
Learning Morphophonology From Morphology and MDL

John A Goldsmith
The University of Chicago

http://linguistica.uchicago.edu

17 July 2011

1 Unsupervised learning as a way of doing linguistic theory

1. Hypothesis generation. Today’s focus.

2. Hypothesis testing (evaluation).

Data Discovery device Correct grammar of corpus

Data

Grammar
Verification device Yes, or, No

Data

Grammar 1

Grammar 2

Evaluation metric G1 is better; or, G2 is better.

Figure 1: Chomsky’s three conceptions of linguistic theory

Data
Bootstrap
device G

incremental
change

G
′

Evaluation
metric G∗

Preferred
grammar

Halt?

No

G∗

Yes

Halt!

Figure 2: Unsupervised learning of grammars

1

2 Unsupervised learning of morphology: the Linguistica project (2001)

2.1 Working on the unsupervised learning of natural language morphology. Why?

What is the task, then? Take in a raw corpus, and produce a morphology. What is a morphology? The answer to that
depends on what linguistic problems we want to solve. Let’s start with the simplest: analysis of words into morphs (and
eventually into morphemes). Solution looks like an FSA, then. Examples: English, French, Swahili. An FSA is a set of
vertices (or nodes), a set of edges, and for each edge a label and a probability, where the sum of the probabilities of the edges
leaving each node sums to 1.0.

1. English morphology: morphemes on edges of a finite-state automaton

proud, loud
ly

lord,
hard,

friend

buddh, special, capital

dog, boy, girl

ship

ist
fu
l/
le
ss
/
ic
al

s

∅

culti
v, ca

lcul ate

jump, walk, love, move

m
en

t,
er
, i
o
n
, i
n
g
, a
l

∅

ed

s
ing

Figure 3: English morphology: morphemes on edges

Pose the problem as an optimization problem: quantitative data that can be measured, but provides qualitatively special
points in a continuous world of measurement.

Turning this into a linguistic project
Some details on the MDL model; no time to talk about the search methods.
We can use the term length (of something) to mean the number of bits = amount of information needed to specify it. Except

where indicated, the probability distribution(s) involved are from maximum likelihood models. The length of an FSA is the
number of bits needed to specify it, and it equals the sum of these things:

1. List of morphemes: assigning the phonological cost of establishing a lean class of morphemes. Avoid redundancy;
minimize multiple use identical strings. The probability distribution here is over phonemes (letters).

∑
t∈morphemes

|t|+1

∑
i=1

−log prphono(ti|ti−1)

2. List of nodes v: the cost of morpheme classes

∑
v∈Vertices

−log pr(v)

2

nouns: chien, lit, homme, femme
s

∅

dirige
, sav,

suiv

rond, espagnol, grand

ant e

∅

me
nt

s

∅

adverbs

amic, norm, génér-
ale
ales
al

aux

développ, regroup, exerc

a
aient

ait

ant

and many more

Figure 4: French

3. List of edges e: the cost of morphological structure: avoid morphological analysis except where it is helpful.

∑
e(v1,v2,m)∈ Edges

−log pr(v1)− log pr(v2)− log pr(m)

(I leave off the specification of the probabilities on the FSA itself, which is also a cost that is specified in bits.)
In addition, a word generated by the morphology is the same as a path through the FSA. Pr(w) = product of the choice

probabilities of for w’s path.
So: for a given corpus, Linguistica seeks the FSA for which the description length of the corpus given the FSA is

minimized, which is something that can be done in an entirely language-independent and unsupervised fashion.

A B C

walk

jump

∅

s

ed

ing

3

Interpreting this graph: The x-axis and y-axis both quantities
measured in bits. The x-axis marks how many bits we are
allowed to use to write a grammar to describe the data: the
more bits we are allowed, the better our description will be,
until the point where we are over-fitting the data. Thus each
point along the x-axis represents a possible grammar-length;
but for any given length l, we care only about the grammar g
that assigns the highest probability to the data, i.e., the best
grammar. The red line indicates how many bits of data are
left unexplained by the grammar, a quantity which is equal
to -1 * log probability of the data as assigned by the grammar.
The blue line shows the sum of these two qunantities (which
is the conditional description length of the data). The black line
gives the length of the grammar.

bits

x Capacity (bits)

|g(x)| = length of g(x)

−logpr(d|g(x))

minimum

b

|g| − logpr(d|g(x))

Figure 5: MDL optimization

3cTop part of Linguistica’s output from 600,000 words of English:

Signature exemplar count Stem count

∅ − s pagoda 20,615 1330
‘s− ∅ Cambodia 30,100 683
∅ − ly zealous 14,441 479
∅ − ed− ing− s yield 6,235 123
‘s− ∅ − s youngster 4,572 121
e− ed− es− ing zon 3,683 72
ies− y weekl 2,279 124
∅ − ly− ness wonderful 2,883 64
∅ − es birch 2,472 96
∅ − ed− er− ing− s pretend 957 19
ence− ent virul 571 37
∅ − ed− es− ing witness 638 18
. . .

3 Learning (morpho)phonology from morphology

It never ceases to amaze me how hard it is to develop an explicit
algorithm to perform a simple linguistic task, even one that is
purely formal. Surely succeeding in that task is a major goal of
linguistics.

Morphology treats the items in the lexicon of a language (finite or infinite; let’s assume finite to make the math easier).
Any given analysis divides the lexicon up into a certain number of subgroups. If there are n subgroups, each equally likely,
in a lexicon of size V (V for vocabulary), then marking each word costs −log2

n
V . (If the groups are not equally likely, and the

ith group has ni members, then marking a word as being in that group costs −log2
ni
V = log2

V
ni
. Each word in the ith group

needs to be marked, and all of those markings together costs ni × log2
V
ni
. If we can collapse two subgroups analytically, then

we savea lot of bits. How many? If the two groups are equal-sized, then we save 1 bit for each item.
Why? Suppose we have two groups, g1 and g2 of 100 words out of a vocabulary of 1000 words. Each item in those two

groups is marked in the lexicon at a cost of log2
1000
100 ≈ 3.3 bits; 200 such words costs us 200× 3.32 bits = 664 bits. If they

were all treated as part of a single category, the cost of pointing to the larger category would be −log2
200
1000 = 2.32 bits, so

we would pay a total of 200× 2.32 = 464 bits. for a total saving of 200 bits. We actually compute how complex an analysis
is. And the morphological analysis that Linguistica provides can be made “cheaper” by decreasing the number of distinct
patterns it contains, by adding a (morpho)phonology component after the morphology.

But how can we discover it automatically?

4

3.1 English verb

(1)

Regular verbal patterns

jump walk
jumped walked
jumping walking
jumps walks

(2)

e-final verbal pattern

move love hate
moved loved hated
moving loving loved
moves loves loves

(3)

s-final pattern

push miss veto
pushed missed vetoed
pushing missing vetoing
pushes misses vetoes

(4)

C-doubling pattern

tap slit nag
tapped slitted nagged
tapping slitting nagging
taps slits nags

(5)

y-final pattern

try cry lie*
tried cried lied
trying crying lying
tries cries lies

Figure 6: Some related paradigms

string S string T ∆R(S, T)

jumped jumping ed
ing

jump jumping ∅
ing

walk jump walk
jump

walked jumped walked
jumped

Definition (loose): Given two strings S and T
whose longest common initial string is m;
S = m+ s1;
T = m+ t1.
Then
∆R(string1, string2) =

s1
t1

Definition (tight): Given an alphabet A. Define a cancella-
tion operation and an inverse alphabet A−1: For each a ∈ A
there is an element a−1 in A−1 such that aa−1 = a−1a = e.
Define an augmented alphabet A ≡ A ∩ A−1. A∗ is the set
of all strings drawn fromA. If we add the cancellation op-
eration to A∗, then we get a free group G in which (e.g.)
ab−1cc−1b = a. We normally denote the elements in G by
the shortest strings in A∗ that correspond to them.

∆R(S, T) ≡ T−1S.

∆L(S, T) ≡ ST−1.

E.g. ∆R(jumped, jumping) ≡ (jumping)−1 jumped =
(ing)−1(jump)−1(jump)(ed) = (ing)−1(ed) =
ed
ing

Still, these matrix are quite similar to one another. We can formalize that observation, if we take advantage of the notion
of string difference we defined just above. We extend the definition of ∆L to Σ∗ × Σ∗ in this way:

∆L(
a

b
,
c

d
) =

∆L(a, c)

∆L(b, d)
(6)

If we define ∆L on a matrix as the item-wise application of that operation on the individual members, then we can

express the difference between 6 and 7 in this way (where we indicate ∅
∅
with a blank). See Figures 7,8 on next two pages.

3.2 Hungarian

See Figure 10 below.

3.3 Spanish

See Figure 9 below.

4 Conclusion

Let P be a sequence of words (think P[aradigm]) of length n.
We define the quotient P÷Q of two sequences P,Q of the same length n as a 2× 2 matrix, where

P÷Q(i, j) ≡ ∆L(pi, qj)

5

jump jumps jumped jumping

jump ∅
s

∅
ed

∅
ing ∅

jumps s
∅

s
ed

s
ing s

jumped ed
∅

ed
s

ed
ing ed

jumping
ing
∅

ing
s

ing
ed ing

∅ s ed ing

push pushes pushed pushing

push ∅
es

∅
ed

∅
ing ∅

pushes es
∅

s
d

es
ing es,s

pushed ed
∅

d
s

ed
ing d,ed

pushing
ing
∅

ing
es

ing
ed ing

∅ es, s d, ed ing

move moves moved moving

move ∅
s

∅
d

e
ing e, ∅

moves s
∅

s
d

es
ing es, s

moved d
∅

d
s

ed
ing d, ed

moving
ing
e

ing
es

ing
ed ing

e,∅ es, s d, ed ing

slit slits slitted slitting

slit ∅
s

∅
ted

∅
ting ∅

slits s
∅

s
ted

s
ting s

slitted ted
∅

ted
s

ed
ing ed, ted

slitting
ting

∅

ting
s

ing
ed ing, ting

∅ s ed, ted ing, ting

try tries tried trying

try
y
ies

y
ied

∅
ing y, ∅

tries ies
y

s
d

ies
ying ies, s

tried ied
y

d
s

ied
ying ied, d

trying
ing
∅

ying
ies

ying
ied ing, ying

y,∅ ies, s d, ied ing, ying

Figure 7: Matrix of string differences

In particular

P÷ P(i, j) ≡ ∆L(pi, pj)

We may compare two paradigms then as the second difference:

▽(P,Q) ≡ (P÷ P)÷ (Q÷Q)

This is what we have explored in this handout.

Many morphophonological changes emerge as the second differ-
ence of sets (‘paradigms’) of words.

6

jump:move 1 2 3 4

1. ∅ ∅
e

∅
e

2. s ∅
e

∅
e

3. ed e
∅

e
∅

4. ing e
∅

e
∅

jump:push 1 2 3 4

1. ∅ e
∅

2. s ∅
e

∅
e

∅
e

3. ed e
∅

4. ing e
∅

jump:split 1 2 3 4

1. ∅ t
∅

t
∅

2. s t
∅

t
∅

3. ed ∅
t

∅
t

4. ing ∅
t

∅
t

jump:try 1 2 3 4

1. ∅ ie
y

i
y

2. s
y
ie

y
ie

y
ie

3. ed
y
i

ie
y

4. ing ie
y

Figure 8: Difference of differences: English verb

emberem embered embere emberünk emberetek emberük

emberem m
d

m
∅

em
ünk

m
tek

em
ük

embered d
m

d
∅

ed
ünk

d
tek

ed
ük

embere ∅
m

∅
d

e
ünk

∅
tek

e
ük

emberünk ünk
em

ünk
ed

ünk
e

ünk
etek

nk
k

emberetek tek
m

tek
d

tek
∅

etek
ünk

etek
ük

emberük ük
em

ük
ed

ük
e

k
nk

ük
etek

dögöm dögöd döge dögünk dögötek dögük

dögöm m
d

öm
e

öm
ünk

m
tek

öm
ük

dögöd d
m

öd
e

öd
ünk

d
tek

öd
ük

döge e
öm

e
öd

e
ünk

e
ötek

e
ük

dögünk ünk
öm

ünk
öd

ünk
e

ünk
ötek

nk
k

dögötek tek
m

tek
d

ötek
e

ötek
ünk

ötek
ük

dögük ük
öm

ük
öd

ük
e

k
nk

ük
ötek

Differences of differences

emberük ∅ e
ö

e
ö ∅ e

ö

emberük ∅ e
ö

e
ö ∅ e

ö

emberük ö
e

ö
e ∅ ö

e ∅

emberük ö
e

ö
e ∅ ö

e ∅

emberük ∅ ∅ e
ö

e
ö

e
ö

emberük ö
e

ö
e ∅ ∅ ö

e

Figure 9: Hungarian vowel harmony: commutative free group

7

hablar hablo hablas habla hablamos hablan hablé hable hables

hablar ar
o

r
s

r
∅

r
mos

r
n

ar
é

ar
e

ar
es

hablo o
ar

o
as

o
a

o
amos

o
an

o
é

o
e

o
es

hablas s
r

as
o

s
∅

s
mos

s
n

as
é

as
e

as
es

habla ∅
r

a
o

∅
s

∅
mos

∅
n

a
é

a
e

a
es

hablamos mos
r

amos
o

mos
s

mos
∅

mos
n

amos
é

amos
e

amos
es

hablan n
r

an
o

n
s

n
∅

n
mos

an
é

an
e

an
es

hablé é
ar

é
o

é
as

é
a

é
amos

é
an

é
e

é
es

hable e
ar

e
o

e
as

e
a

e
amos

e
an

e
é

∅
s

hables es
ar

es
o

es
as

es
a

es
amos

es
an

es
é

s
∅

buscar busco buscas busca buscamos buscan busqué busque busques

buscar ar
o

r
s

r
∅

r
mos

r
n

car
qué

car
que

car
ques

busco o
ar

o
as

o
a

o
amos

o
an

co
qué

co
que

co
ques

buscas s
r

as
o

s
∅

s
mos

s
n

cas
qué

cas
que

cas
ques

busca ∅
r

a
o

∅
s

∅
mos

∅
n

ca
qué

ca
que

ca
ques

buscamos mos
r

amos
o

mos
s

mos
∅

mos
n

camos
qué

camos
que

camos
ques

buscan n
r

an
o

n
s

n
∅

n
mos

can
qué

can
que

can
ques

busqué
qué
car

qué
co

qué
cas

qué
ca

qué
camos

qué
can

é
e

é
es

busque
que
car

que
co

que
cas

que
ca

que
camos

que
can

e
é

∅
s

busques
ques
car

ques
co

ques
cas

ques
ca

ques
camos

ques
can

es
é

s
∅

hables hables hables hables hables hables hables hables hables

hables
qu
c

qu
c

qu
c

hables
qu
c

qu
c

qu
c

hables
qu
c

qu
c

qu
c

hables
qu
c

qu
c

qu
c

hables
qu
c

qu
c

qu
c

hables
qu
c

qu
c

qu
c

hables c
qu

c
qu

c
qu

c
qu

c
qu

c
qu

hables c
qu

c
qu

c
qu

c
qu

c
qu

c
qu

hables c
qu

c
qu

c
qu

c
qu

c
qu

c
qu

Figure 10: Difference of differences: Spanish verb

8

