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A brief look at 4 research projects

A new look at data, and its role

An attempt to start over and start afresh.
Some mathematics (all of it probability)

A lot of graphic visualization for that reason.

Overview
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Probability 1

A simple idea:

m Let us find the most likely hypothesis h, given the
data D.

m Let us find the h that maximizes pr(h|D).
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Probability 2

What could pr(h|D) mean?

m Bayes rule says: pr(h|D) = pr(l;l’(lg)?“(h)

m The difficult part to understand is pr(h). And maybe
understanding what pr(D|h) is is not so easy, either.

m pr(h): this is the prior probability of a grammar h.
How can we conceive of such a thing?
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Probability 3

What is a probability?

m An itemization of the (infinite) set of possibilities
{r:};

m A function pr that maps each of these to a
non-negative number pr : {r;} — [0, 1]

m such that these numbers sum to 1.0: Y. pr(r;) = 1.0

m The hard part is understanding this both at the level
of the forms generated by the grammar (their
probabilities sum to 1.0), and the probability assigned
to grammars (the probability of all grammars also
sums to 1.0).
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Prior over grammars?

m Kolmogorov complexity: a universal system of

measurement.

m This work is an exploration of that hypothesis.

m |t is the extreme opposite of the view that language is

learnable only because human languages are selected
from a small subset of possible algorithms.
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Learning

Two families of views:

m A procedural, deterministic algorithmic search
procedure in a space representing grammars with a
determinate ending point.

m A non-deterministic search procedure seeking a
maximum (minimum) on some abstract (“energy")
landscape.

Classical generative grammar took the position that all
linguistics could do (and hence, should do) is define the
mapping from grammar to height on the “complexity”
landscape: consistent with the second view.
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Heart of G§

Tell us which, of two grammars, is more highly valued:

f:GxG—{1,2}
But Chomsky abandoned the program (1979).

No effort was made to deal with the question of fit of
model and data.

The work presented here emphasizes both grammar
complexity and probability assigned to observed data.
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Strategy for learning

m The general strategy is to design probabilistic
grammars, and to focus on grammars where we can
plausibly approximate the Kolmogorov complexity of
the grammar.

m This strategy can be converted to a hill-climbing
strategy for learning.

m \We can see whether the style of learning that emerges
is one that reflects the structure that we as linguists
recognize.
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A long history...

The problem: take a corpus C without breaks, and
insert them in the right places with no prior
knowledge of the language.

Important step taken in the mid-1990s by Michael
Brent and Carl de Marcken: using MDL.

Minimum Description Length analysis.

Looks for a happy medium between two extremes:

[ohe extreme says all the letters are separate
words;

[ohe says the corpus is one long word.
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Minimum description length (MDL)

Description Length of Data D, using grammar g.

In this case, the grammar is the lexicon, or list of
words.

Length of g + What is not accounted for in the data
D by g.

DL(D,g) = |g| - log pry(D)

Find the grammar ¢* that minimizes DL(D,g).
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The most likely hypothesis h*, given the data D.

pr(D|h)pr(h)

pr(h|D)
h*

arg max

arg min

arg min

pr(D)

h

h

arg max pr(D|h)pr(h)

Bayesianism

(1)
(2)

logpr(D|h) +logpr(h)]  (3)

—lng?“(D]h) —ZOQPT(h) (4)

h

compressedlength lengthofh i
Length of data, given h +

length of h

(5)

In English, choose the hypothesis h* such that h minimizes

length of the hypothesis.
How do we determine the length of the hypothesis?

the sum of the compressed length of the data plus the
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The priors

Universal Kolmogorov prior: the length of an
algorithm A is the length, in bits, of the shortest
program that implements A on a chosen universal
Turing machine.

_ 1
pr(g) = 27 l9l=1;

In the case of a lexicon, the length of £ is the number
of bits it takes to specify a list of N letters in M
words. Crude approximation: logs 27 x (N + M)

Better approximation:

|lw|+1
— > logs Y logs pr(w[i]jw[i — 1])
weLl 1=1
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word discovery as optimization problem

Begin a hill climbing operation:
m Lexicon £ < alphabet.

m Loop

[Consider the two words w;, w; that occur
together the most frequencly under the current
analysis £

[CAdd w;w; to the Lexicon to form L*.
CIfiDL(D,L£*) < DL(D,L), set L < L*.

m _..until stopping condition is satisfied.
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NoSpaces

3749 sentences, 400,000 characters.
TheFultonCountyGrandJurysaidFridayaninvestigationofAtl
anta'srecentprimaryelectionproducednoevidencethatan
yirregularitiestookplace.f
Thejuryfurthersaidinterm-endpresentmentsthattheCityE
xecutiveCommittee,whichhadover-allchargeoftheelecti
on,deservesthepraiseandthanksoftheCityofAtlantaforthem
annerinwhichtheelectionwasconducted . ..
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Problems for word learning

m The language model was too simple.

m \We need a language model in which generalizations
can be due to:

[Ekistence of morphemes in the lexicon.
[Ekistence of words with complex morphology.

[Skntactic structure.

m But the example gives proof-of-concept plausibility to
the enterprise.
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m Linguistica Project linguistica.uchicago.edu

m Unsupervised learning of natural language

morphologyf

m Employing MDL

Linguistica
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Complexity

What is the complexity of a morphology? Sum of three
things:

m Complexity of a list of stems;
m Complexity of a list of affixes;

m Complexity of the grammar of permitted
combinations: signatures.
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Phonology and probability
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A probabilistic approach to phonological
representations is comfortable with complex
representations.

However, it is able to extract much more information
from very simple (linear) structures.

A few illustrations of the way in which “inverse log
frequencies” (or information content) reflects
linguistic intuitions of complexity and markedness.

Mutual information M1 (a,b) = log pffé;fi%):

positive if a and b attract, and negative if they repel.
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Vowel harmony

m Q: How can information theory express compactly the
regularity that linguists call vowel harmony?

m A: In a vowel harmony system, the number of choices
for the next vowel is cut in half after the first vowel...

m if you allow the choice of vowel to be dependent on
the previous vowel.

47 | 54



acknowledgements

Introduction

Finnish VH MI

Word discovery

Morphology
discovery

Phonology and
probability

Sonority learning

Vowel harmony
learning

Vowel harmony

Finnish VH Ml

Autosegmental
model

Surprise!
2 findings

The future of
bayesian linguistics

a o) y e i a o) u
a | 2.23 1.54 1.43 -0.35 0.14 -3.00 -2.64 -3.18
o | 1.29 2.54 1.53 -0.16  0.32 -1.23  -0.89 -1.29
y | 1.61 3.42 2.35 0.19 0.21 -296 -2.71 -3.73
e | 0.30 -1.85 -0.30 0.23 0.23 -0.67 -054 -0.20
1| 0.02 0.51 -0.35 0.62 -0.15 0.11 0.06 -0.55
a|-354 -b27r -333 -1.03 0.07 0.45 -0.36  0.02
o|-334 -433 -230 0.10 0.82 0.18 0.29 0.06
ul|-293 -3.65 -222 0.15 -0.11  0.15 0.89 1.12

The numbers support the intuition.
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Word probability in unigram model: 2.00 x 10~1°
Plog sum in unigram model: 48 .8
Word probability in bigram model: 6.37 x 10712
Plog sum in bigram model: 37.2
Word prob in autosegmental model: 241 x 10714

Plog sum in autosegmental model: 45.2
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2.46 3.14 0.46 4.23 0.38 2,22 6.34 0.07
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(2.54) (2.54)

Our final model operates on a single tier, including
adjacent mutual information and also vowel-to-vowel
mutual information.
We develop a model in which inter-segmental forces vary
from language to language with regard to their fall-off over
distance.
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Grammar length

acknowledgements A formal, empiricist view of linguistics:

Introduction

Word discovery

m \We compute the length of the grammar expressed in
Morphology

discovery a yet unknown language: “UG" of classical generative
Phonology and grammar.
probability

Sonority learning

m \We use Kolmogorov complexity for the grammar's

Vowel harmony

learning length: a truly universal measure.
The future of . o .
bayesian linguistics m Linguistics becomes a science of external linguistic

- facts, as gathered and archived by linguists (rather

than an avowed subdiscipline of cognitive psychology).
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