Optimization is the answer. Now, what is the question?

John A Goldsmith

April 11, 2008
Discovering and Representing Phonological Patterns
University of Konstanz

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Work done together with

- Jason Riggle (Chicago)
- Aris Xanthos (Lausanne).

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over

grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for

learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Introduction

Overview

${\it acknowled} {\it gements}$

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- A brief look at 4 research projects
- A new look at data, and its role
- An attempt to start over and start afresh.
- Some mathematics (all of it probability)
- A lot of graphic visualization for that reason.

Probability 1

acknowledgements

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for

learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

A simple idea:

- Let us find the most likely hypothesis h, given the data D.
- Let us find the h that maximizes pr(h|D).

Introduction

Overview

Probability 1 Probability 2

Probability 3
Prior over grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

What could pr(h|D) mean?

- Bayes rule says: $pr(h|D) = \frac{pr(D|h)pr(h)}{pr(D)}$
- The difficult part to understand is pr(h). And maybe understanding what pr(D|h) is is not so easy, either.
- pr(h): this is the prior probability of a grammar h. How can we conceive of such a thing?

Introduction

Overview
Probability 1
Probability 2

Probability 3

Prior over grammars?
Learning
Heart of GG

Strategy for learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

What is a probability?

- An itemization of the (infinite) set of possibilities $\{r_i\}$;
- A function pr that maps each of these to a non-negative number $pr: \{r_i\} \rightarrow [0,1]$
- such that these numbers sum to 1.0: $\sum_{i} pr(r_i) = 1.0$
- The hard part is understanding this both at the level of the forms generated by the grammar (their probabilities sum to 1.0), and the probability assigned to grammars (the probability of all grammars also sums to 1.0).

Prior over grammars?

acknowledgements

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- Kolmogorov complexity: a universal system of measurement.
- This work is an exploration of that hypothesis.
- It is the extreme opposite of the view that language is learnable only because human languages are selected from a small subset of possible algorithms.

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of *GG*Strategy for learning
Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Two families of views:

- A procedural, deterministic algorithmic search procedure in a space representing grammars with a determinate ending point.
- A non-deterministic search procedure seeking a maximum (minimum) on some abstract ("energy") landscape.

Classical generative grammar took the position that all linguistics could do (and hence, should do) is define the mapping from grammar to height on the "complexity" landscape: consistent with the second view.

${\it acknowled} {\it gements}$

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for learning Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- Tell us which, of two grammars, is more highly valued: $f: \mathcal{G} \times \mathcal{G} \to \{1,2\}$
- But Chomsky abandoned the program (1979).
- No effort was made to deal with the question of *fit* of model and data.
- The work presented here emphasizes both grammar complexity and probability assigned to observed data.

Strategy for learning

acknowledgements

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of GG

Strategy for learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- The general strategy is to design probabilistic grammars, and to focus on grammars where we can plausibly approximate the Kolmogorov complexity of the grammar.
- This strategy can be converted to a hill-climbing strategy for learning.
- We can see whether the style of learning that emerges is one that reflects the structure that we as linguists recognize.

Roadmap

acknowledgements

Introduction

Overview

Probability 1

Probability 2

Probability 3

Prior over grammars?

Learning

Heart of $\mathcal{G}\mathcal{G}$

Strategy for learning

Roadmap

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- Word discovery
- Morpheme discovery
- Sonority
- Vowel harmony

Introduction

Word discovery

A long history... Minimum description length (MDL)

Description Length

Bayesianism

The priors word discovery as optimization problem

NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Word discovery

A long history...

acknowledgements

Introduction

Word discovery

A long history...

Minimum description length (MDL)

Description Length

Bayesianism

The priors
word discovery as
optimization
problem

NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- The problem: take a corpus C without breaks, and insert them in the right places with no prior knowledge of the language.
- Important step taken in the mid-1990s by Michael Brent and Carl de Marcken: using MDL.
- Minimum Description Length analysis.
- Looks for a happy medium between two extremes:
 - one extreme says all the letters are separate words;
 - one says the corpus is one long word.

Minimum description length (MDL)

acknowledgements

Introduction

Word discovery

A long history...

Minimum description length (MDL)

Description Length

Bayesianism

The priors word discovery as optimization problem **NoSpaces**

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- Description Length of Data D, using grammar g.
- In this case, the grammar is the lexicon, or list of words.
- Length of g + What is not accounted for in the data D by g.
- \blacksquare DL(D,g) = $|g| log pr_q(D)$
- Find the grammar g^* that minimizes DL(D,g).

Description Length

acknowledgements

Introduction

Word discovery

A long history... Minimum description length (MDL)

Description Length

Bayesianism

The priors
word discovery as
optimization
problem
NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Introduction

Word discovery

A long history... Minimum description length (MDL) Description Length

Bayesianism

The priors word discovery as optimization problem

NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics The most likely hypothesis h^* , given the data D.

$$pr(h|D) = \frac{pr(D|h)pr(h)}{pr(D)}$$

$$h^* = \arg\max_{h} pr(D|h)pr(h)$$
(1)

$$h^* = \arg\max_{h} \ pr(D|h)pr(h) \tag{2}$$

$$= \arg\max_{h} \left[log \, pr(D|h) + log \, pr(h) \right] \tag{3}$$

$$= \arg\min_{h} \left[\underbrace{-log \, pr(D|h)}_{compressedlength} \underbrace{-log \, pr(h)}_{lengthofh} \right]$$
 (4)

$$= \arg\min_{h} \left[\begin{array}{c} \text{Length of data, given h} + \\ \text{length of h} \end{array} \right] (5)$$

In English, choose the hypothesis h^* such that h minimizes the sum of the compressed length of the data plus the length of the hypothesis.

How do we determine the length of the hypothesis?

Introduction

Word discovery

A long history...
Minimum
description length
(MDL)
Description Length

Description Length
Bayesianism

The priors

word discovery as optimization problem

NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- Universal Kolmogorov prior: the length of an algorithm \mathcal{A} is the length, in bits, of the shortest program that implements \mathcal{A} on a chosen universal Turing machine.
- Arr pr(g) = $2^{-|g|} = \frac{1}{2^{|g|}}$
- In the case of a lexicon, the length of \mathcal{L} is the number of bits it takes to specify a list of N letters in M words. Crude approximation: $log_2 27 \times (N+M)$
- Better approximation:

$$-\sum_{w \in \mathcal{L}} log_2 \sum_{i=1}^{|w|+1} log_2 pr(w[i]|w[i-1])$$

word discovery as optimization problem

acknowledgements

Introduction

Word discovery

A long history...
Minimum
description length
(MDL)

Description Length

Bayesianism

The priors

word discovery as optimization problem

NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Begin a hill climbing operation:

- Lexicon $\mathcal{L} \Leftarrow$ alphabet.
- Loop
 - lacktriangle Consider the two words w_i, w_j that occur together the most frequency under the current analysis $\mathcal L$
 - lacktriangle Add $w_i w_j$ to the Lexicon to form \mathcal{L}^* .
 - If $DL(D, \mathcal{L}^*) < DL(D, \mathcal{L})$, set $\mathcal{L} \leftarrow \mathcal{L}^*$.
- ...until stopping condition is satisfied.

NoSpaces

acknowledgements

Introduction

Word discovery

A long history...
Minimum
description length
(MDL)
Description Length

Bayesianism

The priors word discovery as optimization problem

NoSpaces

Spaces Problems

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

3749 sentences, 400,000 characters.

The Fulton County Grand Jurysaid Fridayanin vestigation of Atlanta's recent primary election produced no evidence that any irregularities took place. f

Thejuryfurthersaidinterm-endpresentmentsthattheCityE xecutiveCommittee,whichhadover-allchargeoftheelecti on,deservesthepraiseandthanksoftheCityofAtlantaforthem annerinwhichtheelectionwasconducted . . .

Introduction

Word discovery

A long history...
Minimum
description length
(MDL)
Description Length
Bayesianism

The priors
word discovery as
optimization
problem
NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

The Fulton County Grand Ju ry s aid Friday an investi gation of At I anta 's recent prim ary e lection produc ed no e videnc e that any ir regul ar it i es took place. Thejury further s aid in term - end present ment s thatthe City Ex ecutive Commit t e e ,which had over - all charg e ofthe e lection , d e serv e s the pra is e and than k softhe City of At I anta forthe man ner in whichthe e lection was conducted.

Problems for word learning

 ${\it acknowled} {\it gements}$

Introduction

Word discovery

A long history... Minimum description length (MDL)

Description Length

Bayesianism

The priors
word discovery as
optimization
problem
NoSpaces

Spaces

Problems for word learning

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- The language model was too simple.
- We need a language model in which generalizations can be due to:
 - Existence of morphemes in the lexicon.
 - Existence of words with complex morphology.
 - ◆ Syntactic structure.
- But the example gives proof-of-concept plausibility to the enterprise.

Introduction

Word discovery

Morphology discovery

Linguistica

Strategy

Complexity

Signature complexity

Cost

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Morphology discovery

Linguistica

acknowledgements

Introduction

Word discovery

Morphology discovery

Linguistica

Strategy Complexity

Signature complexity

Cost

Phonology and probability

Sonority learning

Vowel harmony learning

- Linguistica Project linguistica.uchicago.edu
- Unsupervised learning of natural language morphologyf
- Employing MDL

Strategy

acknowledgements

Introduction

Word discovery

Morphology discovery

Linguistica

Strategy

Complexity
Signature
complexity

Cost

Phonology and probability

Sonority learning

Vowel harmony learning

Introduction

Word discovery

Morphology discovery

Linguistica

Strategy

Complexity

Signature complexity Cost

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

What is the complexity of a morphology? Sum of three things:

- Complexity of a list of stems;
- Complexity of a list of affixes;
- Complexity of the grammar of permitted combinations: signatures.

$$\left\{ \begin{array}{c} \mathsf{jump} \\ \mathsf{walk} \\ \mathsf{sprint} \end{array} \right\} \left\{ \begin{array}{c} \emptyset \\ \mathsf{ed} \\ \mathsf{ing} \\ \mathsf{s} \end{array} \right\}$$

Signature complexity

acknowledgements

Introduction

Word discovery

Morphology discovery

Linguistica

Strategy

Complexity

Signature complexity

Cost

Phonology and probability

Sonority learning

Vowel harmony learning

Bit-cost of link = -log pr of target

 ${\it acknowled} {\it gements}$

Introduction

Word discovery

Morphology discovery

Linguistica

Strategy

Complexity

Signature complexity

Cost

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

List of stems:

$$\sum_{t \in Stems} \sum_{i=1}^{|t|+1} -\log pr(t_i|t_{i-1})$$

List of affixes:

$$\sum_{f \in Af \ fixes} \sum_{i=1}^{|f|+1} -log \ pr(f_i|f_{i-1})$$

Signatures:

$$\sum_{\sigma \in Signatures} \left(\sum_{stem \ t \in \sigma} -log \ pr(t) + \sum_{suffix \ f \in \sigma} -log \ pr(f) \right)$$

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Phonology and probability

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

- A probabilistic approach to phonological representations is comfortable with complex representations.
- However, it is able to extract much more information from very simple (linear) structures.
- A few illustrations of the way in which "inverse log frequencies" (or information content) reflects linguistic intuitions of complexity and markedness.
- Mutual information $MI(a,b) \equiv log \frac{pr(a \& b)}{pr(a)pr(b)}$: positive if a and b attract, and negative if they repel.

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space
Learning...
French
French dynamics
Finnish vowels
Finnish vowels
Random starting

Phase space

points

Vowel harmony learning

The future of bayesian linguistics

Sonority learning

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority

Phase space

Random starting points

Phase space

Learning...

French

French dynamics

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

The future of bayesian linguistics

Work done jointly with Aris Xanthos (Lausanne)

Sonority

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority

Phase space Random starting points

Phase space

Learning...

French

French dynamics

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

Phase space

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority

Phase space

Random starting points

Phase space

Learning...

French

French dynamics

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

Random starting points

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority

Phase space
Random starting

points

Phase space

Learning...

French

French dynamics

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

The future of bayesian linguistics

English dynamics

Phase space

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points

Phase space

Learning...

French

French dynamics

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space

Learning...

French dynamics
Finnish vowels
Finnish vowels
Random starting
points

Phase space

Vowel harmony learning

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space
Learning...

French

French dynamics
Finnish vowels
Finnish vowels
Random starting
points

Phase space

Vowel harmony learning

French dynamics

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space
Learning...
French

French dynamics

Finnish vowels
Finnish vowels
Random starting
points

Phase space

Vowel harmony learning

Finnish vowels

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space
Learning...
French

Finnish vowels

Finnish vowels Random starting points

French dynamics

Phase space

Vowel harmony learning

- We can easily separate vowels and consonants in Finnish.
- What if we find the best 2-state system to generate the vowel sequences?

Finnish vowels

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority

Phase space

Random starting points

Phase space

Learning...

French

French dynamics

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

Vowel	Log ratio		
ö	999		
ä	961		
У	309		
е	0.655		
i	0.148		

Vowel	Log ratio		
0	-7.66		
а	-927		
u	-990		

Random starting points

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space
Learning...
French

French dynamics
Finnish vowels

Finnish vowels

Finnish vowels

Random starting points

Phase space

Vowel harmony learning

The future of bayesian linguistics

Finnish dynamics

Transition probability from front V to front V

Phase space

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Sonority
Phase space
Random starting
points
Phase space
Learning...
French

French dynamics

Finnish vowels

Finnish vowels
Random starting
points

Phase space

Vowel harmony learning

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony
Finnish VH MI
Autosegmental
model
Surprise!
2 findings

The future of bayesian linguistics

Vowel harmony learning

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony
Finnish VH MI
Autosegmental
model
Surprise!
2 findings

The future of bayesian linguistics

Work done jointly with Jason Riggle (Chicago).

Vowel harmony

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony

Finnish VH MI
Autosegmental
model
Surprise!
2 findings

- Q: How can information theory express compactly the regularity that linguists call *vowel harmony*?
- A: In a vowel harmony system, the number of choices for the next vowel is cut in half after the first vowel...
- if you allow the choice of vowel to be dependent on the previous vowel.

Finnish VH MI

acknowledgements				
Introduction				
Word discovery				
Morphology discovery				
Phonology and probability				
Sonority learning				
Vowel harmony learning				

	ä	ö	У	е	i	a	0	u
ä	2.23	1.54	1.43	-0.35	0.14	-3.00	-2.64	-3.18
ö	1.29	2.54	1.53	-0.16	0.32	-1.23	-0.89	-1.29
У	1.61	3.42	2.35	0.19	0.21	-2.96	-2.71	-3.73
е	0.30	-1.85	-0.30	0.23	0.23	-0.67	-0.54	-0.20
i	0.02	0.51	-0.35	0.62	-0.15	0.11	0.06	-0.55
а	-3.54	-5.27	-3.33	-1.03	0.07	0.45	-0.36	0.02
0	-3.34	-4.33	-2.30	0.10	0.82	0.18	0.29	0.06
u	-2.93	-3.65	-2.22	0.15	-0.11	0.15	0.89	1.12

The numbers support the intuition.

Finnish VH MI

Autosegmental model

Vowel harmony

Surprise!
2 findings

Autosegmental model

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony Finnish VH MI

Autosegmental model

Surprise!

2 findings

Surprise!

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony Finnish VH MI Autosegmental model

Surprise!

2 findings

päätuotetta (päätuote = main product)	
Word probability in unigram model: Plog sum in unigram model:	2.00×10^{-15} 48.8
Word probability in bigram model: Plog sum in bigram model:	6.37×10^{-12} 37.2
Word prob in autosegmental model: Plog sum in autosegmental model:	2.41×10^{-14} 45.2

2 findings

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony Finnish VH MI Autosegmental model Surprise!

2 findings

- The real effect of vowel harmony appears much more strongly over a consonant than adjacent.
- The over-all mutual information between choice of C and V is greater than the effect of vowel harmony

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

Vowel harmony
Finnish VH MI
Autosegmental
model
Surprise!
2 findings

The future of bayesian linguistics

Our final model operates on a single tier, including adjacent mutual information and also vowel-to-vowel mutual information.

We develop a model in which inter-segmental forces vary from language to language with regard to their fall-off over distance.

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Grammar length

Grammar length

acknowledgements

Introduction

Word discovery

Morphology discovery

Phonology and probability

Sonority learning

Vowel harmony learning

The future of bayesian linguistics

Grammar length

A formal, empiricist view of linguistics:

- We compute the length of the grammar expressed in a yet unknown language: "UG" of classical generative grammar.
- We use Kolmogorov complexity for the grammar's length: a truly universal measure.
- Linguistics becomes a science of external linguistic facts, as gathered and archived by linguists (rather than an avowed subdiscipline of cognitive psychology).