gádŏy 7.27

63,200 geoid ǰ́iŎyd 7.40
63,201 Cesare čĕzárĕ 7.40
63,202 Thurgood TÄ́g2̆d 7.47
63,203 Chenoweth čÉnŎwĔT 7.49
63,204 Qureshey k@réšĕ 7.54
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Word counts and frequencies

word count frequency plog

1 the 69903 0.068271 3.87
2 of 36341 0.035493 4.81
3 and 28772 0.028100 5.15
4 to 26113 0.025503 5.29
5 a 23309 0.022765 5.46
6 in 21304 0.020807 5.59
7 that 10780 0.010528 6.57
8 is 10100 0.009864 6.66
9 was 9814 0.009585 6.70
10 he 9799 0.009570 6.70
11 for 9472 0.009251 6.77
12 it 9082 0.008870 6.82
13 with 7277 0.007107 7.14
14 as 7244 0.007075 7.14
15 his 6992 0.006829 7.19
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Unigram model

• The probability of a string S, of length L, is λ(L) times
the probability of each of the symbols.

• pU (S) = λ(L)×
∏

i S[i]

• If we sum over all strings of a given length l, the sum of
their probabilities is λ(l). That’s just math.

• This is the model that takes no information about
ordering into account.

• Because plogs are additive, it makes sense to ask what
the average plog of a word is. In the unigram model,
they describe an extensive property.
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Conditional probabilty

• p(A, given B)

• p(A|B)

• p(AandB)
p(B)

• p(A’s name is “John”) < p(A’s name is “John” given
that A is male and American)

• p(A=Queen of hearts)

• p(A=Queen of hearts | A is a red card)
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Conditional probability in a
string

• p(S[i]=h given that S[i-1]=t)

• p(S[i]=h | S[i-1]=t)

• p (S[i]=book | S[i-1] = the) > p(S[i]=book)

• p (S[i]=the | S[i+1]=book) > p (S[i]=book)

• These are not statements of causality.
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Addition is easier to understand
than multiplication

• In the unigram model, the probabilility of the string =
product of the probabilities of its symbols.1

• If we use plogs, the log probability of the string is the
sum of the plogs of its symbols.

1ignoring length of string. . .
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Using plogs with conditional
probability

• The probability goes up when we use a better model
(i.e., one that encodes more knowledge about the
system) that takes into consideration the factors in the
neighborhood that helped lead to the events we saw.

• The bigram conditional probability is usually greater
than the unigram probability in real data.

• The difference between the bigram plog and the
unigram plog is called the mutual information (MI).

log
p(AandB)

p(A)p(B)
= log

p(AandB)

p(A)

1

p(B)
= log p(B|A)− log p(B)
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Pointwise mutual information
(MI)

plog(a)

plog(b)

MI(a,b)

plog(a and b)
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A reminder about events, and “a
& b”

• There is no implicit statement about location of the
events when we write “a & b”.

• p(W[i] = “of” & W[i+1]=“the”)

• p(W[i] = “of” & W[i+5] = “the”)

• If we look at the second, the MI will be very close to
zero.
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Unigram model with MI

#

2.9

S
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T

4.2

EY1

6.1

SH

6.7

AH0

3.9

N

4.1

Z

5.1

#

2.9

average:

2.6
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Bigram model

#

2.9

S

3.3

T

2.3

EY1

5.3

SH

2.8

AH0

1.0

N1.7 Z

3.8

#

0.4
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#

2.9

S

4.3

T

4.2

EY1

6.1

SH

6.7

AH0

3.9

N

4.1

Z

5.1

#

2.9

average:
4.662
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• pU =
∏

p(S[i])

• = pU (thecatisonthemat)

• = pU (t)× pU (h)× pU (e)× pU (c) . . .× pU (t)

• = pU (a)× pU (a)× pU (c)× pU (e)× pU (e) . . .× pU (t)

• =( pU (a))
2 × pU (c)× (pU (e))

2 × (pU (e))
2 . . .× pU (t)

• =
∏

l in alphabet A p(a)count of l in string
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Average below is 2.58 (down from 4.64)
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Green: Mutual information in stations
Blue: Unigram plot in stations
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Using plogs with conditional
probability

• We saw that the probability goes up when we use a
better model that takes into consideration the factors in
the neighborhood that helped lead to the events we saw.

• The bigram conditional probability is usually greater
than the unigram probability in real data.

• The difference between the bigram plog and the
unigram plog is called the mutual information (MI).
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Unigram model with MI
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Word counts and frequencies:
repeated

word count frequency plog

1 the 69903 0.068 271 3.87
2 of 36341 0.035 493 4.81
3 and 28772 0.028 100 5.15
4 to 26113 0.025 503 5.29
5 a 23309 0.022 765 5.46
6 in 21304 0.020 807 5.59
7 that 10780 0.010 528 6.57
8 is 10100 0.009 864 6.66
9 was 9814 0.009 585 6.70
10 he 9799 0.009 570 6.70
11 for 9472 0.009 251 6.77
12 it 9082 0.008 870 6.82
13 with 7277 0.007 107 7.14
14 as 7244 0.007 075 7.14
15 his 6992 0.006 829 7.19
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Top of the Brown Corpus for
words following the

word count count / 69,936

0 first 664 0.009 49
1 same 629 0.008 99
2 other 419 0.005 99
3 most 419 0.005 99
4 new 398 0.005 69
5 world 393 0.005 62
6 united 385 0.005 51
7 state 271 0.004 18
8 two 267 0.003 82
9 only 260 0.003 72
10 time 250 0.003 57
11 way 239 0.003 42
12 old 234 0.003 35
13 last 223 0.003 19
14 house 216 0.003 09
15 man 214 0.003 06
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Top of the Brown Corpus for
words following of.

word count count / 36,388

1 the 9724 0.267
2 a 1473 0.040 5
3 his 810 0.022 3
4 this 553 0.015 20
5 their 342 0.009 40
6 course 324 0.008 90
7 these 306 0.008 41
8 them 292 0.008 02
9 an 276 0.007 58
10 all 256 0.007 04
11 her 252 0.006 93
12 our 251 0.006 90
13 its 229 0.006 29
14 it 205 0.005 63
15 that 156 0.004 29
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Cross entropy: where we keep the empirical frequencies,
but vary the distribution whose plog we use to compute the
entropy. This is the “cross-entropy” of one distribution to
the other (but not symmetrical!). Entropy, or self-entropy, is
always smaller than cross-entropy.

∑

x

p(x)ln
q(x)

p(x)
≤

∑

x

p(x)(1−
q(x)

p(x)
) (1)

Why? Look at the plot of ln(x), and compute its first and
second derivatives, and its value at (1,0).

=
∑

x

p(x)−
∑

x

p(x)
q(x)

p(x)
= 1− 1 = 0. (2)

So
∑

x p(x)ln(
q(x)
p(x) ≤ 0, which is to say, the cross-entropy

always exceeds the entropy that isn’t cross, when we use
natural logs as our base.
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But we can maintain the inequality when we switch to base 2
logs (which is what we use with plogs), since it just amounts
to multiplying both sides by a constant. First we get:

∑

x

p(x)ln q(x) ≤
∑

x

p(x)ln p(x) (3)

and then we multiply by -1:

∑

x

p(x)plogp(x) ≤
∑

x

p(x)plog q(x) (4)

The Kullback-Leibler divergence DKL(p, q) is defined as KL
divergence

∑

x

p(x) ln
p(x)

q(x)
(5)

You see that it’s the difference between the cross-entropy
and the self-entropy—pay careful attention to the absence of
a minus before the sum.
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i=len(string)∏

i=1

S[i] =
∏

l∈lexicon

lcountS(l). (6)

logprob(S) =
∑

lexicon

countS(l)logprob(l). (7)

plog(S) =
∑

lexicon

countS(l)plog(l). (8)

If we divide through by the length of our string, we get the
average which is Shannon’s entropy:

entropy(S) =
∑

lexicon

freqS(l) plog(l). (9)

This is more familiar if we write −
∑

p(x)logp(x).



Probability

for linguists

John A

Goldsmith

probability

and distri-

butions

Unigram

probabili-

ties

Logarithms

and plogs

From single

symbols to

strings of

symbols

Conditional

probability:

first steps

in taking

sequence

into

account

Conditional

probability:

first steps

in taking

sequence

into

account

cross-entropy of two distributions

−
∑

x∈X

p(x) log q(x). (10)
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cross-entropy is less than
self-entropy

• p() and q() are two different distributions.

• How do −
∑

p(x) log p(x) and −
∑

p(x) log q(x)
compare?

• −
∑

p(x) log p(x) +
∑

p(x) log q(x) =
∑

p(x) log q(x)
p(x)

• Suppose we use natural logs: then we know that
ln(x) ≤ (x− 1).

•
∑

p(x) log q(x)
p(x) ≤

∑
p(x) [ q(x)

p(x) - 1] =∑
p(x)−

∑
q(x) = 1− 1 = 0

• So −
∑

p(x) log p(x) (the entropy) is always smaller
than the cross-entropy −

∑
p(x) log q(x)



Entropy

The entropy of a string, or signal, or language, is the average plog of

the symbols.

A word about averages:

Middle school: Take the values from a set, add them altogether, and

divide by the number of items in the set.

Really: Consider all possible values, and for each determine how many

items take that value, and then normalize the counts of those items.

Take a weighted sum of the values, where you weight by the frequency

(=normalized counts). An average always takes the form
∑

x f(x)d(x),

where f() is the function you care about, and d() is a distribution over

the set you care about.

1.4.2 encoding of events, and compression

(10 minutes)

1. Switch gears to information theory and encoding. We now leave

the domain of anything like randomness. Everything is sharp and

clean—austere, even.

2. Lossless versus lossy compression.

16 Chapter 1 Class 1: Overview of information theory and machine learning for
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Both sides agree that a signal has
two aspects to it:
    - the structure of the system
    - the content of this moment's message
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had seemed to be choices, a loss due to
the very system itself.
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StructureRedundancy

What the linguist
cares about…

and wants to find,
and bring to everyone's
attention.

Information theory
wants to identify…

and to remove it, to
leave the message: what
makes this moment different
from all others.

Both sides can do their job when they
employ probabilistic grammars.

We measure redundancy by the difference
in length of a  

description of a signal and its compressed
length.

dumb
raw
surfacey

rough



3. The shortest compression system that we can devise is a test of

our understanding of the signal system, or language. And it is

fully quantifiable. There is an equivalence that we must under-

stand between redundancy in the system and discoverable struc-

ture in the data (that is, in the language). We wish to pull all of

the redundancy = structure out that we possible can. And then

we can measure what is left over:

4. the measure of what is left over is the plog of the signal. (That

really is amazing). Our goal, therefore, is to come up with a

grammatical description—a grammar—that minimizes the plog

of the data, that is, that maximizes the probability of the data.

There is a reason for this.

5. We assume that an encoding is a set of 0s and 1s, because their

difference is the most natural unit of information.

6. A finite sequence of 0s and 1s can be thought of as a real number

between 0 and 1: 0.s[1]s[2]s[3]. . . s[n].

7. If we set up a system of sequences of 0s and 1s for each unit in

our system, then we have a natural encoding. If we impose the

no-prefix condition, then there is a natural connection between an

encoding system and a distribution. That is not obvious!

Picture

8. Lying behind this picture is the notion that there is a natural con-

nection between a binary string of length n and the number 2−n.

And a natural encoding of this sort will always create (or can

be associated with) a well-formed probability distribution. The

more probable an event is, the shorter its encoding. In particular,

an event’s encoding will be equal to the plog of its probability.
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Fundamental fact: The best encoding system (i.e., the one that pro-

duces the shortest encodings) is always the one in which a symbol

s of probabily k is encoded by a string of 0s and 1s whose length is

−1× log p(s).

The length of the encoding that we are able to provide for a signal is our

estimate of how much information is in that signal that is not due to the

structure (i.e., the redundancy) of the system (i.e., the language).

Redundancy = structure = system. What is left when we remove it is

a message, as far as we can tell.

1.4.3 encoding of grammars

(10 minutes)

We now have a way of encoding signals in a compact way, and a way

about thinking about the degree of compactness.

This way—which is the information theoretic way of looking at things—

works just as well for grammars as it does for signals.
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A grammar can always be formalized as a set of decisions, chosen from

a universal inventory of choices. Just like with a signal, we can deal

equally with conceptions of grammar in which there are a finite or in

which there are an infinite number of grammars.

We can consider all sorts of different ways of encoding an idea for a

grammar, and we will select the one that is the shortest as our bet on

how to describe the language that we are studying.

Imagine a phrase-structure grammar with k non-terminal categories,

m lexical categories, and N vocabulary items. Then a grammar can

be written as a sequence of rewrite rules, and we can calculate the

compressed length of the grammar.

A→ B C; B → n; C → v; kimn; sleptv;

Our goal will be to show that the process of coming up with the most

compact description of a grammar corresponds quite to the linguist’s

idea of finding the best grammar for a set of data.

1.5 Terms we discussed today

count frequency distribution set

multiset probability corpus (corpora) machine learning

logarithm base 2 log(arithm) plog entropy

conditional probability mutual information machine learning unsupervised learning

semi-supervised learning

1.6 What is next

(10 minutes)
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1.7 Unsupervised learning: Minimum

Description Length analysis

1. Maximize the probability of the data:

Find g such that prg(D) is the greatest.

ĝ = argmax prg(D)

or...

p(g|D) =
p(D|g)p(g)

p(D)

What is p(D)?

Maximize both p(D|g) and p(g) – which is to say,

maximize logp(D|g) + logp(g),

or minimize −log p(D|g)− log(g),

which is the information content of the data given the model, plus

the complexity of the model.

2. How do we measure or compute the probability of a model g?

One possible answer: Kolmogorov complexity.

• Select a particular programming language (Turing machine)

through a fairness principle.

• Find the shortest program m that embodies [computes] the

model.

• Measure m’s length expressed in bits.

• p(g) = 2−length(m)
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“There are few areas of science in which one would seriously con-

sider the possibility of developing a general, practical, mechani-

cal method for choosing among several theories, each compatible

with the available data.” (Noam Chomsky, Syntactic Structures

(1957) )

Unsupervised learning has two parts:

a) Hypothesis generation.

b) Hypothesis testing (evaluation).

Minimum Description Length (MDL) analysis is an excellent can-

didate for hypothesis testing. But it’s not enough.

Interpreting this graph: The
x-axis and y-axis both quantities
measured in bits. The x-axis marks
how many bits we are allowed to
use to write a grammar to describe
the data: the more bits we are
allowed, the better our description
will be, until the point where we
are over-fitting the data. Thus each
point along the x-axis represents a
possible grammar-length; but for
any given length l, we care only
about the grammar g that assigns
the highest probability to the data,
i.e., the best grammar. The red line
indicates how many bits of data
are left unexplained by the
grammar, a quantity which is equal
to -1 * log probability of the data
as assigned by the grammar. The
blue line shows the sum of these
two qunantities (which is the
conditional description length of
the data). The black line gives the
length of the grammar.

bits

x Capacity (bits)

|g(x)| = length of g(x)

−logpr(d|g(x))

minimum

b

|g| − logpr(d|g(x))

Fig. 1.5: MDL optimization
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1.8 A bunch of general and important points

1.8.1 The notion of learning from data

The agony of humility of learning from data and using

quantitative evaluation

1.8.2 The importance of quantitative measurements

Precision and recall

How well do the documents that your system gives you actually

satisfy what you are looking for?

How sure are you that you got back all of the documents you

really wanted?

Document retrieval

#(appropriate documents returned)
#(documents returned)

Recall #(appropriate documents returned)
#(appropriate documents)

What would we chose? Suppose we have been given a large set

of data from a previously unanalyzed language, and four different

analyses of the verbal system are being offered by four different

linguists. Each has an account of the verbal morphology using

rules that are (individually) of equal complexity. There are 100

verb stems. Verbs in each group use the same rules; verbs in

different groups use entirely different rules.

Linguist 1 found that he had to divide the verbs into 10 groups

with 10 verbs in each group.

Linguist 2 found that she had to divide the verbs into 10 groups,

with 50 in the first group, 30 in the second group, 6 in the third
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group, and 2 in each of 7 small groups.

Linguist 3 found that he had just one group of verbs, with a set of

rules that worked for all of them.

Linguist 4 found that she had to divide the verbs into 50 groups,

each with 2 stems in it.

Analysis 1

Analysis 2

Analysis 3

Analysis 4

Rank these four analyses according how good you think they are—

sight unseen.

Hopefully you ranked them this way:

Best: Analysis 3

Analysis 2

Analysis 1

Worst: Analysis 4

And why? Because the entropy of the sets that they created goes

in that order. That’s not a coincidence—entropy measures our in-

tuition of the degree of organization of information.

The entropy of a set is −
∑

pr(ai) log pr(ai) , where we sum over

the probability of each subset making up the whole—and where

the log is the base2 log.

• The entropy of Linguist 1’s set of verbs is−1 × 10 × 1
10 ×

log 1
10 = log(10) = 3.32.

• The entropy of Linguist 2’s set of verbs is −1 × 1
2 × log 1

2 +

0.3× log(0.3) + 0.06× log(0.06) + 0.14× log(0.02)) = 0.346 +

0.361 + 0.169 + 0.548 = 1.42.

• The entropy of Linguist 3’s set of verbs is −1×1×log(1) = 0.
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• The entropy of Linguist 4’s set of verbs is −1 × 50 × 1
50 ×

log(0.02) = 3.91.

The concept of entropy can be used to quantify the notion of ele-

gance of analysis.
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