Learning morphology and phonology

John Goldsmith University of Chicago MoDyCo/Paris X

Learning morphology and phonology

John Goldsmith University of Chicago MoDyCo/Paris X

All the particular properties that give a language its unique phonological character can be expressed in numbers.
-Nicolai Trubetzkoy, Grundzüge der Phonologie

Acknowledgments

My thanks for many conversations to Aris Xanthos, Yu Hu, Mark Johnson, Carl de Marcken, Bernard Laks, Partha Niyogi, Jason Riggle, Irina Matveeva, and others...

1. Word segmentation

Roadmap

1. Unsupervised word segmentation
2. MDL: Minimum Description Length
3. Unsupervised morphological analysis Model; heuristics.
4. Elaborating the morphological model
5. Improving the phonological model:
categories:
consonants/vowels vowel harmony
6. What kind of linguistics is this?

0. Why mathematics? Why phonology?

One answer: mathematics provides an alternative to cognitivism, the view that linguistics is a cognitive science.
Cognitivism is the latest form, in linguistics, of psychologism, a view that has faded in and out of favor in all of the social sciences for the last 150 years: the view that the way to understand x is to understand how people analyze x.

- This work provides an answer to the challenge: if linguistics is not a science of what does on in a speaker's head, then what is it a science of?

1. Word segmentation

The inventory of words in a language is a major component of the language, and very little of it (if any) can be attributed to universal grammar, or be viewed as part of the essence of language.
So how is it learned?

1. Word segmentation

Reporting work by Michael Brent and by Carl de Marcken at MIT in the mid 1990s.

Okay, Ginger! I've had it! You stay out of the garbage! Understand, Ginger? Stay out of the garbage, or else!

Blah blah, Ginger! Blah blah blah blah blah blah Ginger blah blah blah blah blah blah blah...

1983 What we say to dogs

1. Word segmentation

- Strategy: We assume that a speaker has a lexicon, with a probability distribution assigned to it; and that the parse assigned to a string is the parse with the greatest probability.
- That is already a (partial) hypothesis about word-parsing: given a lexicon, choose the parse with the greatest probability.
- It can also serve as part of a hypothesis about lexicon-selection.

Assume an alphabet A.
An utterance is a string of letters chosen from A *; a corpus is a set of utterances.
Language model used: multigram model (variable length words).
A lexicon L is a pair of objects (L, p_{L}): a set $L \subset A^{*}$, and a probability distribution p_{L} that is defined on A^{*} for which L is the support of p_{L}. We call L the words.

- We insist that A \subset L: all individual letters are words.
- We define a sentence as a member of L*.
- Each sentence can be uniquely associated with an utterance (an element in A *) by a mapping F :

1. Word segmentation
(Lexicon)

L*: All strings of words

A*: All strings of letters
(Alphabet)

1. Word segmentation
(Lexicon)

F

audébutétaitleverbe

A^{*} : All strings of letters
(Alphabet)

1. Word segmentation

(Lexicon)

au début était le verbe

If $F(S)=U$

audébutétaitleverbe

U

A*: All strings of letters
(Alphabet)

- The distribution p over L is extended to a distribution p^{*} over L* in the natural way:
- We assume a probability distribution λ over sentenc $\sum_{i=1}$ d 4 figeth I:
- If S is a sentence of length $I=|S|$, then

$$
p^{*}(S)=\lambda(l) \prod_{i=1}^{l} p(S[i])
$$

Now we can define the probability of a corpus, given a

 lexicon- U is an utterance; L, a lexicon.

$$
p(U \mid L)=\underset{q \in\{\operatorname{parses}(U)\}}{\arg \max } p r(q)
$$

You might think it should be the sum of the probabilities of the parses of ψ.

$$
p(U \mid L)=\sum_{q \in\{\operatorname{parses}(U)\}} p r(q)
$$

That would be reasonable.
Calculating either argmax or sum requires dynamic programming techniques.

1. Word segmentation

Best lexicon for a corpus U?

You might expect that the best lexicon for a corpus would be the lexicon that assigns the highest probability to the joint object which is the corpus C :

$$
\stackrel{U}{L}=\underset{L \in A^{*}, \mathrm{pr}}{\arg \max } p r_{L}(C \mid L)
$$

But no: such a lexicon would simply be all the members of the corpus. A sentence is its own best probability model.

2. Minimum Description Length

 (MDL) analysisMDL is an approach to statistical analysis that assumes that prior to analyzing any data, we have a universe of possible models (= UG); each element $G \in U G$ is a probabilistic model for the set of possible corpora; and
A prior distribution $\pi()$ has been defined over UG based on the length of the shortest binary encoding of each G, where the encoding method has the prefix property: π $(\mathrm{G})=2-\operatorname{length}(\mathrm{En}(\mathrm{G}))$

2.1 Bayes' rule

$$
\begin{aligned}
& \operatorname{pr}(G \mid C)=\frac{p r(C \mid G) p r(G)}{p r(C)} \\
& =\frac{p_{G}^{*}(C) \pi(G)}{p r(C)} \\
& =\frac{p_{G}^{*}(C) \pi(G)}{\int_{U G} p_{g}^{*}(C) \pi(g) d g}
\end{aligned}
$$

2. MDL

$$
\begin{aligned}
& p r(G \mid C)=\frac{p r(C \mid G) p r(G)}{p r(C)} \\
= & \frac{p_{G}(C) \pi(G)}{p r(C)} \\
= & \frac{p_{G}(C) \pi(G)}{\int p_{g}(C) \pi(g) d g}
\end{aligned}
$$

$\log \operatorname{pr}(G \mid C)$
$=\log p_{G}(C)-H(G)-K$.

> log prob of corpus, in grammar

Length of
 G's encoding

G
We already figured out how to compute this, given $\mathrm{G}=(\mathrm{L}, \mathrm{p})$

$$
\|G\| \sim \sum_{w \in G}|w|^{*} \log (26)
$$

How one talks in MDL...

It is sensible to call-log prob (X) $\left.\log \frac{1}{\text { prob } x}\right)$ the information content of an item X , and also to refer to that quantity as the optimal compressed length of X.
In light of that, we can call the following quantity the description length of corpus C, given grammar G : $[-\log \operatorname{prob}(C \mid G)]+[\operatorname{length}(E n c(G))]$
= Compressed length of corpus

+ compressed length of grammar
$=-\log \operatorname{prob}(\mathrm{G} \mid \mathrm{C})+\mathrm{a}$ constant

2. MDL

How one talks in MDL...

It is sensible to call -log prob $(X) \log \left(\frac{1}{\text { prob } x}\right) \quad$ the information content of an item X , and also to refer to that quantity as the optimal compressed length of X.
In light of that, we can call the following quantity the description length of corpus C, given grammar G: $[-\log \operatorname{prob}(C \mid G)]+[\operatorname{length}(\operatorname{Enc}(G))]$

= evaluation metric of early generative grammar

MDL dialect

- MDL analysis: find the grammar G for which the total description length is the smallest:
Compressed length of data, given $G+$ Compressed length of G

Essence of MDL

2. MDL

2.2 Search heuristic

Easy!

start small: initial lexicon = A; if I_{1} and I_{2} are in L, and $I_{1} \cdot I_{2}$ occurs in the corpus, add $I_{1} \cdot I_{2}$ to the lexicon if that modification decreases the description length.
Similarly, remove I_{3} from the lexicon if that decreases the description length.
2.MolMDL: tells us when to stop growing the lexicon
If we search for words in a bottom-up fashion, we need a criterion for when to stop making bigger pieces.
MDL plays that role in this approach.

A little example to fix ideas...

How do these two

 multigram models ofEnglish compare? Why is Number 2 better?

Lexicon 1: $\{a, b, \ldots s, t, u . .$.
z\}

Lexicon 2: $\{a, b, \ldots$ s,t,th,u...z\}

A little example to fix ideas...

Notation:

[t] = count of t
[h] = count of h
[th] = count of th
$Z=$ total number of words (tokens)

$$
Z=\sum_{l \in \text { lexicon }}[l]
$$

Log probability of corpus:
$\sum_{m \text { inlexicon }}[m] \log \frac{[m]}{Z}$

$$
\text { where } Z=\sum_{l \in \text { lexicon }}[l]
$$

Log prob

 of sentence C$[t]_{1} \log \frac{[t]_{1}}{Z_{1}}$
$+[h]_{1} \log \frac{[h]_{1}}{Z_{1}}$
$+\sum_{m p, h}[m] \log \frac{[m]}{Z_{1}}$

All letters are separate

$$
\begin{gathered}
{[t]_{2} \log \frac{[t]_{2}}{Z_{2}}} \\
+[h]_{2} \log \frac{[h]_{2}}{Z_{2}} \\
+\sum_{m \neq t, h}[m] \log \frac{[m]}{Z_{2}} \\
+[t h]_{2} \log \frac{[t h]_{2}}{Z_{2}}
\end{gathered}
$$

th is treated as a separate chunk

$$
[Z]_{2}=[Z]_{1}-[t h]
$$

$[t]_{1} \log \frac{[t]_{1}}{Z_{1}}$
 $$
\begin{array}{c|c} \hline[t]_{2} \log \frac{[t]_{2}}{Z_{2}} & \text { th is treated } \\ +[h]_{2} \log \frac{[h]_{2}}{Z_{2}} & \text { as a separate } \\ \text { chunk } \end{array}
$$

 th is treated

 th is treated as a separate as a separate chunk chunk
 All letters are separate
 $$
\begin{aligned} & {[t]_{2} \log \frac{[t]_{2}}{Z_{2}} } \\ + & {[h]_{2} \log \frac{[h]_{2}}{Z_{2}} } \\ + & \sum_{m \neq t, h}[m] \log \frac{[m]}{Z_{2}} \\ + & {[t h]_{2} \log \frac{[t h]_{2}}{Z_{2}} } \end{aligned}
$$
 $$
\text { define } \Delta f \text { as } \log \frac{f_{2}}{f_{1}} ; \text { then } \Delta p r(C)=
$$
 $$
-Z_{1} \Delta Z+[t]_{1} \Delta t+[h]_{1} \Delta h+[t h] \log \frac{p r_{2}(t h)}{p r_{2}(t) p r_{2}(h)}
$$

This is positive if Lexicon 2 is

Effect of having

 fewer "words" altogether

This is positive if
Lexicon 2 is
$h 口 t+n r$

Effect of frequency of /t/ and /h/ decreasing

This is positive if
Lexicon 2 is
$h 口 t+n r$

Effect /th/ being treated as a unit rather than separate pieces

$$
\begin{gathered}
\text { define } \Delta f \text { as } \log \frac{f_{2}}{f_{1}} ; \text { then } \Delta p r(C)= \\
-Z_{1} \Delta Z+[t]_{1} \Delta t+[h]_{1} \Delta h t[t h] \log \frac{p r_{2}(t h)}{p r_{2}(t) p r_{2}(h)} \\
\text { This is positive if } \\
\text { Lexicon } 2 \text { is }
\end{gathered}
$$

2.3 Results

- The Fulton County Grand Ju ry s aid Friday an investi gation of At I anta 's recent prim ary e lection produc ed no e videnc e that any ir regul ar it i e s took place.
- Thejury further s aid in term - end present ment s thatthe City Ex ecutive Commit tee,which had over - all charg e ofthe e lection, de serve s the pra is e and than k softhe City of At I anta forthe man ner in whichthe e lection was conduc ted.

Chunks are too big Chunks are too small

Summary

1. Word segmentation is possible, using (1) variable length strings (multigrams), (2) a probabilistic model of a corpus and (3) a search for maximum likelihood, if (4) we use MDL to tell us when to stop adding to the lexicon.
2. The results are interesting, but they suffer from being incapable of modeling real linguistic structure beyond simple chunks.
3. MDL

Summary

1. Word segmentation is possible, using (1) variable length strings (multigrams), (2) a probabilistic model of a corpus and (3) a search for maximum likelihood, if (4) we use MDL to tell us when to stop adding to the lexicon.
2. The results are interesting, but they suffer from being incapable of modeling real linguistic structure beyond simple chunks.

Question:

Will we find that types of linguistic structure correspond naturally to ways of improving our MDL model, either to increase the probability of the data, or to decrease the size of the grammar?

3. Morphology (primo)

Problem: Given a set of words, find the best morphological structure for the words - where "best" means it maximally agrees with linguists (where they agree with each other!).
Because we are going from larger units to smaller units (words to morphemes), the probability of the data is certain to decrease.
The improvement will come from drastically shortening the grammar = discover regularities.

Naïve MDL

Corpus:

jump, jumps, jumping
laugh, laughed, laughing
sing, sang, singing the, dog, dogs total: 62 letters

Analysis:

Stems: jump laugh sing sang dog (20 letters)
Suffixes: s ing ed (6 letters)
Unanalyzed: the (3 letters)
total: 29 letters.
3. Morphology

Model/heuristic

1st approximation: a morphology is:

1. a list of stems,
2. a list of affixes (prefixes, suffixes), and
3. a list of pointers indicating which combinations are permissible.

Unlike the word segmentation problem, now we have no obvious search heuristics.
These are very
important (for that reason)—and I will not talk about them.

Size of model

M[orphology] =

 \{ Stems T, Affixes F, Signatures Σ \}$$
\|M\|=\|T\|+\|F\|+\|\Sigma\|
$$

sig's $\|\Sigma\|=\sum \mid \sigma \|$
$\|\Sigma\|=\sum_{\sigma \in T}\| \| \|$
extensivit
y
3. Morphology

What is a signature?
$\left\{\begin{array}{c}\text { élevé } \\ \text { équipé } \\ \text { étonnant } \\ 78 \text { more }\end{array}\right\}\left\{\begin{array}{c}\text { NULL } \\ e \\ s \\ e s\end{array}\right\}$

What is the length (=information content) of a

 signature?A signature is an ordered pair of two sets of pointers: (i) a set of pointers to stems; and (ii) a set of pointers to affixes.
The length of a pointer p is -log freq (p):

Sum over signatures Sum over stem ptrs

Generation 1 Linguistica

http://linguistica.uchicago.edu Initial pass:
assumes that words are composed of 1 or 2 morphemes;
finds all cases where signatures exist with at least 2 stems and 2 affixes:

$$
\left\{\begin{array}{l}
\text { jump }\{ \\
\text { walk }
\end{array}\right\}\left\{\begin{array}{c}
N U L L \\
e d \\
\text { ing }
\end{array}\right\}
$$

Generation 1

Then it refines this initial approximation in a large number of ways, always trying to decrease the description length of the initial corpus.

```
Ele Edit Yiew Miri-Lexica Suffixes Prefixes LogFile ESA Diagnostics Help
```


Refinements

1. Correct errors in segmentation

$$
\left\{\begin{array}{c}
\text { affirmati } \\
\text { aggressi } \\
\text { attenti } \\
20 \text { more }
\end{array}\right\}\left\{\begin{array}{c}
\text { on } \\
\text { ve }
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
\text { affirm } \\
\text { aggress } \\
\text { attent } \\
20 \text { more }
\end{array}\right\}\left\{\begin{array}{l}
\text { ion } \\
\text { ive }
\end{array}\right\}
$$

2. Create signatures with only one observed stem: we have NULL, ed, ion, s as suffixes, but only one stem (act) with exactly those suffixes.

3. Morphology

3. Find recursive structure: allow stems

 to be analyzec'

3. Morphology
 French roots

Stems	Corpus count	Prefix	Suffix sig
abrioot	6		NLILL-ier
accept	3		NULLL-Eur
acheuléen	4		NULLL-пIe
acryl	11		NLILL-ique
antuel	10		Nullu-le
adaptat	29		NLILL-eur-ion
administr	2		PULLL-at
administrat	11		NLILL-eur-ion
adopt	5		NULUL-ant
africa	36		NLULL-in
agglomer	5		PULLL-ation
amélior	4		PNULL-ation
ameri	8		Nolll-que
america	45		NLULL-in

Words /	Stem	Mini-Lexicon 3	Mini-Lexicon 2	Mini-Lexicon 1
decline	declin		e	
declined	declin			ed
declines	declin			es
decolletage	decolletage			
decor	decor			
decorate	decor		at	e
decorating	decor		at	ing
decoration	decor		at	ion
decorations	decor	at	ion	s
decorative	decor		at	ive
decorator	decor		at	or
decorators	decor	at	or	s
decrease	decrease			
decree	decree			
decreeing	decree			ing
decried	decri			ed
decries	decri			es
dedicated	dedicat			ed

4. Detect allomorphy

> signature: <e>ion. NULL

composite	concentrate	corporate	détente
discriminate	evacuate	inflate opposite	
participate	probate	prosecute	tense

What is this?

composite and composition

composite \rightarrow composit \rightarrow composit + ion
It infers that ion deletes a stem-final 'e' before attaching.
3. Morphology

3. Summary

Works very well on European languages.
Challenges:

1. Works very poorly on languages with richer morphologies (average \# morphemes/word >> 2). (Most
languages have rich morphologies.)
2. Various other deficiencies.

4. Morphology (secundo)

The initial bootstrap in the previous version does not even work on most languages, where the expected morphology contains sequences of 5 or more morphemes.

Swahili
 verb

Swahili verb

Subject marker

Swahili

Tense marker

Swahili

Object marker

Swahili

Root

Swahili verb

Swahili
 verb

(active/passive)
Final
vowel

Finite state automaton (FSA)

Signature:

 reduces false positives$$
\left\{\begin{array}{c}
\text { jump } \\
\text { walk }
\end{array}\right\}\left\{\begin{array}{c}
N U L L \\
e d \\
i n g
\end{array}\right\}
$$

Generalize the signature...

Sequential FSA: each state has a unique successor.

Alignments

Alignments: String edit distance algorithm

nili, mupenda

4. Morphology

Alignments: make cuts

4. Morphology

Elementary alignment

Collapsing elementary alignments

Two or more sequential FSAs with identical contexts are collapsed:

3. Further collapsing FSAs

4.3 Top templates: 8,200 Swahili

words	State 1	WOrd S
State 2		\quad State 3

4. Morphology

Precision and recall

	Precision	Recall	F-score
String edit distance	0.77	0.57	0.65
Stem- affix	0.54	0.14	0.22
Affix- stem	0.68	0.20	0.31

Collapsed templates

		One Template	The other template	Collapsed Template	\% found on Yahoo search
	1	$\begin{gathered} \{a\}-\{\text { ka,na }\}- \\ \{\text { stems }\} \end{gathered}$	\{a\}-\{ka,ki\}-\{stems $\}$	\{a\}- \{ka,ki,na\}-\{stems $\}$	86 (37/43)
	2	$\{\text { wa }\}-\{\text { ka,na }\}-$ $\text { \{stems\} }$	\{wa\}-\{ka,ki\}-\{stems $\}$	\{wa $\}$ - $\{$ ka,ki, na$\}$ - $\{$ stems $\}$	95 (21/22)
	3	$\begin{gathered} \{\mathrm{a}\}-\{\text { \{ka,ki,na }\}- \\ \{\text { stems }\} \end{gathered}$	$\begin{gathered} \{\text { wa }\}-\{\text { ka,ki,na }\}- \\ \{\text { stems }\} \end{gathered}$	$\{a, w a\}-\{k a, k i, n a\}-$ \{stems\}	84 (154/183)
	4	\{a\}-\{liye,me\}\{stems \}	\{a\}-\{liye,li\}-\{stems\}	\{a\}-\{liye,li,me\}-\{stems \}	100 (21/21)
	5	\{a\}-\{ki,li\}-\{stems $\}$	\{wa\}-\{ki,li\}-\{stems\}	\{a,wa\}-\{ki,li\}-\{stems \}	90 (36/40)
	6	$\{\mathrm{a}\}-\{\text { lipo,li }\}-$ $\text { \{stems\} }$	\{wa\}-\{lipo,li\}-\{stems \}	\{a,wa\}-\{lipo,li\}-\{stems\}	90 (27/30)
7		$\{\mathrm{a}, \mathrm{wa}\}-\{\mathrm{ki}, \mathrm{li}\}-$ \{stems\}	$\begin{gathered} \{\mathrm{a}, \mathrm{wa}\}-\{\text { \{lipo,li }\}- \\ \{\text { stems }\} \end{gathered}$	$\begin{aligned} & \{\mathrm{a}, \mathrm{wa}\} \text { - }\{\mathrm{ki}, \text { lipo,li }\}- \\ & \{\text { stems }\} \end{aligned}$	74 (52/70)
8		$\{a\}-\{\text { na,naye }\}-$ $\text { \{stems\} }$	\{a\}-\{na,ta\}-\{stems $\}$	\{a\}-\{na,ta,naye $\}$ - stems $\}$	80 (12/15)

4. 1 Evaluating the robustness of these templates (sequential FSAs)

- Measure: How many letters do we save by expressing words in a template rather than by writing each one out individually?

\section*{\section*{4. Morphology

 Most edges are

 Most edges are convergent...}

adjectives

But some diverge (Spanish):

car-pequeñ-

4. Morphology
 English has much the same:

laugh
jump
walk

4. Morphology

4. Summary

We need to enrich the heuristics and consider a broader set of possible grammars.
With that, improvements seem to be unlimited at this point in time.
Focus: Decrease the length of the analysis, especially in the length of the substance (morphemes) described.

5. Phonology

So far we have said little about phonology.
We have assumed no interesting probabilistic model of segment (=phoneme) placement. (0th or 1st order Markov model).
But we can shorten the length of the grammar by taking this into consideration.

These slides present material done jointly with Aris Xanthos and with Jason Riggle.

5.Phonomuch more interesting model:

For state transitions; and the same model for emissions: both states emit all of the symbols, but with different probabilities....
5. Phonology

$$
\sum_{i} c_{i}=1
$$

5. Phonology

The question is...

- How could we obtain the best probabilities for x and y (transition probabilities), and all of the emission probabilities for the two states?
- Bear in mind: each state generates all of the symbols. The only way to ensure that a state does not generate a symbol s is to assign a zero probability for the emission of the symbol s in that state.

Hidden Markov model

With a well-understood training algorithm, an HMM will find the optimal parameters to generate the data so as to assign it the highest probability.
How does it organize the phonological data?

English FSA

$(0,1)$

Pr (State 2

\rightarrow State 2)

$(0,0)$
Pr (State $1 \rightarrow$ State 1)

English: Log ratios of the emission

probabilitioc $n f$ the 2 states:

$$
\log \frac{p_{1}(\phi)}{p_{2}(\phi)}
$$

ArpaBet	Log ratio		
DH	-999	B	-999
NG	-999	Y	-999
W	-999	F	-999
N	-999	G	-829
L	-999	${ }^{\mathrm{K}}$	-576
HH	-999	CH	-361
SH	-999	TH	-5.19
R	-999	P	-4.37
M	-999	D	-3.95
v	-999	S	-2.75
ZH	-999	T	-2.20
JH	-999	z	-1.37

ArpaBet	Log ratio		
Uwo	2.22	EY1	${ }_{263} 26$
ERO	2.30	UW1	999
IYO	2.31	Ано	999
AWO	2.32	EHO	999
AYO	2.83	${ }_{\text {ER1 }}^{\text {AEO }}$	999 999
owo	3.93	AAO	999
EYO	4.99	IH0	999
AY1	5.11	AE1	999
OY1	5.81	AOO EH1	999 999
IY1	7.39	AA1	999
OW1	12.7	${ }_{\text {a }} \mathrm{O} 11$	999
AW1	275	${ }_{\text {AH1 }}$	999
		UH1	999
		UHO	999

French: Log ratios of the emission

$\log \frac{p_{1}(\phi)}{p_{2}(\phi)}$

Phone	Log ratio
$ə$	-999
ε	-999
∂	-999
u	-999
i	-999
$\tilde{\mathrm{a}}$	-999
$\tilde{\mathrm{e}}$	-999
$\tilde{\mathrm{o}}$	-999
a	-473
y	-11.6
o	-10.5
$\tilde{\mathrm{o}} \mathrm{e}$	-5.53
e	-4.93

negative
positive

French

Figure 11: Dynamics of learning French c / v

5. Phonology
 Finnish vowels and their harmony

Vowel	Log ratio
$\ddot{\mathrm{o}}$	999
a	961
y	309
e	0.655
i	0.148

Vowel	Log ratio
o	-7.66
a	-927
u	-990

Front vowels
Back vowels

From State 1	Prob	From State 2	Prob	From State 3	Prob
a	0.17	r	. 14	r	. 28
e	0.15	S	. 11	j	. 21
i	0.15	t	. 10	1	. 13
ə	0.15	k	. 096	t	. 12
o	0.087	1	. 078	w	. 059
ε	0.058	p	. 072	e	. 051
2	0.056	n	. 062	m	. 033
y	0.043	m	. 059		
4	. 036	d	. 059		
I	. 027	b	. 047		
u	. 026	f	. 037		
\bigcirc	. 026	v	. 031		
		g	0.029		
		z	0.026		
		3	0.021		

Table 12: Emission probabilities, 3 state HMM for French

6. What kind of linguistics is this?

It is an approach to linguistic analysis which is non-cognitivist:
It makes no claims about hidden or occult properties of the human system (for which linguistic tools are not designed to provide answers).
It welcomes psychologists, without claiming to replace them, or to do their job.

It asks linguists to study language as a natural phenomenon, and to evaluate their success like any other natural science.

I have not addressed two important areas of phonology: automatic morphophonology, and the geometry of phonological representations.
That will have to wait à la prochaine.

6. What kind of linguistics is this?

Facts about a language L may be divided into (type 1) those facts that are particular to L, and (type 2) those that are shared by all languages.
In all likelihood, type 1 information is vastly larger than type 2 information.

Type 1 information is:
universal;
in all likelihood, not learned, and not even learnable in a short time period; innate;
not influenced by historical or cultural concerns.

It seems clear to me that linguistics is the study of both Type 1 and Type 2 information. Much of the focus in linguistic theory has focused on Type 1 information (what is common to all acquisition paths).
This work

Linguistics seeks the essence common to all languages. This essence can exist nowhere other than in the biological nature of the human being. This essence does not need to be learned. This essence can probably not be learned (in a reasonable time). This essence is UG.

- Linguistics seeks to analyze each human language. Languages vary, due to their history, to their speakers' history, and to the ends to which they are put. Finding ways to characterize each language adequately is the primary goal of linguistics; it is best accomplished by analyzing linguistic data in the same way that other sciences proceed, ceteris paribus.

