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Two philosophers who disagree about a point should, instead of arguing fruitlessly and
endlessly, be able to take out their pencils, sit down amicably at their desks, and say "Let us
calculate."

Gottfried Wilhelm von Leibniz (1646 — 1716)

Lest men suspect your tale untrue,

Keep probability in view.

John Gay (1685-1732)

Fables. Part 1: The Painter who pleased Nobody and Everybody.

But to us, probability is the very guide of life.
--Bishop Joseph Butler, The Analogy of Religion, Introduction

It is seen in this essay that the theory of probabilities is at bottom only common
sense reduced to calculus; it makes us appreciate with exactitude that which exact
minds feel by a sort of instinct without being able ofttimes to give a reason for it.
Marquis Pierre-Simon de Laplace

Philosophical Essay on Probabilities (1814)

In the description that follows, language will be treated as a Markoff process. The phonemes will
be considered uniquely identifiable; but their order, in the sequences that compose our sample,
can be described only statistically.

Colin Cherry, Morris Halle, and Roman Jakobson

Toward the logical description of languages in their phonemic aspect (1953)

Water which is too pure has no fish.
Ts'ai Ken T'an

1. Introduction

My goal in this paper is to provide an introduction to the notion of a probabilistic grammar, and
in particular, a probabilistic phonology.1 The notion of a probabilistic grammar is not a new one;
it originated in the 1950s in work by Ray Solomonoft and others, and has played an increasingly
important role in computational syntax and in speech recognition over the last fifteen years

(Solomonoff 1997,2 Charniak 1993). The notion of a probabilistic grammar is, however,
relatively unknown in mainstream linguistics — both syntax and phonology — and this is
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unfortunate, for I believe that the ideas involved here are extremely fruitful for understanding
various problems in linguistics.

In this paper, I will focus on phonology from a probabilistic point of view. Both probabilistic
phonology and morphology (Goldsmith 2001b) are areas with relatively little work done to date.
In fact, the only work that I am aware of in probabilistic phonology in the last thirty years or so
is Coleman and Pierrehumbert 1997, other than the voluminous literature on speech recognition

using hidden Markov models and the like.”

To illustrate the basic ideas, I have assembled a simple linear-segmental model of phonology and
applied notions of probability theory to it, and put it all into a computer program which we will
have occasion to look at; some of its output is given in this paper, and it can be downloaded from
http://humanities.uchicago.edu/faculty/goldsmith/Chiba.

This program (which I will call a “Complexity Sorter”) takes as its input a list of words from a
given language, with both standard orthography and phonological representation, and also word
frequency if that is available. It accepts this material from a computer file, and produces various
graphical outputs. In particular, it calculates what I will call the “phonological complexity” of
cach word — essentially the average information content, from the point of view of information
theory — and sorts the words by this measure (following standard usage, information and
complexity may be in some contexts used interchangeably). We may then browse through the
words of the language from the top of the list to the bottom. The program performs the analysis
with no prior knowledge of the language.

These lists are illustrated in Tables 1 through 4 for English and Japanese. Table 1 is the “good”
end of the English list, the words which have the lowest “average complexity” in these tables, a
notion closely tied to probability and one which we will discuss in detail shortly. The “good”
end, then, has low average complexity, and consists of words whose phonology is completely
native and central to the phonology of the language: words like the, hand, of, and, etc.

The notation used here may not be familiar. The word in normal orthographic form is given in
the first column, and a phonological representation is given in the second column. The notation
that is used here is the one that is commonly used in the computational literature for English
phonemes. It has the advantage over the IPA system that is more familiar to us that it only uses
the basic 26 letters of the alphabet, but many of the symbols used for the phonemes are less
obvious. For example, the voiced fricative of “the” is spelled “DH”, while the schwa is spelled
“AHO0”; more generally, every vowel ends with a number which indicates its stress level. Vowels
begin with two letters; if the second letter is H, the vowel is lax (as in IH, EH, and so on), while
if the second letter is Y or W, the letter is a tense diphthong), etc. This is widely known as the
“DARPAbet” notation. (see, for example, Jurafsky and Martin 2000.).

The bottom (or “bad” end) of the English wordlist — the words with the lowest average
probability, indicated here as the highest “average complexity” is given in Table 2.
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Yords | Representation | + Log Prob ibigrams) | Average complexity (bigrams) |
THE # DH AHO # 5776 1.925
HaMD #HHAELIMND # 10.744 2.149
LMD H#AELMND # g.813 2,203
OF # AaHL Y # 6,663 2221
HAM(Z) #HHAEL M & 0,055 2,264
WIZ #WIHL Z # 9,213 2,303
WHIZ HFWIHL Z # 9,213 2,303
HAMDIMNG #HHAEL M D IHD NG # 16,232 2,319
THAN #DHAEL M & 9.420 2,355
HI= #HHIHL Z # 3,465 2,366
an #AEL M # 7127 2,376
AMME #AEL M # 7127 2,378
AP #AEL M # 7127 2,376
FOREIGM #FADLRAHOM & 14.522 2420
FORE #FADLR # 9,681 2.420
FOR #FAOLR # 9.651 2420
FOLIR #FADLR # 3,681 2420
FALIRE H#FADLR # 3,681 2420
THAT(Z) #DHAHOT # 9,699 2425
WaS #WanlZ g 0,812 2453
MDY #AHOM D o# 0,853 2463
WarND #WwaoanlnND X 12,321 2,464
STU #FoTLWL # 9,890 2473
STEW #ETILWL # 0,890 2473
HAS #HHAEL Z # 10,061 2,515
ALMT H#AELMT# 10,0683 2,516
AMT #AELMNT# 10,0683 2.5l6
HAN'S(2) #HHAELMNZ # 12,642 2,528
HARNS(Z) #HHAEIMNZ & 12.642 2,528
HAMMNES #HHAEIMNZ # 12.642 2,528
IO Z) #WIHIND ¥ 12,693 2,539
WEMD #WEHLND & 12,700 2.540
HAT H#HHAELT # 10,174 2,544
HAMDS #HHAEIND Z# 15.318 2,553
STATIOMED #STE¥Y1ZHAHOMN D # 20,493 2,562
WOLILD #WUHID # 10,301 2575

Table 1: the good end of the English word list.

We see that the words in Table 2 barely look like English words at all: they consist of
borrowings (from Hawaiian, Arabic, Hungarian, etc.) and sound-symbolic forms (like “yeah”).
Needless to say, the Arabic words would not end up on the bottom of a list if the analysis had
been derived from a corpus of Arabic — but this is the English phonological structure that is
concerned. Bear in mind this ranking is by phonological analysis, and is not (for example) based
on word frequency (except in an indirect way).

In Tables 3 and 4, we see the parallel forms from a dictionary of Japanese.4 For Japanese, I had
no information about word-frequencies (which I did in the case of English), so those effects do
not enter into the results in Japanese.
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YWords | Representation | + Log Prob (higrams) | fverage complexity (higrams)
ZIHANGI2Y #ZHIVO ARl NG # 39,483 7.897
MOTET FVOYI QT # 39.514 7,903
JTAMGSU #IHY ALl NG S LWD # 55,703 7,958
THE(2) #DH AaHL # 23,903 7960
Do #1LW1L DOl ¥ 31.943 7,986
ZAYRE #ZEYIR # 31,9585 7,996
OOMPH #UWIMF # 2012 .00z
ZHUHAL #2111 HH AYL & 40,043 a.009
ARAL # AHOD R AWl & 32177 g.044
EOLSHOT #EOWOLSHOYL # 45,375 g, 0ez
ATSUSHI # 840 5 S W0 SHIVD # 55,483 &.089
NITHAL #MIV1I HH AW # 40,434 a.0a87
O0H &1L & 16,231 g.115
LITHGO # L IHL TH G AWD # 45,877 g, 146
L'HELIRELL% #LHHY LWL R OHL # 57.0582 g.155
OOLOMNG #1LWL L A0 NG # 40,821 a.1e4
ML #MLUWL IHO # 32,746 g, 187
ZHANG # ZHAEL NG # 32777 g,194
ZWEIG #IWAYLGR 41,033 g.208
UH # AHL # 16,605 a.303
ZAIRE #ZAYOIHIR # 41.661 g,332
ZHIVE DY #ZHIHL VK AfD Y # 55,602 8,372
AER(Z) #EYIIVI ABL R # 41.910 g3z
Z0E #20OWLIVD & 24,330 g.583
ZULALIF #ZUWILAWOF & S51.820 g.637
FLKIE # kUL E Y IHO # 52,041 g.674
YEAH # % AEL & 26,006 g.695
SALEH #5441 LEHOHH & 52,990 g.832
ARROYOD # ERD OY1 OW0 g 39,418 5,855
A2 #EY1AY1 # 26,833 .94
DES{Z) #DIHL # 27,197 =N
EH #EHL # 15,149 9.075
OaHU #OW1 AAl HH LWO 46,047 9,209
#ZH AWl # 27758 9,253
# Lisk # 19,950 0,975
: #ZH AAL # 20.e07 10,202

Table 2: “Bad” end of the English word list

And in Table 4, we see the “bad” end of the approximately 50,000 word Japanese list.”

The tables presented here are selections from the entire lists; the English list is over 100,000
words, and the Japanese is over 50,000 words; the tables given here are just the top and the
bottom ends of these lists. As we can see, the “bad” ends of the lists contain primarily
borrowings into the language, compounds, and onomatopoeia, while the “good” ends of the lists
contain words whose phonological patterns are the most central in the language.

These lists rank the words of each lexicon by their average probability, and it is the character of
probabilistic models (primarily in phonology) which I wish to discuss in this paper.
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Words | R.epresentation | + Log Prob ibigrams) | Average complexity (bigrams)
ki #loug 5,789 2,263
sU #Fsu# F.200 2.400
Loy #tou 9,800 2,450
kutou #hkutous# 14,804 2467
kou #lkou# 0,884 2471
kaku #lkaku# 12.480 2,495
kuru #huru# 12.505 2,801
ko #hkyvou# 12.569 2,514
bk #Fhkuku# 12,653 2,531
hiou #hou# 10,178 2,544
boukou #toutou# 17.815 2,545
shitou #Sitou# 15,2583 2,547
bk #haku# 12,768 2,554
koukou #kouktou# 17.899 2.857
kakukou #lkakutou# 20,495 2,562
kyoukou #hkyoutous 20,534 2.573
shiki #Siku# 12,904 2,581
katou #katous# 15.491 2,582
sUFU #surud 12,916 2,983
ki #Fhourid 12,931 2,586
fu #Fu# 7.2 2.587
shi ESi¥ N =] 2,588
kurak #hkuraku# 18,127 2,590
karu #lkaru# 12,954 2,591
dau #dou# 10,383 2,595
kakou tkakou# 15.575 2,596
keakako #tlkakaku# 15,171 2,596
kaitau #lkaitouR 18.183 2,598
hakbou #hakutous# 20,7583 2,595
hioukou #houkou# 15.191 2,599
kan'you #kan'vous 20,804 2,601
sen'you #sen'vous 20.822 2,603
kitow #kitouo 15.620 2,603
kurou #hkurou# 15.632 2,605
kalkaou #hkakvous 13.260 2,609
kouk #roukus# 15,663 2611

Table 3 “Good” end of the Japanese list

Probability theory is not very well known to linguists, or to the educated public, in general. We
all know that the probability of rolling a die and getting a 3 is 1 out of 6, or slightly more than
16%, and we probably all know that the probability of tossing a coin 3 times, and getting heads
all three times is 1/8, because 1/8 is 'z times 2 times 2. But this knowledge (although it is
correct) is misleading in the long run, because it tends to suggest that the goal of probability
theory is to determine precisely how rare a particular outcome of a random event is. Since
phonologists know that their concern is not with particularly rare events, and certainly not with
random events, it is not at all obvious to phonologists at first why they should have any interest
at all in probabilistic models. The bottom line is this: the theory of probability is fundamentally
the quantitative theory of evidence.

And yet the words in Tables 1 and 2, and 3 and 4, are the words of English and Japanese ranked
by their (average) probability — one model of their phonological probability — and it is perfectly
clear from looking at the list that this is not a list of the frequencies of words in English and
Japanese. So what is it? My purpose in this paper is to explain what is involved here, and why
we as phonologists might be interested in this kind of modeling.
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YWords | Representation | + Log Prob (bigrams) | fverage complexity (higrams)
piktsa #pitTask 31.368 5.228
iredzie #iredzies# 41,872 5,234
viora #wiora# 31442 5.240
ieie tieied 26,257 5.251
uxefa #uxefa# 31612 5,269
ea #eas 15.867 5.289
ooeda #ooeda# 31,756 5,293
ie Hie 16.039 5.346
afea tafeas 26,794 5,359
piakksa #piaktTa# 37.556 5.365
essexi Fessexi# 37597 5371
00aza #ooaza# 32,302 5,384
dyun #dyvuo# 26,929 5,336
meue #meue # 26,967 5,393
shaashaa #5a3a5aa# 37,786 5,398
uneune #uneune# 37.881 5412
chea #Cea 21,658 5,415
reja-uea #rejaiuea# 45,803 S5.423
aneue #aneued 32,545 5424
jaa #jaa#k 21,7011 5.425
oogoe #oogoe# 32,969 2,495
shea #5ea# 22,189 5.547
23azaa #zaazaa# 39,055 5576
uoza #uozad 27,961 5,592
ue #ue# 16,781 5.594
iie #iied 22.452 5.613
sheauxea #¥Seauxea# 45,150 5.644
uea #uead 22,937 5,734
nee #need 23,103 5776
aa #aas 17.336 5.77a
uo #uos 17.566 5.855
jaajaa #jaajaa# 41,954 5,995
anan #aoao# 30,687 6,137
e tees 19,388 6,629
Wi Fwip 20,260 6.753
e #we 21,694 7.231

Tagle 4: “Bad” end of the Japanese word list

My own interest in this approach goes somewhat deeper than an interest in a different kind of
modeling. I believe that a probabilistic approach to linguistic modeling allows us to defend a
very different conception of what linguistics is: in particular, this is the view that grammars are
scientific models of linguistic data, rather than models of what exists in the heads of speakers. In
the end, I believe that mainstream linguistics is not a cognitive science in the same sense that
psychology is, although this does not lessen the interest of linguistics to psychologists who study
the human use of language. Linguistics is the science that addresses linguistic data; it is of
interest to us because language is a peculiarly human and symbolic activity, certainly; but
linguistics teaches us to deal with language, not with organs such as brains.’

One of the central notions that we will explore — and this is not a new idea, in some domains — is
this: when we wish to analyze the phonology of a language, we establish a sizeable set of
observations O (“corpus”) of the language, and we attempt to build a model M that maximizes
the probability of that set of observations O. The model M is a model of the phonology of the
language; once it is constructed, it is capable of assigning a probability to any set of observations
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O’ from the language. The probability that M assigns to any particular set of observations will be
extremely small, and the larger the set of observations is, the smaller is its probability. I
emphasize this from the start; the fact that a particular utterance has a very low probability is not
a problem in any sense, and probability cannot be said to be the same thing as
(un)grammaticality. To repeat, the goal is to develop a model of phonology which assigns
probabilities, and in particular to find the phonological model which assigns the highest
probability to the set of observed data. This probability need not be large, but the ultimate claim
is that if we state the goal of the theory in this way, the model M which does assign the highest
probability to the observed data will be the best linguistic model of the observed data. But it will

take us some time to explain why this should be the case.’

One last point to mention at the beginning: the development of probabilistic models or grammars
is not an activity that can, in practical terms, be carried out by a human being unaided by
computer. What one must do is to figure out how one’s phonological idea can be expressed in
algorithmic terms — and then that idea must be turned into a computer program, which we will
call an abstract model. This abstract model, the embodiment of the phonological idea as a
computer program, is capable of taking as input a large set of phonological data and creating a
specific model of that data (which I will call an instance of the model); and, more to the point, it
is capable of developing an instance of the model of any set of observations. The instance of the
model can then be used to analyze further data that we present to it. In short, an (abstract) model
that we come up with from the probabilistic point of view is always at a higher level of
generalization than the kinds of ideas that we tend to develop in familiar generative terms. A
probabilistic (abstract) model will always be capable of accepting many different sets of data and
analyzing them in self-consistent ways.

2. Introduction to probability

One of the most enlightening aspects of probabilistic models of phonology and morphology is
that building such models forces the linguist to think explicitly about questions that one formerly
took for granted, with little conscious reflection, in building non-probabilistic models. In a
sense, we can say that a probabilistic model consists of a non-probabilistic model plus some
numerical quantities; it is not true that probabilistic models are inherently simpler or less
structural than non-probabilistic models.

The two essential characteristics of a probabilistic model are these: (1) it must define and
characterize the entire universe of possible events (or observations) in the domain that it models
— for us, this might be all possible utterances in a language L; and (2) it must assign a number
(which we call a “probability”) to each of those events (or utterances): these probabilities are all
non-negative (that is, zero or positive) -- and the probabilities must add up to 1.0, when we add
up the probabilities of the entire domain. The larger the universe of possible utterances, the
smaller the average probability is going to be (roughly), if they must all, taken together, add up
to 1.0.* The universe of possible utterances is generally called the sample space in probability
theory, and a set of non-negative numbers that add up to 1.0 is called a distribution.

This much, so far, is essentially mathematical, and not scientific. When we look at a model of a

real system — such as a phonological model — there is another important characteristic: the
probability that we assign to each utterance (that is, to each event in the sample space) is
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assigned by a mathematical function that we devise ourselves which is built up out of properties
of the subpieces of the utterance. If we are building a phonological model, then the probability of
the utterance will be built up out of properties of the phonological subpieces, such as the
phonemes, their order, and their phonological organization, that is, what we call the phonological
representation. (We might also expect to employ notions like distinctive features, syllable
structure, sonority, etc.) So our goal will be to figure out how phonological representation can
contribute to assigning probabilities!

Here is perhaps the crucial point. When we build our probabilistic model, we assign probabilities
to the small subpieces of the model (for example, probabilities of individual phonemes or
features), and these probabilities are usually tightly linked to direct observation (roughly, but
only roughly, we take these probabilities to be equal to their observed frequencies). In the case at
hand, this might be the probabilities of particular phonemes. Then our model assigns
probabilities to the larger pieces — for example, to words — based on two things: (i) our
theoretical (abstract) model and (ii) the probabilities now assigned to the more elementary units
(the instance of the model).

Let us begin with an extremely elementary model, the unigram model, the model that assumes
that individual phonemes can be assigned a particular probability, and that the probability that
we will assign to a sequence of phonemes is the product of the probabilities of the individual
phonemes. In addition, we assume that all words end with a particular symbol (#) marking word-
end.

It is important to keep track of the fact that we are already talking about two distinct (but closely
related) distributions (and remember: a distribution is a set of non-negative numbers that add up
to 1.0): the set of probabilities assigned to individual phonemes, and the set of probabilities that
are assigned to all possible words in the language. These are two quite different universes, with
no overlap: a word must contain at least one phoneme, and it must end with an instance of the
end-of-word symbol # (and thus a phoneme can never be a word, in this model). But we can
connect them by means of the unigram assumption that order makes no difference in computing
probabilities, which is to say, the probability of a string is the product of the probabilities of the
individual phonemes.

Mathematically, it is much more convenient to think about the logarithm (or log, for short) of the
probabilities instead of the probabilities themselves. Permit me to remind the reader that a
logarithm of x, base 2, is the exponent to which one must raise 2 in order to get x: 2'°%* = x and
log,(2") =X. 2% = 8; therefore log> (8) = 3. 27 =128, and therefore log, (128) = 7. 2™ = 14, and
therefore loga(Y%) = -1. 27 = 1/8, and therefore log, (1/8) = -3. Bear in mind that finding the log
of x times y yields the same result as adding the log of x and the log of y.

Because a probability is always a number between 0 and 1, its logarithm will be negative or zero,
and since most of us prefer positive numbers, it is traditional to talk about -1 * log of the
probability, because this is a positive number (or non-negative, at least). I will refer to this as the

positive log probability.9
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In Table 5 will be found a chart of phonemes of Japanese with positive log probabilities
computed from Breen’s online dictionary of Japanese, based essentially on his romaji
characterizations of words.

Eh':""emes | E;';;;S | ;;;g;ﬁf;’h | Why is the positive log probability more convenient than the
& ceEas 5 136561 probability itself? The answer is that log probabilities are
i 50445 3.355035 added (rather than multiplied), and this makes things a good
: :gggg g:gfggg deal simpler. To calculate the log probability of a word under
K AT165 3 795805 the simple unigram nlné)del, we add the log probabilities of the
n 32225 4.001569 individual segments.” (Remember that the “unigram model”
rE ggggg jg;g;?; is defined as the model which assumes that the probability of
£ 0477 4. 659675 a unit is independent of its context).Therefore we will prefer
5 16122 5.000719 to look at the column in our tables which are labeled “positive
i ﬁ;gi giggggé log probability”, and we will ask, What is the log probability
q 2654 S 740551 of various words? Since the log probability of A times B is the
¥ 911 5.856090 sum of the log probability of A and the log probability of B, it
i gg:g gggéggg follows that the log probability of a sequence of segments is
d 7358 P p— the sum of the log probabilitieg of the individual segments. It
h 6351 6,229059 also follows that we can easily calculate the average log
i ig;g g'ﬁg;gg probability for any given word: we compute the total log
E 4547 6. 736074 probabilit'y, and inide that by the n}lmber of segments in the
z 3863 7.061956 word. This constitutes the phonological complexity of a word
f ?Sg? ;-gggggg in that language, under that model. This quantity will be
N 264 9.400033 extremely important to us in what follows.

% 247 11.029094

v 73 12.787637

T 10 15.655534

Table 5: Phonemes of Japanese

Does the phonologist have an understanding, or an intuition, regarding this quantity, the average
log probability of a word? Not really, under the conditions which I have presented so far. Let us
take a look at the probabilities assigned to words of English and Japanese using the unigram
model (which assumes that phonemes have no relationship to the phonemes that are next to
them). We do this by computing the probability of each word in our corpus, and then ranking
words by their average log probability.

We find a ranking as given in Tables 6 — 9: Tables 6 and 7 for English, and Tables 8 and 9 for
Japanese.

What do we notice? Two things strike us right away: first, the low-probability words (that is,
high complexity words) at the “bad” end are indeed borrowings (they have a high proportion of
unusual phonemes, after all), but the words at the good end are often strange words. In Japanese,
it is quite striking: in the good list, we find a good selection of the odd words that consist
entirely, or almost entirely, of vowels. Why should that be so? The answer is clear with a
moment’s thought: individual vowels are more common than consonants because there are fewer
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distinct vowels than there are distinct consonants, so the words that would score the best on this
test will be those composed only of high-frequency phonemes, which tends to be the vowels. In
English, we find a similar effect: we find at the “good” end just those words that are built
entirely out of the highest-frequency phonemes — basically, schwa, /a/, and coronal consonants.

Words | Representation | + Log Prob (bigrams) | fAverage complexity (bigrams) | Average complesxity (unigrams)
# AHO # 6,231 3115 3114
T #AHOM # 8.167 2,722 3,444
ANCZ) # BHO N # 8.167 2,722 3444
TOE) # T aHD # 9.540 3.180 3,465
DE(3) # D AHD # 10,913 3,638 3693
DUz # D AHD # 10,913 3.638 3693
LE # L AHD # 10,905 3,635 3,723
ANDZ) #AHOMD # 9,853 2,463 3,795
EH #EHL # 18.149 2,075 3.876
THE # DH AHO # 5,778 1.925 3.877
'EM # AHOM # 11,301 3,767 3.882
CAN(Z) # K AHO N # 10,963 2,741 3,900
ANMNE #AELN # 7127 2,376 3,908
AN #AELN # FAE7 2,376 3,908
AMN #AELN # 7127 2,376 3,908
IN{Z) #IHIN# 9.527 3,276 3,908
NN #IHIN# 0,827 3276 3,908
IN. #IHIN# 9.527 3,276 3,908
AMMA # AEL N AHO # 11.854 2,964 3.910
ANAZ) # AEL N AHO # 11.854 2,964 3,910
ATTA # AEL T AHO # 12,143 3,038 3,927
AT #AELT # 8,243 2,748 3,928
IT #HIT# 0.402 3134 3.928
IN #IHIN # 8,143 2,714 3,941
ANMAN #AELNAHON & 13.790 2,758 3.949
TAMSA # MAEL N AHO # 20,295 4,059 3,949
THAT(Z) #DOHAHOT # 9,699 2.425 3.950
M #EHL N # 9.657 3.219 3,952
EN #EHI N # 9,657 3.219 3,952
M, #EHL N # 9.657 3.219 3,952
Ak #MAEL N # 15.568 3.892 3,955
MITTA #MIHI T AHD # 21,015 4,203 3,962
T #IHOT # 10,741 3,580 3.962
TOZ) #TIHO# 23,352 7,784 3,962

Table 6: “Good” end of unigram-ranked list: English

This model does not assign enough probability to words with natural sequences of phonemes;
after all, it was built based on the assumption that phonemes are irrelevant to their neighbors.
How can we take sequences into account?

The natural way to do that is to consider the probability of a phoneme as being dependent on the

phoneme that precedes it.'! We compute the probability of each phoneme, given the preceding
phoneme. This is the part that is empirically driven; we then use a new model to compute the
probability of each word: we say that the probability of a word is the product of the probability
of each phoneme, conditioned by the preceding phoneme. We write this in the following way.
We use the bracket notation S[i], where S is any string, to indicate the symbol in the i place. If
W = pit, then W[3] = t. We shall have calculated (and observed) the frequencies of a given
phoneme P, if it immediately follows phoneme Q, and we express that (in a way that is

This paper appeared in: Phonological Studies #5: 21-46.



comfortable to phonologists) as prob ( P | Q ). This may be read as “the probability of P, given
that the preceding phoneme is Q”.

Words | Representation + Log Prob (bigrams) | Average complexity (higrams) | Average complexity (unigrans)
WOICIECH(Z) # WOV CHEHOE # 35.812 6.469 6,952
BOHEME # B OWO HH EY1 M EYD # 44,255 6,322 6,961
WOICTECH # WOV CHEHO K # 42,686 7.114 6,977
THOROLIGH # THERL CWwio # 21.481 5.370 6,975
ALEID & AA0LEYL YV OWD # 45,417 7.569 6,992
YOSHIO &Y OWDO SH IY1 OWwo & 37.337 6.223 &, 296
ARROYO & ERO QY1 Oyl # 35.415 §.855 7.009
HAUFPALIGE # HH AW P ADD JH # 42,642 7.7 F.007
CARMEYALE # K AGDR MEYD W AAL LEYD # 69,340 6,934 7.0z29
JURADD # % UHOR 441 D O 37,302 5.329 7,035
ZHAD # 7H Al # 27,758 9,253 7.042
REGIME(Z) #REYOZHIYI M & 35.561 6.427 7.045
LITHGOW #LIHI TH G AWD # 45.877 8.146 7.081
FAMANE &Y AA0 M asl MEVD # 45,852 6.555 7.087
MUGABE & MUWDO G AR B EYD # 52,911 7.559 7.109
AMGELIZO & 840 MG G EHDL IVL K OWwo # 599.085 6,563 7.109
THYROID #THAYLR OYO D # 34,962 5.760 7114
FAMAMOTO &5 /A0 M AA0 M W1 T OW0 # 54,859 6,095 7.ll6
AGUIRRE # 880G W IHL R EYD # 44,391 6,342 7.121
MURAMOTO # MUHO R AA0 M O T OWi0 # 54,793 6,088 7126
BOURGEDIS(Z) # B UHL R ZH W Aa0 # 52,885 7.555 7.140
EURASLA # % UHOR EY1 ZH AHO # 31.834 4,545 7.141
TOYOOD & T OY0 LWL # 25,306 7077 7.160
BOUYGUES #EBOYL ZHEYL # 35.810 7.6z 7.180
BOURGEDIS #BUHOR ZH W &A1 # 93,304 7623 7206
CEALSESCU # CH AWD CHEHL 3K Y Uwio & 54,809 6,090 7207
PEUGECT &P Y UWO ZH Ol # 39.523 6,557 7.223
GIRAD #7ZH AYOR OW1 # 39,205 7.541 72537
GODOY #5AAL DOYD # 35,293 7.059 7.270
ETHYOL # EHI TH &Y0 AAD L # 44,217 7,369 7,305
GEOID #IHIV1 OYOD & 30,320 6,064 7.400
CESARE # CHEY0 Z AR1 REYD # 53,700 7671 7.401
THURGZOD #THER1 GUHOD # 41,175 6,863 T.A47T
CHENOWETH # CHEHL N AMWO EHO TH # 50,256 7179 7.494
QURESHEY # K UHOR EY1 SHEYD # 45.573 6.510 7.538

Table 7: “Bad” end of unigram-ranked list: English

Again, we compute those frequencies from a corpus, and use those frequencies as our
probabilities, and compute the probability of each word as the product of all of these conditional
probabilities:

n=length(S)

[ [ prob(sit|sfi-11_)

i=1

This model is called the bigram model.'? Let us assign log probability on the basis of this bigram
model. As I indicated above, it is natural to look at the phonological complexity, i.e., the average
log probability (rather than the total log probability) This is because phonological properties are,
for the most part, intensive: if one puts two phonologically well-formed words together, the
result is, by and large, just as well-formed phonologically (it is not twice as well-formed, in
particular). If we now rank the words in a corpus by average log probability, we get the lists that
we began with, Tables 1 through 4 above, which express quite well the phonologist’s intuition
regarding the phonological well-formedness of words.
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Wiards Representation + Log Prob (bigrams) |Fwerage complexity (bigrams) |.°.verage complexity {unigrams) |
g #uk 7.909 3,955 3.082
i #io# 14,615 4,872 3173
ui #ui 14,087 4.696 3173
au #au# 13.213 4,404 3191
i i 7192 3,59 3.246
kuu #huud 11,038 2,759 3.247
Uk #uku# 13.773 3.443 3.247
1a #uox 17.566 5,855 3,255
au #ou# 9177 3.059 3,255
jiau #iiauF 25.542 5.108 3.256
ki #Fhuuis 17.214 3,443 3.269
aual #ouou# 19,558 3912 3.279
aui #ouiF 15,355 3.839 3,280
jou #iou# 15,816 3,954 3.280
i Hii# 13.604 4.535 3.282
aua #oua# 18,360 4,590 3.293
aou H#aoud 16,378 4,094 3,293
nuu #nuu# 17,662 4,413 3.295
ai #ai# 10,158 3,385 3,300
iai Hiai# 16.072 4.018 3314
aa #aa# 17,336 2,779 3.317
fouu #hkouug 14,131 2,826 3.315
ku #Fhu 6,789 2,263 3.320
jiai #iiai# 22,485 4,497 3.322
kit #kouiu# 23,486 3.914 3324
uki #Fuki# 15,083 3771 3.329
e #huis 12,967 3.242 3,329
kiu #Fhiu# 15,523 3.861 3.329
ik #ikus 12,333 3,083 30329
ki #hivis 21,701 4,340 3334
oo #oou# 16,296 4,074 3342
kau #hkaus 13.720 3.430 3342
uka #uka# 15,658 3.964 3342
aku #aku# 11.973 2,993 3342
Uk #ukais 17,646 3.529 3.345

Table 8: “Good” end of unigram-ranked list: Japanese

We have now looked at two probabilistic models (unigram and bigram), and seen that each can
generate a ranking of words from a corpus. The bigram-induced mapping is actually a
surprisingly good automatic algorithm for determining how well any given individual word fits
into the phonotactic patterns of the language. Borrowings will inevitably (I would suggest)
consist of changes that bring words closer and closer to the heart of the phonology, which is to
say, their nativization decreases their average log probability. (That is a conjecture, which should
be tested empirically.)

There are a couple of striking differences between phonologists’ phonotactics and what we have
just done here. First of all, the probability-based analysis does not distinguish between what is
good or bad, in or out; it does produce a number, which can then be used to provide a ranking
(words with lower average log probabilities outrank those with higher average log probability).
Second, it has done this without reference to distinctive features or phonological classes (such as
consonants and vowels). Third, the information that we (or the algorithm) have put together is
rather verbose, or to put it differently, is distributed across a wide range of statistics. If in a
language there is a very strong tendency for vowels and consonants to alternate, that knowledge
is distributed across a wide range of statistics (that t follows a more than it follows S, etc.) As a
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linguist might say, the bigram model seems designed to miss the generalizations that
phonologists hold dear.

Wards | Representation + Log Prab {bigrams) | Average complexity (bigrams) | Average complexity {unigrams)
uxeha- #uxeha:# 32.100 4,586 5.292
pavirofu #pavurofus 39,689 4.410 5,294
suxicchi #suxiCcCi# 29,726 3716 5,297
mo-Esaruto #mo:Taruko# 40,704 4,070 5,305
feauxe- #feauxe:# 38.882 4,860 5.310
kantso-ne #kanTo:nesd 40,475 4,497 5.313
Zen'ya #zen'va# 74,150 3.450 5,315
fureiva- #fureiva: # 34.675 3.853 5.320
uxe-ba- Fuxe:ba:# 32722 4,090 5,330
ka-wu #harvus 23.017 3.836 5.338
davinchi #davinCi# 35727 4,466 5,364
uxocchi #uxoCCid 30,780 4,397 5,375
uxefa #uxefas 31.612 5.269 5,379
ravu #ravud 23.645 4.729 5.396
wariddo #variddo# 34,704 4,338 5.397
NE-MUyarizyu- #nemuvarixyu: & 64,273 4,591 5414
korvaruyu #hkonvoruvu# 43,080 4,808 5.439
Fivaivaru #rivaivarud 43.612 4,361 5.451
be-to-ven #betoivens 39,248 3.925 5.457
kadentsa #kadenTas 33.990 4,249 5,485
doveu-wappu #doxu:rwappu# 52,608 4,733 5.520
wijon #wijon# 29,084 4,847 5.553
vl #ivud 20,059 5.015 5,577
¥a-jon #vaijon# 30,582 4,369 5,606
WOy Uy #vorizyuimu# 50,360 4,578 5617
Miyi-0xe-vu #nyuiuxe:ivud E5.211 £.0i9 5634
mu-vi- Fmuivi# 33,191 4,742 5,645
revl- d#revyu: & 35,415 5.059 5,663
venda- #venda:# 30,005 4,286 5,668
denva- #denva:# 29,497 4,214 5,668
Ya-jon'appu #vaijon'appu# 50,351 4,196 5,703
piatksa #piatTa# 37,556 5,365 5. 762
gentsen #genTen# 28,252 4,036 5,583
shantse #5anTed 28.215 4,702 5.930
#Fvaruvu# 36,310 5,187 6.114
#pitTa# 31,368 S.228 6,154

Table 9: “Bad” end of unigram-ranked list: Japanese

I will briefly make some observations about these points. Yes, while this approach models
phonotactics without setting an absolute barrier between the forms that do and those that do not
violate the phonotactics, a careful study of the words in the language (any language) suggest that
this is a healthier and more accurate characterization of the facts. Languages gather words like a
sun gathers planets: some are closer in and some are further out, and the best we can do is
measure the force that links the two.

Why has there been no mention of distinctive features or phoneme classes, such as consonants
and vowels? This is not the result of bringing in probability; it is simply a result of the very
simple model that we are exploring. We could just as easily conduct a probabilistic analysis
using features. For ease of presentation, I have limited the model to discussion of atomic
phonemes, but we could perfectly well, and just as easily, perform the same analysis with
features instead of phonemes.
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Why is the phonotactic information distributed across the various numbers that we have built up?
Why are the results not summarized in a small number of easily written-out statements or
formulas?

There are two answers here. The first we have just stated: when we specify the model in terms of
features, we will have statements that look more familiar. But there is a second answer. Our
segmental bigram model of Japanese tells us that “ u # ” and “ k u ” are two of the pairs of
segments with the greatest mutual information (i.e., the greatest statistical “stickiness” between
them). That is important information about the sound pattern of Japanese, and we surely do not
want to lose it. (Some of that information would be extracted by the feature-based phonotactic,
certainly, but not all of it.) To put it slightly differently, we can now found out what phoneme-
patterning which is specific to individual phonemes we find; and much of it does not reduce
simply to feature-based statements.

We must go back now and reconsider why it was that we made the transition from the unigram
model to the bigram model. The reader will recall that we did that primarily because the unigram
model ranked much too high the Japanese words consisting entirely of vowels: the unigram
model has no ability to respond to (or to capture) sequential patterns that are important in
languages.

But according to the theory of probabilistic grammars, that is not the right answer to the question
as to why we should change models. The better answer that the theory of probabilistic grammars
gives is actually very subtle, and difficult to believe at first (perhaps even a bit hard to
understand). The central point is this: do anything necessary to increase the total probability
assigned to the corpus of observations.

| Maximize the probability of the observations

I did not show it before, but we will do it now: we will see that the shift from the unigram model
to the bigram model leads to an significant increase in the probability assigned to the corpus.
And the most important point of all is this: the discovery of any significant regularity will always
lead to an increase in the probability assigned to the observations (i.e., a decrease in complexity).

How do we compute the probability of all of the observations? We merely need to compute the
positive log probability of the entire corpus, which is simply the sum of the positive log
probabilities of the individual words. Maximizing the probability is equivalent to minimizing the
positive log probability. So let us add up the positive log probabilities for all of the words in the
unigram model, and again do it in the bigram model. What do we find?

For our corpus of English, the total difference (in terms of log probability) between the two

models is: 323,896 (unigram log probability: 1,883,085; bigram log probability 1,559,194),
which is a 17% improvement.

To recap: the total positive log probability of the corpus under the bigram model is smaller than
the positive log probability of the corpus under the unigram; therefore, the probability of the data
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under the bigram model is greater than it is under the unigram model, and therefore we must
prefer the bigram model.

These numbers are in a natural unit: they are in “bits,” as defined by information theory, and the
difference is called the mutual information, notions to which we will return.

We know now

e how to calculate the probability of a word given a particular probabilistic model of its
language. We also know

e that it is simpler to talk about the (positive) log probability of the word rather than its
probability. Because the (positive) log probability involves multiplication by -1,

e maximizing the probability is equivalent to minimizing the log probability. And we know
that

e we can usefully calculate the average log probability of a word, by dividing the log
probability of the word by the number of segments in the word.

If we compute the log probability for all the words in a language (by adding up the log
probability of all of the words in the language), and form the average by dividing by the total
number of characters in the corpus, what we get is the entropy of the system. In addition, the
positive log probability of a word is also known as the optimal compressed length of a word,
under the given model (this becomes important in the context of Minimum Description Length
work; see note 7).

3. Identifying the language from which a word is drawn

Let us consider a related question. Suppose one is given a word (let us say the word is
Mitsubishi) and a particular set of languages (say, English and Japanese), and one is asked to
determine which language the word comes from. How could one do it?

First of all, why would one care? There are both technical and theoretical reasons for caring to do
so. First of all, one might want to be build a device that would identify the language of a word in
a document — one might want to invoke the appropriate spell-checker of a word processor
automatically, or invoke a machine-translation system automatically. More theoretically, one
might be interested in how multilingual people can automatically switch their receptive
grammars — the language that they are listening in, so to speak — to be able to understand a
speaker. One might be interested in how people can identify sublanguages within a language: in
English, this means distinguishing Latinate from Germanic words; in Japanese, Sino-Japanese
forms from native Japanese forms, and so on. How can this be done? How can one distinguish
vocabularies, within a language or across languages?

Because we have been developing a probabilistic system, the answer is very easy to obtain. In
our calculations so far, we have been computing for an individual word W and language L, what
is the probability of word W? Now, however, we want to ask, given an individual word W, what
is the probability that it comes from language L? But that is an easy modification to make,
because it is simply a matter of applying Bayes’ rule, and comparing across languages. Bayes’
rule tells us how to make this inversion. It tells us, in this case, that the probability that word W
comes from language L is equal to the probability of word W, given language L (which is what
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we have just computed), times the probability of language L and divided by the probability of
word W:

Bayes’ rule:

p(A| B) = probability of Aif B is true = prob(B | A) prob(A)

prob(B)

prob(word W if W comes from English) prob(English)
prob(word W)
prob(wordW if W comes from Japanese prob(Japanese
prob(word W)

p(W comes from English| word W) =

p(W comes from Japanese| word W) =

So to solve the question as to which language a given word (such as Mitsubishi) comes from, we
need to calculate this quantity for each language as shown above, and then see which probability
is the greatest, and that will be the language that the word comes from — once again, it is a matter
of maximizing the probability of the evidence.

What is the probability of a given language L (English or Japanese)? If we have no apriori reason
to believe that one language is more likely than another, we may assign 0.50 to the probability of
each language. What is the probability of the word Mitsubishi (or any other word)? This is hard
to say, but in fact it does not matter, because we can ignore the denominator on the bottom,
because whatever the value is, it will be the same for both languages, and thus our task becomes
very simple: calculate the probability that word W comes from language L (which we already
know how to do) for each language, and choose the language which assigns the highest
probability.

If we compute the probability of Mitsubishi under the English model, we get an average log
probability of 5.31; if we compute it under the Japanese model, we get 3.36. Therefore,
Mitsubishi is a Japanese word.

#MIMITSUM BV SHIYD#
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5.310. Average complexity
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Let us try it the other way around. Consider take the word happen ( HH AE1l P AHO N in
English notation , h a p e n in Japanese). As Leibniz said, let us take out our pencils and let us
calculate. The average log probability in English is 3.177, while in Japanese it is 3.434.
Therefore, happen is an English word. And so on.

This is quite a remarkable result, and. I cannot imagine how another framework could
accomplish such a result. In fact, the result is even more remarkable than I have indicated so far.
If we have a string of words and we know that they all come from the same language, but we do
not know (yet) which language it is, we can get the score for the entire string by adding together
the scores of the individual words — so that a very strong indication from one word can overcome
an incorrect score from a different word. That is, if we take the string | bought a new Mitsubishi,
we will get a better English score than a Japanese score for the entire string, even though the
Japanese score for the word Mitsubishi is better than its English score."

4. Other topics

I would like to touch briefly on the following topics: (4.1) the notion of mutual information; the
relation of this work to other approaches, such as (4.2) harmonic phonology, and (4.3) lexical
phonology; (4.4) the relation of phonological representations (e.g., syllable structure,
autosegmental structure) to probabilistic phonologies; (4.5) the extension of this work from
phonotactics to morphophonemics, and (4.6) a remark on the relationship to optimality theory.

4.1 Mutual information

Let us look again at the program Complexity Sorter, and look at a wordlist from English. We
have discussed the unigram and bigram models so far, and by clicking on the “1/2” button, we
can switch back and forth between the two models. Now, if we compare the difference in
average complexity for various words, one thing that we will discover is this: for words at the
good end of the list (with the lowest complexity), the average complexity is lower when we look
at the bigram complexity than when we look at the unigram complexity. That is, the model is a
better predictor of a segment when it knows the segment that precedes. There is a name for the
difference between the log probability based on the unigram model and the log probability based
on the bigram model: it is mutual information, and we can display it by choosing the menu item
“Model/unigram with MI”. When we select words near the good end of the list, the mutual
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information is virtually always positive (indicated here by a red rectangle). As we move towards
the bad end of the list, where borrowings and other less-good words of the language appear, the
mutual information gets smaller and smaller, and eventually turns negative, represented by blue
rectangles hanging below the zero-line. These negative mutual informations represent the
situation in which the two segments would really rather not be next to each other — they are
phonotactically dis-preferred, as is typically found in borrowings, expressives, and so forth.

Unigram model

kakusu #kakusul

L0
38 3.4 38
3.599
# k a k u 5 u #
3.599. Average complexity
Probability conditioned by previous phone
kakusu #kakusu#df
1.6 o 2.675
# k a k u 5 u ¥

2.675. Average complexity
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Unigram with mutual information model

kakusu #kakusulf

b0

11 38 3.4 3.8

3.0 3.0 31

2.675. Average complexity

4.2 Harmonic phonology

I sketched an approach which I called harmonic phonology (Goldsmith 1990, 1993), which was
based on the proposal that we could establish a measure of well-formedness computationally for
any given phonological representation in a language. At the time that I wrote those earlier works,
I did not know how to accomplish this task technically; the work described here today is the
answer. At the time, I spoke of “maximizing the harmony” of a representation, but now it is
clear that it is more convenient to speak of “minimizing the complexity, or information”; but
whichever way we choose to describe it, the harmony is the log probability of the representation
(and now, unlike above, when I say “log probability”, I do not mean the positive log probability).

I conjectured in that early work that phonological rules apply if and only if their output is better-
formed (in terms of complexity) than their input. This seems to me, now, an inappropriate
suggestion, and I will return to an information-driven reformulation below.

4.3 Lexical phonology

It is probably not at all obvious, but some of the linguistic roots of what I have discussed here lie
in lexical phonology.14 Now, it is true that different people read lexical phonology in different
ways: different people see the essence or the core of the theory in different ways. My reading of
the theory (which I discussed in detail in Goldsmith 1990, Chapter 5) is this: the heart of the
phonology is the lexical phonology, where the morphophonology lies; and in this component, all
generalizations have a double-sided character: each generalization tells us (1) for each feature,
what is the more likely value in a given phonological environment, and (2) for each feature (in a
given environment), in what direction that feature may change if the language permits a change
because of a derived environment, that is, because of a word-formation process. This is a
remarkable notion, and it is one that has been adopted by many linguists, often, I think, without
too much reflection. In some regards, it is adopted by the core of optimality theory, without
much explicit discussion.
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To repeat, according to lexical phonology, the lexical rules are both statements of probabilistic
phonotactics and statements of allomorphy. How are rules of phonotactics and redundancy to be
learned? And how much redundancy (i.e., patterning) must there be in the lexicon to make it
“worthwhile” for the lexical phonology to set up a rule that accounts for an asymmetrical
distribution of the values of a given feature? Phonologists have, to my knowledge, never
addressed this question (though I posed it in Goldsmith 1995, admitting that I did not know how
to pursue the question), but it is essential for making lexical phonology work. And the present
work does precisely this: it says that all local redundancy is measured and captured.

4.4 The relation of phonological structure (or representation) to probabilistic phonology

I would like to repeat a point that I have already made: there is no intrinsic connection between
probabilistic phonology and the extremely simple model of phonological structure that I have
used so far in this talk, in which all structure is purely linear and there are no features. I have
done that only for purposes of description and simplicity. In a probabilistic approach, articulated
phonological structure is as important as it is in any other approach — indeed, more important,
perhaps. When one develops a probabilistic model (not just in linguistics, but in any field) it is
crucial for the analyzer to decide which factors may condition other factors in the model. In the
bigram model that we looked at, we allowed neighbors to condition probabilities.

I believe that the real contribution of complex phonological representation is this: it allows us a
richer idea of what it means for two items in a phonological representation to be “neighbors” —
and it is only pairs and triples of neighbors that play a role in assigning probabilities (that is a
conjecture).

4.5 About morphophonology
Constraints on space do not permit me to extend this discussion of phonotactics to a formulation
of how to deal with morphophonology, but I would like to say a word about the matter.

We have focused on the way in which language-particular complexity provides a mathematical
mapping from representations to the real numbers. It follows that we can take a representation,
and instead of keeping all of its elements fixed, we can let one (or more) of them vary across all
of the possibilities in the language. For example, instead of computing the complexity of the
string “#k lab#”,1can make a variable out of the third position (let us indicate this as #k ? a
b #; we can call that a representation schema), and then what I have is a function from all of the
phonemes to the real numbers: for each phoneme P, I can replace “?” in “#k ? ab #” by P, and
compute the complexity. We may then ask, which value of “?” gives us the smallest value for
complexity? In that way, we can compute the optimal log probability of a representation-schema.

To develop a phonology with morphophonemics, we need to compute a two-level phonology
(that is, a phonology with underlying forms and surface forms). Such a model contains, in
essence, two phonological representations (one underlying, the other surface), with
correspondences between elements on the two levels (as sketched in harmonic phonology, and
many other phonologies). We compute the log probability of each of these links, across a
training corpus. We use this information to compute the correct surface form SF, given a
particular underlying form UF. For any given surface form SF, we compute the log probability of

This paper appeared in: Phonological Studies #5: 21-46.



the pair (UF, SF), given SF — this computes the “reasonableness” of the pairing, corresponding to
traditional phonological rules — and the log probability of the surface form SF, in the way that we
have discussed today. We then choose the surface form for which the sum of these two values is
the smallest (i.e., for which the probability is the greatest).

4.6 Optimality Theory
I would like to briefly consider the points of equivalence and of difference between a
probabilistic approach and optimality theory. Let us briefly consider a notational variant of
optimality theory that lends itself to a comparison with probabilistic models. We will call this
variant “Weighted OT”.

Consider an optimality theoretic ranking of a universal set of constraints. Assign a set of positive
numbers (which we will call “weights”) to these constraints in such a way that if a constraint C is
ranked higher than constraint D, C’s weight must be larger than D’s weight. To make matters
concrete, let us assign 0.1 to the highest-ranked constraint, 0.01 to the 2"_ranked constraint,
0.001 to the 3™ constraint, and so on; the n™ ranked constraint is assigned weight equal to 10™.
For any given candidate phonological representation, we assign a score to it by adding up the
number of times it violates each constraint in the hierarchy, which gives us the following picture;
we may call the number (in between 0 and 1, by construction) generated by counting the
constraint violations “the OT complexity”:

0.1 1 3 ... = A number that is the OT complexity of a candidate R,

How many violations of Constraint 37

0. 1 2 3 ...=0T complexity of a candidate R,

How many violation\of straint 1?
How many violations of Constrat 27

How many violations of Constraint 3?

Constraint 1 Constraint 2 Constraint 3
@ Candidate R1 * * Hokok
Candidate R2 * % HoAk

In such a way, each candidate is assigned a number between 0 and 1 (here, 0.113 and 0.123), and
classical optimality theory tells us to select the candidate with the smallest “OT complexity”.
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This is not the way OT is usually expressed, but a few moments’ thought will convince the
reader that this is so, and that choosing the candidate with the smallest OT complexity is
essentially equivalent to working one’s way through a tableau, looking for the surviving
candidate.

There is a difference between the classical optimality tableau candidate selection algorithm and
the rule that says “pick the candidate with the lowest OT complexity”. The “OT complexity
measure” described here proposes that there is a number (one less than the base of the number
system used to express the number — here, base 10) such that you cannot count more than that
number of violations. But since there is no preset limit on the base of the number system we will
use, this claim has no significance.

There is no straightforward way to compare the actual substance of the constraints in OT and the
elements being modeled probabilistically, but let us try to make such a comparison anyway. If
we maintain the unrealistically simple unigram model of phonology, we can establish a simple
parallelism between the (positive) log probability of a phoneme, on the one hand, and a
constraint against that phoneme, on the other.

oT Probabilistic model
Sample constraint: *s: it is assigned a rank “s” has a positive log probability:
in the hierarchy -1 * log prob(s) = 0.0021
Candidate with smallest Candidate with small positive log
OT complexity is selected probability is selected
Central premise: OT tableau mechanism + | Central premise: maximize the probability
universal set of constraints of the observed data.

Probabilistic phonology and optimality theory can then be more easily compared. Both propose
that candidate selection is an instance of minimization (hence, of optimization), but probabilistic
phonology leaves no freedom regarding ranking or weighting of constraints: the weighting is
directly established from the data, through assigning the positive log probability as the weight to
each item in the model. In the probabilistic model, all pairs of adjacent items in a phonological
representation can enter into the calculation of the probability. In its broadest sense, OT does not
determine what may constitute a constraint; it offers only a means for adjudicating among
conflicting constraints.

Notice that effects such as the “emergence of the unmarked” follow from a weight-based
calculation; if two candidates are assigned the same weight by a more highly weighted
constraint, it is a lower ranked and lower weighted constraint that will be decisive in determining
the candidate with the optimal complexity.

5. Conclusion

What is a probabilistic phonology, as I have described it here? Is it a phonological theory, in the
accepted sense of the term? One thing that it is not is a theory of how the mind works. But it
offers a firm alternative foundation for phonology (and linguistics, more generally). It is not a
generative account of phonology, and does not insist that rules be ordered in this way or that, or
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not at all; it is not like optimality theory, in proposing a specific algorithm for candidate selection
and an innate inventory of constraints. It says only this: begin by expressing what one thinks are
all of the conceivable events in the universe one wishes to describe. Consider a distribution
across these events, which means assigning to each a probability in such a fashion that all of the
probabilities sum to 1.0. The correct distribution is the one that maximizes the probability of the
data which was described, most likely observed before the analysis was undertaken.

The general position that I have described here is often called positivism, and is characterized by
a strong concern for observation and a great skepticism with regard to hypothetical objects
whose plausibility derives from theory. Most of my life I have been dissatisfied with positivism,
and I see no reason to change now. I do believe that scientific theories, under the best of
circumstances, allow us to discover hidden realities behind or beyond the observed data. But my
generation of linguists — those coming of age since mid-1960s — has become so deeply mired in
anti-positivism that we have lost track of a good deal that is right and important about it. This is
not the time or place to go into these matters at length, but I wish only to underscore the point
that the position that I have argued for in these remarks is as much as anything a plea to return to
a more balanced perspective regarding the relationship of evidence and theory in linguistics."’

I have suggested just a bit of what can be done with some elementary software which is freely
available. I believe that there are things which we can learn about the phonology of a language
by a careful inspection of the data that it presents to us, and I hope that the notions that I have
discussed here may help in this task.

sk sk sk sk sk ke sk sk sk sk sk s ke sk sk sk s sk s ke sk sk sk s sk s sk sk sk sk s sk sk sk sk sk sk s sk sk skeosk s ke s sk sk sk sk s ke s sk sk skosk sk s sk sk sk sk sk skeosk skok skokosk

Notes

' T am grateful to Svetlana Soglasnova and Hisami Suzuki for discussions of the issues
described here. Some of the suggestions made here have been influenced by the ongoing
dissertation work by Svetlana Soglasnova concerning Russian hypocoristics, and by Daisuke
Hara on American Sign Language; both develop detailed complexity measures of the systems
they study, and go a good deal further than the remarks made in this paper.

* And see Solomonoff 1995 at http://world.std.com/~rjs/barc97.html

? There was a good deal of reference to notions of probabilistic models and information
theory during the 1950s and into the 1960s, as one of the quotations above illustrates — the one

from Cherry, Halle, and Jakobson 1951. See Hockett 1955, Goldsmith 2001a.

* This comes from Jim Breen’s (Monash University) extraordinary resources on Japanese
made available at http://www.csse.monash.edu.au/~jwb/wwwjdic.html, and 1 am extremely
indebted to him for making this work easily accessible to the research community. Breen notes
that he uses “wa-puro-" Hepburn romaji; thus “long vowels in gairaigo are represented with a *-’;
long vowels in Japanese words are written with the usual Japanese vowel, which is usually a ‘u’,
and sometimes ‘0’ or ‘i’....the voiced ‘tsu’ syllable is written ‘dzu’, not ‘zu’. Similarity the

voiced ‘chi’ is written ‘dji’. This is to distinguish them from the voiced ‘su’ and ‘shi’ syllables,
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which are written as ‘zu’ and ji’.” I have made the following changes in the phonological
representations: sh is changed to S; ssh to SS; ch to C; cch to CC; tsu to tu, other ts to T, and
-7 to .

> This method also reveals errors that have crept into the dictionaries by the dictionary
makers.

® To be a bit clearer, I am not saying that one cannot (or should not) do psycholinguistics,
that is, the analysis of how language is used by people. One can, and the tools for doing this are
getting better all the time; indeed, these tools have virtually revolutionized the field in the last
decade. My point is rather that traditional linguistics, which studies sentences and corpora, has a
scientific grounding that is distinct from that of psycholinguistics. This perspective is quite
different — indeed, at odds with — both the view (which I find curious) that linguistics is a branch
of the biosciences, as Chomsky is wont to say (e.g., Chomsky 1999), or that linguistics studies
objects with an ontological status much like that of mathematical objects; Katz and Postal in a
number of publications over the last twenty years have discussed a conception of linguistics in
this vein.

” The discussion in the text overlooks the importance of the complexity of the theory (or
model) being used to understand the data. The greater the complexity of the theory, the less
explanation is being provided, and one means to making such a statement quantitatively explicit
is provided by Minim mum Description Length; see Rissanen 1989, for example. The
presentation of this paper in August 2001 was linked to a following paper on the use of MDL in
the automatic learning of morphology. The central notion to MDL is that there is a trade-off
between grammar complexity and the degree of explanation that a grammar provides to a set of
observations, and in particular that the correct grammar has been found when the marginal
increase in log probability of a corpus equals the marginal increase in optimal length of the
grammar, both expressed in bits of information. What is surprising is that this simple formulation
can be made concrete and calculable.

¥ The reader who truly understands the nature of a distribution may cringe at that
statement, as I very nearly do; but if the statement is technically objectionable, it is
pedagogically reasonable.

? Confusingly, this is often called the negative log probability! -- because it is the log
probability multiplied by negative 1.

' Log probability falls roughly into the set of those properties that a physicist might call
an extensive property: if we divide a larger object up into two smaller pieces, an extensive
property is one (like mass) for which the property of the whole is equal to the sum of the
properties of the parts (unlike, say, temperature).

""We could alternatively consider the possibility that it is dependent on the phoneme that
follows it; it turns out that this is mathematically identical.
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21t is composed essentially of k* numbers, where K is the number of distinct phonemes
in the language.

5 T have run experiments that are slightly more complex than what is indicated in the
text, forcing a choice between 5 European languages, and getting 98%+ correct results after five
words, with natural text.

'* Especially as described in Kiparsky 1982.

' 1t is important to remember that positivism has been a liberating and a revolutionary
philosophy at other times in the past. August Comte, in his A General View of Positivism (1856),
writes, “Our doctrine, therefore, is one which renders hypocrisy and oppression alike impossible.
And it now stands forward as the result of all the efforts of the past, for the regeneration of order,
which, whether considered individually or socially, is so deeply compromised by the anarchy of
the present time. It establishes a fundamental principle by which true philosophy and sound
polity are brought into correlation; a principle which can be felt as well as proved, and which is
at once the keystone of a system and a basis of government. I shall show, moreover, in the fifth
chapter, that the doctrine is as rich in aesthetic beauty as in philosophical power and in social
influence. This will complete the proof of its efficacy as the centre of a universal system. Viewed
from the moral, scientific, or poetical aspect, it is equally valuable; and it is the only principle
which can bring Humanity safely through the most formidable crisis that she has ever yet
undergone.” Ernst Mach was the reigning positivist at the end of the 19" century among
philosophers of science, and it has often been remarked (among others, by Einstein himself) that
it was Mach’s remorseless positivism which enabled creative spirits, like Einstein, to question
and eventually to overthrow the Newtonian conception of time and space. Closer to home, the
great Bantuist A.E. Meeussen was able to imagine, and publish, the finest tonological analyses of
his day because he felt no need to justify his analyses beyond their ability to organize complex
data.
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