Language and the Mind:
 Encounters in the Mind Fields

John Goldsmith
April 23, 2014

Frank and Ernest

1. Strongest, best option:

2. Next best option:

3. Fallback position:

Chomsky's vision of Generative Grammar (1955)

Generative position: a special case of Option 3 First, test grammars' eligibility:

If both grammars are eligible:

Three central questions:

1. Where do hypotheses come from? Answer: As far as Linguistic Theory goes, that's none of your business. Ideas come from wherever they come from. As far as individual grammars go, hypotheses may come from anywhere, but mostly they come from looking at what linguists have said about other languages.
2. How do we determine the extent to which data support a hypothesis? Generative theory has no answer to this.
3. How do we determine the goodness of a theory, independent of data? Formal simplicity, but we have not yet found the right way to calculate this.

Machine learning:

Back to Option 1

Data \rightarrow Discovery device; $\mathcal{G} \rightarrow$ Best grammar in \mathcal{G} of data

Generative grammar and Machine learning agree:

- Growing the space of grammars when needed is a good thing.
- Shrinking the space of grammars when we jettison unnecessary possibilities is a good thing.

Machine learning:

- A linguistic theory requires a method to find the grammar (within the given hypothesis space) that best accounts for the data.

Two languages, two grammars, and a Universal Grammar

The expected evolution of generative theory

A grammar is found that lies outside of Universal Grammar.

The expected evolution of generative theory

A grammar is found that lies outside of Universal Grammar. Univeral Grammar is expanded, on empirical grounds.

The expected evolution of generative theory

Revised Universal Grammar.

The expected evolution of generative theory

The expected evolution of generative theory

The expected evolution of generative theory

Revised
Universal Grammar.

The expected evolution of generative theory

The expected evolution of generative theory

Univeral Grammar is expanded, on empirical grounds.
The expected evolution of generative theory

Revised
Universal
Grammar.
The expected evolution of generative theory

Find the grammar within the Universe \mathcal{U} of Universal Grammar which best models the data.

Machine learning world

Example 1: Word learning

Input: A million words without spaces, including:
TheFultonCountyGrandJurysaidFridayaninvestigationo fAtlanta'srecentprimaryelectionproducednoevidenceth. . . Desired output:

The Fulton County Grand Jury said Friday an investigation of Atlanta's recent primary election produced no evidence that any irregularities took place.

Actual output:
The F ult on County Gr and Ju ry said Fri day an investig ationof Atlan ta 's recent primary election produc ed no evidence that any ir regular ities took place.

Iteration number 1

piece	count
th	127,717
he	119,592
$\mathbf{\text { in }}$	86,893
er	81,899
$\mathbf{a n}$	72,154
re	67,753
$\mathbf{o n}$	61,275
es	59,943
en	55,763
at	54,216
ed	52,893
nt	52,761
st	52,307
nd	50,504
ti	50,253
to	48,233
or	47,391

Iteration number 1		Iteration number 10	
piece	count	piece	count
th	127,717	In	2,355
he	119,592	vi	2,247
in	86,893	some	2,169
er	81,899	who	2,155
an	72,154	ical	2,130
re	67,753	He	2,119
on		ure	2,102
es	59,943	ance	2,085
en	55,763	ty	2,061
at	54,216	edthe	2,061
ed	52,893	sel	2,053
nt	52,761	its	2,053
st	52,307	more	2,034
nd	50,504	form	2,023
ti	50,253	fac	2,009
to	48,233	act	2,007 20
or	47,391	cont	1,987

Iteration number 1		Iteration number 10	
piece	count	piece	count
th	127,717	In	2,355
he	119,592	vi	2,247
in	86,893	some	2,169
er	81,899	who	2,155
an	72,154	ical	2,130
re	67.753	He	2,119
on		ure	2,102
es	59,943	ance	2,085
en	55,763	ty	2,061
at	54,216	edthe	2,061
ed	52,893	sel	2,053
nt	52,761	its	2,053
st	52,307	more	2,034
nd	50,504	form	2,023
ti	50,253	fac	2,009
to	48,233	act	2,0027
or	47,391	cont	1,987

Iteration number 1
piece count

th	127,717
he	119,592
in	86,893
er	81,899
an	72,154
re	67,753

on $\quad 50,943$

es	59,943
en	55,763
at	54,216
ed	52,893

nt 52,761
st $\quad 52,307$

nd	50,504
ti	50,253
to	48,233
or	47,391

Iteration number 10

piece	count
In	2,355

Iteration number 399

piece	count
divided	22
minimal	21
ender	21
Baltimore	21
Memor	21
fever	21

WestBerlin 21
thickness 21
contains 21
backin 21
choiceof 21
attentiontothe 21
itthe 21
sophisticated 21
sector 21
jungle 21

Mid 21

Iteration number 1		Iteration number 10	
piece	count	piece	count
th	127,717	In	2,355
he	119,592	vi	2,247
in	86,893	some	2,169
er	81,899	who	2,155
an	72,154	ical	2,130
re	67,753	He	2,119
on		ure	2,102
es	59,943	ance	2,085
en	55,763	ty	2,061
at	54,216	edthe	2,061
ed	52,893	sel	2,053
nt	52,761	its	2,053
st	52,307	more	2,034
nd	50,504	form	2,023
ti	50,253	fac	2,009
to	48,233	act	2,00 7^{3}
or	47.391	cont	1987

Iteration number 399

piece	count
divided	22
minimal	21
ender	21
Baltimore	21
Memor	21
fever	21
WestBerlin	21
thickness	21
contains	21
backin	21
choiceof	21
attentiontothe	21
itthe	21
sophisticated	21
sector	21
jungle	21

Example 2: Morphology learning

| NULL-s | accomodation | accomodations | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NULL-'s | aunt | aunt's | | |
| NULL-ed-ing-s | account | accounted | accounting | accounts |
| NULL-s-'s | afternoon | afternoons | afternoon's | |
| e-ed-ing-es | accuse | accused | accusing | accuses |
| ies-y | ability | abilities | | |
| NULL-al-s | addition | additional | additions | |
| NULL-ped-ping-s | drop | dropped | dropping | drops |
| ied-ies-y-ying | tried | tries | try | trying |

guerrilla	camera	suburb	electronic
athletic	poetic	plastic	characteristic
hundred	fluid	field	thousand
ground	method	neighborhood	standard
toward	afterward	hazard	cloud
voice	price	device	service

NULL-s	accomodation	accomodations		
NULL-ly	according	accordingly		
NULL-ed-ing-s	account	accounted	accounting	accounts
NULL-s-'s	afternoon	afternoons	afternoon's	
e-ed-ing-es	accuse	accused	accusing	accuses
ies-y	ability	abilities		
NULL-al-s	addition	additional	additions	
NULL-ped-ping-s	drop	dropped	dropping	drops
ied-ies-y-ying	tried	tries	try	trying

proceed	demand	depend	extend
appeal	reveal	level	dream
remain	train	maintain	question
develop	appear	remember	consider
answer	honor	expect	shift
represent	point	print	mount
request	consist	exist	review

words			
jump jumped jumping	jumps		
move moved	moving	moves	
stop	stopped	stopping	stops
try	tried	trying	tries
make made	making	makes	
buy	bought	buying	buys

We need a new device that will show us how words are used.... a megascope.

Tom wrenched himself upward, for one dizzying moment hanging free in space

THE TOM SWIFT INVENTION ADVENTURES

TOM SWIFT AND HIS MEGASCOPE SPACE PROBER

BY VICTOR APPLETON II
ILLUSTRATED BY SCOTT DICKERSON

Part 3: The Syntactic Megascope

English Encarta

Encarta (encyclopedia) 4,000 words

English

A reminder about English parts of speech

- Prepositions: to, from, up, down, in, out, of, off
- Modal auxiliaries: Can I go outside? but not Speak you French?
- I cannot speak Russian but not I speak not Russian.
- can, could, must, should, shall, will, would - Forms of be also invert, and there is a dummy do available as needed.

Dynamic view: English color codes
 Verbs: 'bare' verb (jump) red
 Verbs: past tense(jumped, bought) blue
 Verbs: auxiliary (should, can) green
 Prepositions (from, to, up, down aqua Adjectives
 purple
 Cities
 gray
 Nouns
 pink

Dynamic view: French color codes
Infinitives red
Prepositions light blue
Past participles blue
Adjectives purple
Cities
gray
Masculine nouns pink
Feminine nouns light green
Inflected verbs light gray

Conclusions

- The importance of asking elementary questions.
- Machine learning: More surprising answers to questions asked of Mother Language.
- Interdisciplinary applications: bioinformatics.
- Data visualization.

